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How to Strengthen the Security of RSA-OAEP
Alexandra Boldyreva, Hideki Imai and Kazukuni Kobara

Abstract—OAEP is one of the few standardized and widely
deployed public-key encryption schemes. It was designed byBel-
lare and Rogaway as a scheme based on a trapdoor permutation
such as RSA. RSA-OAEP is standardized in RSA’s PKCS #1
v2.1 and is part of several standards. OAEP was shown to be
IND-CCA secure assuming the underlying trapdoor permutation
is partial one-way, and RSA-OAEP was proven to be IND-CCA
under the standard RSA assumption, both in the random oracle
model. However, the latter reduction is not tight, meaning that
the guaranteed level of security is not very high for a practical
parameter choice. We observe that the situation is even worse
because both analyses were done in the single-query setting,
i.e. where an adversary gets a single challenge ciphertext.This
does not take into account the fact that in reality an adversary
can observe multiple ciphertexts of related messages. The results
about the multi-query setting imply that the guaranteed concrete
security can degrade by a factor ofq, which is the number of
challenge ciphertexts an adversary can get. We propose a very
simple modification of the OAEP encryption, which asks that
the trapdoor permutation instance is only applied to a part of
the OAEP transform. We show that IND-CCA security of this
scheme is tightly related to the hardness of one-wayness of the
trapdoor permutation in the random oracle model. This implies
tight security for RSA-OAEP under the RSA assumption. We also
show that security does not degrade as the number of ciphertexts
an adversary can see increases. Moreover, OAEP can be used
to encrypt long messages without using hybrid encryption. We
believe that this modification is easy to implement, and the
benefits it provides deserves the attention of standard bodies.

Index Terms—Encryption, provable security, RSA-OAEP,
cryptography standards.

I. I NTRODUCTION

This paper combines the results of the following two
papers: Kazukuni Kobara and Hideki Imai, “OAEP++ : A
Very Simple Way to Apply OAEP to Deterministic OW-
CPA Primitives,”Cryptology ePrint Archive, Report 2002/130,
2002, and Alexandra Boldyreva, “Strengthening Security of
RSA-OAEP,” inProceedings of the Topics in Cryptology - CT-
RSA 2009, The Cryptographers’ Track at the RSA Conference
2009, LNCS, 2009. BACKGROUND AND MOTIVATION . OAEP

is one of the few standardized and widely deployed public-key
encryption schemes. It was designed by Bellare and Rogaway
[5] as a scheme based on a trapdoor permutation such as
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RSA. RSA-OAEP is standardized in RSA’s PKCS #1 v2.1
and is part of the ANSI X9.44, IEEE P1363, ISO 18033-2
and SET standards. The scheme is parameterized byk0, k1.
The encryption algorithm of OAEP[F ] takes a public keyf ,
which is an instance of a trapdoor permutation familyF , and
a messageM , picks k0-bit string r at random, padsM with
k1 zeros to getM ′ and computes the ciphertextC = f(s ‖ t)
for s = G(r) ⊕M ′ and t = H(s)⊕ r, whereG and H are
hash functions. OAEP[F ] was proven to be IND-CPA secure
assumingF is a one-way trapdoor permutation family [5]
and IND-CCA secure assumingF is partial one-way [12],
both in the random oracle (RO) model, i.e., whereG andH
are modeled as random oracles [4]. Partial one-wayness is a
stronger property than one-wayness and it asks that given the
result of applying a random instance of the function family
to a random pointx it be hard to compute the first part ofx.
RSA is believed to be one-way, so under this assumption the
result of [5] implies that OAEP[RSA] (RSA-OAEP) is IND-
CPA in the RO model. In [12] it was shown that one-waynes of
RSA also implies partial one-wayness, therefore RSA-OAEP
is IND-CCA under the standard RSA assumption (stating that
RSA is one-way), in the RO model.

While the concrete security reduction showing OAEP is
IND-CCA secure assuming partial one-wayness of the under-
lying permutation family is tight, the concrete bound showing
RSA-OAEP is IND-CCA under the RSA assumption is quite
loose, due to the “lossy” reduction from partial one-wayness
to one-wayness of RSA. Such a loose concrete security bound
implies that it may be easier to break the scheme than to
invert RSA, and to maintain reasonable security guarantees
one would need to use the scheme with a larger security
parameter. It was shown in [17] that keys of length about 4-5
thousand bits are necessary, i.e. at least 4 times larger than
the standard 1024-bit keys, and this means decryption will
be about64 = 43 times slower than before (since decryption
requires a modulo exponentiation whose complexity is cubic
in the length of the security parameter). This is basically
impractical.

Moreover, we note that the definitions of security of en-
cryption in [5], [12] only consider an adversary given a single
challenge ciphertext. In reality, of course, an adversary can
observe multiple ciphertexts of possibly related messages.
Such mismatch was studied in [3], [2], who defined security in
the “multi-query” setting where the adversary can see multiple
challenge ciphertexts on messages of its choice1. The result
of [3], [2] implies that security (IND-CPA or IND-CCA) in
the single-query setting implies security in the multi-query
setting, however, concrete security degrades as the numberof

1These works consider what they call a “multi-user” setting which also
allows the adversary to see multiple challenge ciphertextsunder multiple
public keys. We do not consider multiple public keys in this work.
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queries increases, and this loss cannot be avoided in general.
However it is possible for some specific constructions, e.g.
[3] shows that IND-CPA security of the ElGamal encryption
scheme [11] stays tightly related to security of the decisional
Diffie-Hellman problem regardless of how many queries an
adversary makes. Concrete security in the multi-query setting
of RSA-OAEP has not been explicitly addressed before our
work. The general reduction in [3] implies that in the multi-
query setting the IND-CCA security of RSA-OAEP is even
worse by a factor ofq, the number of challenge ciphertexts
the adversary sees, than what was implied by already loose
bound from [12].

OUR CONTRIBUTIONS. We propose an extremely simple
modification to the RSA-OAEP scheme that permits several
security improvements. Unlike most of alternative construc-
tions that have been suggested [18], [9], [16], the modification
we suggest does not change the transform construction. The
modified scheme, which we called OAEP++ in [14], differs
from OAEP in that it uses trapdoor permutations of particular
structure. Informally, they just leave the last part of the input
(t-part of the output of the OAEP transform) in the clear. The
scheme can be immediately instantiated with the RSA family
if we apply an RSA function only to thes-part of the OAEP
transform output, or to a portion of thes-part.

We show that RSA-OAEP++ is IND-CCA secure in the RO
model under the standard RSA assumption and the reduction
is tight. Moreover, not only the bound in the reduction is sig-
nificantly improved, but also the running time of the adversary
in the reduction.

It turns out that this simple modification has even more
advantages. We prove that concrete IND-CCA security of
the modified RSA-OAEP scheme stays tightly related to one-
wayness of RSA regardless of how many challenge ciphertexts
an adversary sees (is independent of parameterq). The proof
uses the self-reducibility property of RSA, and it does not
seem to be possible to apply the same idea to the original
RSA-OAEP scheme. Hence, the modified RSA-OAEP pro-
vides significantly better security guarantees than the original
version, for very practical parameter sizes, which resultsin a
very efficient scheme.

Additionally, the modified RSA-OAEP scheme can be used
to encrypt long messages without using symmetric encryption
in the hybrid encryption construct. For that the functionG
in the transform is made variable-output-length, i.e. its output
size is of the length of the message plus the zero padding of
length k1. For a fixed-output-length hashG′(·) one can effi-
ciently constructG(·) asG′(〈0〉‖·)‖G′(〈1〉‖·) . . . ‖G′(〈l〉‖·),
where 〈i〉 means the binary representation of the counter
i ∈ N. The functionH in the transform needs to be variable-
input-length, which is not a problem. The RSA function is
applied to the firstk (e.g. 1024) bits of thes-part of the OAEP
transform. The proof of security stays virtually the same. This
scheme yields more compact ciphertexts for long messages
than the one obtained through the use of hybrid encryption
because there is no need to encrypt the symmetric key.

Finally, we show that a further small modification of the
RSA-OAEP++ helps to eliminate a lesser-known minor weak-

ness of RSA-OAEP. Namely, the proofs of security [5], [12]
ignore the fact that the output of the transform is random
in Zk, when it needs to be random in the domain of the
permutation instancef (Z∗

N in the case of RSA, whereN is
2k−1 ≤ N < 2k). It is pointed out in [12] that this discrepancy
can be resolved by making the encryption algorithm repeatedly
compute the transform with fresh random coins until the result
is in Z

∗
N . While practical, this solution makes the encryption

and the reduction expected polynomial-time. We show how to
eliminate this problem for RSA-OAEP++ without the need to
use fresh random coins multiple times.

We hope the standard bodies will pay attention to the
modified RSA-OAEP as the advantages it offers seem to be
well worth a very simple modification to the standard scheme.

MORE RELATED WORK. After it was realized by [12] that
IND-CCA security of RSA-OAEP is not tight there ap-
peared several alternative encryption schemes using different
transforms before applying the RSA function. These include
OAEP+ [18], SAEP+ [9], REACT [16]. Another alternative,
which was proposed in [19] is the simplest construction and
is known as Simple RSA or RSA-KEM; it can be viewed
as a special case of REACT. OAEP+ is slightly less efficient
than OAEP, SAEP+ and OAEP++ as it uses 3 hash function
applications. Compared to OAEP++, OAEP+ and SAEP+ have
ciphertexts of length of RSA modulus. REACT and RSA-
KEM are encryption schemes suitable for encryption of long
messages. OAEP++ yields more compact ciphertexts for long
messages than REACT and RSA-KEM. IND-CCA security
of all of these schemes are tightly related to the hardness of
the RSA problem, in the RO model and in the single-query
setting. The latter two schemes (REACT and RSA-KEM),
unlike the former two, can also be shown to have an improved
security reduction in the multi-query setting (though it was
not formally proven). We think it is important to show that
the standardized RSA-OAEP scheme has similar properties,
with the help of a very simple modification that should be
easy to implement, because it appears very hard to replace the
standardized schemes with completely different constructions.

Improving the concrete security bounds is very important.
Many papers besides the aforementioned work of [3] focused
on this issue. For example, Coron [10] showed a new proof
with improved security reduction for the RSA-based Full-
Domain Hash signature scheme and his technique has been
widely used since then. Abe et al. [1] improved the time
bound in the security proofs of some of RSA-based encryption
schemes by considering 4-round Feistel network transforma-
tion.

It was shown in [15] that the OAEP++ transform is universal
in that it can also serve as a padding for signing with trapdoor
permutations. OAEP++ has been also used in [8] for an
orthogonal reason of showing some positive results about non-
malleability of OAEP when one or both ROs are instantiated
with existing functions, and those results serve as an additional
motivation for OAEP++. The paper [8] neither considers the
multi-query setting nor provides concrete security bounds.
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II. PRELIMINARIES

NOTATION AND CONVENTIONS. We denote by{0, 1}∗ the set
of all binary strings of finite length. We will refer to members
of {0, 1}∗ as strings. IfX, Y are strings thenX‖Y denotes the

concatenation ofX andY . If S is a set thenX
$
← S denotes

thatX is selected uniformly at random fromS. If k ∈ N then
1k denotes the string consisting ofk consecutive “1” bits. IfA

is a randomized algorithm andn ∈ N, then the notationX
$
←

A(X1, X2, . . . , Xn) denotes thatX is assigned the outcome
of the experiment of runningA on inputsX1, X2, . . . , Xn.
When describing algorithms, ifX is a variable andY is a
string, thenX ← Y denotes thatX is assigned the value of
Y .

All algorithms we consider are possibly randomized unless
indicated otherwise. By convention, the running-time of an
algorithm is measured relative to the bit-length of the input
and refers to both the actual running-time and program size,
including that of any overlying experiment, according to some
fixed RAM model of computation.k denotes the security
parameter. All algorithms we consider run in time polynomial
(or expected polynomial) ink.

SYNTAX OF PUBLIC-KEY ENCRYPTION. A public-key encryp-
tion (PKE) schemePE = (K, E ,D) with associated message
spaceMsgSp, which may depend on the security parameterk,
consists of three algorithms. The key-generation algorithm K
on input1k returns a public keypk and matching secret key
sk. The encryption algorithmE takespk and a plaintextM
to return a ciphertext. The deterministic decryption algorithm
D takes sk and a ciphertextC to return a plaintext. The
consistency condition requires that for allk ∈ N and all
M ∈ MsgSp(k) the probability ofDsk(C) = M is 1, where
the probability is over the experiment

(pk, sk)
$
← K(1k) ; C

$
← Epk(M) .

SECURITY OF PKE. We recall the notions of security of
public-key encryption (PKE). We only consider the definitions
addressing chosen-ciphertext attack (as opposed to a weaker
version for chosen-plaintext attack). We present two variants of
the standard IND-CCA definition. In the first one the adversary
is given a single challenge ciphertext, and in the second
definition the adversary can see multiple challenge ciphertexts.
We then show the relation between the definitions.

Definition 2.1: [Single- and Multi-query CCA Security
of PKE] Let PE = (K, E ,D) be a PKE scheme. Let
the left or right selector be the mapLR defined by
LR(M0, M1, b) = Mb for all equal-length stringsM0, M1,
and for any b ∈ {0, 1}. For an adversaryA define the
experiment:

Experiment Expind-cca
PE,A (1k)

b
$
← {0, 1}

(pk, sk)
$
← K(1k)

d
$
← AEpk(LR(·,·,b)),Dsk(·)

If b = d then return 1 else return 0

It is mandated the LR encryption oracle (also known as the
challenge oracle) is queried on pairs of messages inMsgSp(k)
and of equal length and the decryption oracle is not queried
on the outputs of the LR encryption oracle.

For an adversaryA who is allowed to make a single query
to its challenge oracle (we will refer to such an adversary
a single-query adversary) define the single-query(sq)-cca-
advantage,Adv

ind-cca-sq
PE,A (k) as

2 · Pr
[

Expind-cca
PE,A (1k) = 1

]

− 1 .

We define the multi-query(mq)-cca-advantage,
Adv

ind-cca-mq
PE,A (k) the exact same way, but for the adversary

A who can query its challenge oracle an arbitrary number of
times. We will refer to suchA a multi-query adversary.

A schemePE is said to be IND-CCA secure in the single-
(resp. multi-) query setting if the single-query (resp, multi-
query) -cca-advantage of any polynomial-time adversary is
negligible.
It is shown by using a hybrid argument in [3], [2] that for
any k ∈ N, a schemePE and any multi-query adversaryA
makingq queries to its challenge oracle there exists a single-
query adversaryB so that

Adv
ind-cca-mq
PE,A (k) ≤ q ·Adv

ind-cca-sq
PE,B (k) , (1)

where the running time ofB is that ofA plus O(log q), and
B does the same number of decryption oracle queries asA.

It was also shown in [3] that the above bound is tight
and cannot be improved in general. But for specific schemes,
e.g. ElGamal, the concrete security in the multi-query setting
is basically the same as in the single-query setting.

In this paper we are interested in improving the bound
in concrete security treatment of the popular RSA-OAEP
scheme in the multi-query setting. Accordingly we recall the
computational assumptions used in the analyses of the scheme.

COMPUTATIONAL ASSUMPTIONS. A trapdoor-permutation
generator is an algorithmF that on input1k returns the
description of a permutation and its inversef, f−1. The
trapdoor property means that for every instancef there exist
a function f−1 with the same domain and range so that
f(f−1) ≡ f−1(f) ≡ ID, the identity function.

Definition 2.2: [One-wayness] A trapdoor permutation
generatorF is called one-way if for everyk ∈ N and every
adversaryI its advantageAdv

owf
F ,I(k) defined as

Pr
[

x = x′ : x′ $
← I(1k, f, f(x))

]

,

where f, f−1 are generated byF(1k) and x is picked at
random from the domainD of every f output by F , is
negligible.

Definition 2.3: [Partial-Domain One-wayness] A trap-
door permutation generatorF is called partial-domain one-
way fork ∈ N and some extra parameterk′ ≤ k, whch can be
a linear function ofk, if for everyk ∈ N and every adversary
I its advantageAdv

pd−owf
F ,I (k, k′) defined as

Pr
[

x[1 . . . k′] = x′ : x′ $
← I(1k, f, f(x))

]

,
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wheref, f−1 are generated byF(1k), x is picked at random
from the domainD of everyf output byF and x[1 . . . k′]
denotes the firstk′ bits of x, is negligible.

An RSA trapdoor permutation generatoris an algorithm that
on input1k returns(N, e), (N, d) whereN is the product of
two random distinct⌊k/2⌋-bit primes anded ≡ 1 mod φ(N).
(Hereφ(·) is Euler’s phi function.) The domain and range here
areZ

∗
N .

The standard assumption is that the RSA trapdoor permu-
tation generator is one-way, and the reasonable security level
requiresk to be at least1024 bits. It was shown in [12] that
under this assumption RSA is also partial one-way. But the
concrete reduction in [12] is not tight showing that a much
larger RSA modulus is required to guarantee reasonable level
of the stronger notion of partial one-wayness.

III. OAEP AND ITS SECURITY

OAEP ENCRYPTION. The OAEP encryption [5] is parame-
terized byk0, k1 and k2 (that can be linear functions ofk,
but typically k0 = k1 = 128 and k2 = k) and makes use of
a trapdoor permutation generatorF with domain and range
{0, 1}k2 and two random oracles

G : {0, 1}k0 → {0, 1}k2−k0 and

H : {0, 1}k2−k0 → {0, 1}k0 .

The message space is{0, 1}k2−k0−k1 . The scheme
OAEP[F ] = (K, E ,D) is defined as follows:

• The key generation algorithmK(1k) picks a pair

(f, f−1)
$
← F(1k2) and returnsf as pk and f−1 as

sk.
• The encryption algorithmE(pk, M) picks r

$
← {0, 1}k0,

computess ← G(r) ⊕ (M ‖ 0k1), t ← H(s)⊕ r and
C ← f(s||t) and returnsC.

• The decryption algorithmD(sk, C) computess ‖ t ←
f−1(C), r ← t⊕H(s) and M ← s⊕G(r). If the last
k1 bits ofM are zeros, then it returns the firstk2−k0−k1

bits of M , otherwise it returns⊥.

SECURITY OF OAEP. The encryption scheme OAEP[F ] is
IND-CCA secure in the RO model if the underlying trapdoor
permutation generatorF is partial-domain one-way [12]. The
concrete security results in [12] are done for the single-
query IND-CCA security. We “translate” them into the multi-
query IND-CCA security using the result from [3] recalled in
Equation 1.

Theorem 3.1:[12], [3] Let F be a trapdoor permutation
generator with domain and range{0, 1}k. Let OAEP[F ] be
the encryption scheme defined above. Then for any adversary
A makingqe challenge oracle andqd decryption oracle queries,
qH , qG queries to RO oraclesH and G, there exists an
adversaryB such that

Adv
pd−owf
F ,B (k, k2 − k0) ≥

Adv
ind-cca-mq
OAEP[F ],A (k)

2qeqH

−
1

qeqH

(

qdqG + qd + qG

2k0

+
qd

2k1

)

,

and the running time ofB is that of A plus qG · qH ·
(TF (k)+O(1))+O(log qe), whereTF (k) is the time needed
for evaluating a random instance ofF .
As we can see the reduction is not particularly tight, but the
situation becomes even worse if we use RSA, pretty much the
only practical trapdoor permutation. It is believed to be one-
way, and it was shown in [12] that under this assumption it
is partial one-way as well, but the reduction is not tight. The
concrete result is as follows.

Theorem 3.2:[12], [3] Consider the RSA trapdoor per-
mutation generator with domain and range{0, 1}k. Let
OAEP[RSA] be the encryption scheme defined above2. Then
for any adversaryA making qe challenge oracle andqd

decryption oracle queries,qH , qG queries to RO oraclesH
andG there exists an adversaryB such that

Advowf
RSA,B(k) ≥

(Adv
ind-cca-mq
OAEP[RSA],A(k))2

4qe

−
1

qe

Adv
ind-cca-mq
OAEP[RSA],A(k)

(

qdqG + qd + qG

2k0

+
qd

2k1

+
32

2k−2k0

)

,

and the running time ofB is 2 times that ofA plusqH ·(qH +
2qG) ·O(k3) + O(log qe).
Such a loose concrete security bound implies that to maintain
reasonable security guarantees, i.e. so that it not much harder
to break the scheme than to invert 1024-bit RSA, one would
need to use the scheme with a larger security parameter. It is
shown in [17] that keys of length about 4-5 thousand bits are
necessary, i.e. at least 4 times larger that the standard 1024-
bit keys, and this means decryption will be about64 = 43

times slower than before (since decryption requires a modulo
exponentiation whose complexity is cubic in the length of
the parameters). This is basically impractical. Note that this
estimate is forqe = 1, i.e. when a single challenge ciphertext
is considered. If we take into account the maximum number
of queries to the challenge oracle an adversary makes –qe,
then to have reasonable security guarantees in the practical
multi-query settings the RSA parameters should be even larger,
making the scheme’s algorithms prohibitively slow.

IV. SIMPLE MODIFICATION – OAEP++,AND ITS

SECURITY

We propose an extremely simple modification, which per-
mits several concrete security improvements. The modified
scheme differs from OAEP[F ] in that it uses trapdoor per-
mutations of particular structure, which leave the last part
of the input in the clear. LetF be a generator producing
trapdoor permutations with domain and range{0, 1}k. Define
a new generatorFk first to run F ; let (f, f−1) be its
output of F , and define the first output ofFk as fp(x) ≡
f(x[1, . . . , k]) ‖ ID(x[k + 1, . . . , p]) = f(x[1, . . . , k]) ‖ x[k +
1, . . . , p] for any inputsx of lengthp ≥ k, wherex[1, . . . , k]
denotes the firstk bits of x. The second output, the inverse

2We comment on the mismatch between the domainsZ
∗

N
and{0, 1}k in

Section VII.
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permutation, is defined straight-forwardly. With regard tothe
OAEP construction we will be interested in cases whenp = k2

andk ≤ k2−k0, so that applyingFk to the output of the OAEP
transform leaves thet-part in the clear.

It is not hard to see that ifF is one-way, thenFk is partial
one-way, in that it is infeasible to recover firstk bits of the
preimage. With respect to RSA, we get that RSAk, applying
RSA to only the firstk bits of the input, is partial-one-way
under the standard RSA assumption. That immediately implies
that OAEP[Fk], when k ≤ k2 − k0 is IND-CCA in the RO
model, ifF is one-way, and we get that OAEP[RSAk] is IND-
CCA in the RO model under the standard RSA assumption3.
For the concrete security result we can use the bound of
Theorem 3.1.

But we can do even better. First, we can get rid of factor
qh. This is possible for the modified scheme for the follow-
ing reason. The proof of the original scheme constructs an
adversaryB breaking partial one-wayess ofF using the IND-
CCA adversaryA for OAEP[F ]. B needs to partially invert
its inputy = f(s‖ t), i.e. finds. This inputy is given toA as
the challenge ciphertext. The proof argues that the only wayA
can win the IND-CCA game is by querying the random oracle
H on s at some point. WhileB cannot check which of the RO
queriesA made is the correct valueB is looking for (sinceB
does not know the second partt to verify this), it can just pick
one query at random. This is where the factorqh, the number
of RO queries, is coming from. For the modified scheme, the
proof from [12] applies without a single change, except we
can note thatB will now be able to select the corrects out
of A’s RO queries becauset is in the clear.B just checks if
f(si ‖ t) = y for all queries to the random oracleH that A
makes.

In addition, the running time of the constructed adversary
in the reduction for the modified scheme is also improved.
We comment on this below and give more details in the next
section.

Here is the security result for the modified scheme used
with any trapdoor permutation generator.

Theorem 4.1:[14], [3] Let F be a trapdoor permutation
generator with domain and range{0, 1}k. Let Fk be a
trapdoor permutation generator producing permutations with
domain and range{0, 1}p for p ≥ k as defined above. Let
OAEP[Fk] = (K, E ,D) be the encryption scheme defined in
Section III so thatp = k2 and k ≤ k2 − k0. Then for any
adversaryA makingqe challenge oracle queries,qd decryption
oracle queries,qH , qG queries to RO oraclesH and G there
exists an adversaryB such that

Advowf
F ,B(k) ≥

Adv
ind-cca-mq
OAEP[Fk],A(k)

2qe

−
1

qe

(

qdqG + qd + qG

2k0

+
qd

2k1

)

,

and the running time ofB is that ofA plusqd ·qH ·(TFk
(k)+

O(1)), where TFk
(k) is the time needed for evaluating a

random instance ofFk.

3This was previously observed in [8]

Note an improvement compared to the running time of the
adversary in the proof of Theorem 3.1. The number of trapdoor
permutation computations there is proportional toqG ·qH . Here
it is proportional toqd · qH . This is much better as in practice
the number of decrypted ciphertexts can be much smaller that
the number of hash computations. We explain the reason for
this saving in the next section, where we provide the proof.

The RSA instantiation result is immediate if we use an RSA
trapdoor permutation generator in place ofF and RSAk in
place ofFk above.

V. I MPROVING THE SECURITY IN THE MULTI -QUERY

SETTING

For the RSA instantiation of the proposed scheme we can
get rid of the factorqe in the bound of Theorem 4.1. This
shows that security in the multi-query setting does not have
to degrade as more messages are encrypted by each user
(when an adversary does multiple queries to the challenge
encryption oracle). Hence, the modified scheme provides even
better security guarantees than the original version, for very
practical parameter sizes. The following theorem states the
improvement result.

Theorem 5.1:Let RSA be a trapdoor permutation generator
with domain and range{0, 1}k. Let RSAk be a trapdoor
permutation generator with domain and range{0, 1}p for
p ≥ k as defined in Section IV. Let OAEP[RSAk] be the
encryption scheme defined in Section III so thatk2 = p
and k ≤ k2 − k0. Then for any adversaryA attacking IND-
CCA security of the scheme making at mostqe queries to its
challenge oracle,qd decryption oracle queries,qH , qG queries
to RO oraclesH andG, there exists an adversaryB such that

Adv
owf
RSA,B(k) ≥

Adv
ind-cca-mq
OAEP[RSAk],A(k)

2

−

(

qdqG + qeqd + qeqG

2k0

+
qd

2k1

)

,

and the running time ofB is that ofA plus (qe +1) ·Tm(k)+
(qd · qH + 1) · Te(k) + O(log qe), whereTm(k) and Te(k)
are times required to compute one modulo multiplication and
exponentiation respectively inZ∗

N , whereN < 2k.
What does the improvement mean in practice? The current be-
lief is that 1024-bit RSA provides 80 bits of security, so forany
adversaryB with reasonable resourcesAdvowf

RSA,B(k) ≤ 2−80

(and there are indications that this estimate is outdated in
that it does not take into account newer attacks and growing
computing power, and the bound is likely to be higher [13]).
Now assume an adversary manages to obtain220 ciphertexts
of chosen messages. This is about the number of TLS connec-
tions that were required to mount the well-known attack on
RSA-PKCS1 by Bleichenbacher [7] (though his attacks needed
that many chosen ciphertexts). Then according to Theorem 4.1
the bound onAdv

ind-cca-mq
OAEP[RSAk],A(k) is only about2−59, which

is not a strong security level. Theorem 5.1 implies that in
fact security of the scheme does not degrade as an adversary
mounts more chosen-plaintext attacks and stays tightly related
to the assumed security level of the underlying RSA problem.

We now give a single proof for the more general Theorem
4.1 and Theorem 5.1 dealing with the RSA-based instantiation.



JOURNAL OF LATEX CLASS FILES, VOL. ?, NO. ?, ? 2010 6

PROOF FOR THEOREMS 4.1 AND 5.1. We show how to
modify the proof of security from [12], which assumes an
adversaryA attacking IND-CCA security of OAEP[F ] in the
single-query setting (in the RO model). In our case we consider
a special case of the scheme, OAEP[Fk] and the practical in-
stantiation OAEP[RSAk] (i.e. when the permutation is applied
to the firstk bits of the OAEP output, leaving thet-part in the
clear).

Following [12] we use the game-playing technique of [6],
[20] and consider a sequence of experiments or games, asso-
ciated with the adversaryA and random oraclesG(·), H(·).
For the most part the proof is a simple extension of the proof
in [12]. For i ∈ N we let Pr[Gamei] denote the probability
that Gamei outputs 1.

Game-0G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k )
$
← K(1k)

Run A on inputfk and
whenG(·) is queried onr, returnG(r)
whenH(·) is queried ons, returnH(s)
whenA makesi-th query(M0,i, M1,i)

to EG(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Pick r∗i
$
← {0, 1}k0

Computes∗i ← G(r∗i )⊕Mb,i||0
k1

ComputeC∗

i ← fk(s∗i )
Computet∗i ← H(s∗i )⊕ r∗i
returnC∗

i ‖ t∗i
whenA makesj-th queryCj ‖ tj

to DG(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

returnDG(·),H(·)

f−1
(Cj ‖ tj)

Until A returns a bitd
Return 1 iff b = d

Game 0 corresponds toExpind-cca
OAEP[Fk],A(1k), the standard

multi-query IND-CCA experiment (c.f. Definition 2.1 for
the multi-query adversary). Each ofqe challenge ciphertexts
is generated according to the definition of encryption of
OAEP[RSAk] as follows. For1 ≤ i ≤ qe, to encryptMi,b first
r∗i is chosen at random from{0, 1}k0. ThenCi ← fk(s∗i ‖ ti),
wheres∗i = G(r∗i )⊕Mi,b‖0

k1 andti = r∗i ⊕H(s∗i ). Decryp-
tion oracle queries are answered according to the decryption
algorithm of OAEP[Fk]. By construction and Definition 2.1
we get

1

2
+

1

2
·Adv

ind-cca-mq
OAEP[Fk],A(k) = Pr[Game0] .

Game 1 is different from Game 0 in that it moves the
computation of the random coins,r+

1 , . . . , . . . , r+
qe

, used in
the challenge ciphertexts explicitly up front, together with
the computations ofg+

1 , . . . , g+
qe

, the values simulating the
corresponding random oracleG answers. By computation we
mean choosing the values at random from the corresponding
domains ({0, 1}k0 and {0, 1}k2−k0 resp.) and storing the
results. Further in the gamer+

i is used in place ofr∗i

Game-1G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k )
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0 , g+

i

$
← {0, 1}k2−k0

Run A on inputfk and
whenG(·) is queried onr

andr = r+
l for some1 ≤ l ≤ qe

then returng+
l , otherwise returnG(r)

whenH(·) is queried ons, returnH(s)
whenA makesi-th query(M0,i, M1,i)

to EG(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)
Computes∗i ← g+

i ⊕Mb,i||0
k1

ComputeC∗

i ← fk(s∗i )
Computet∗i ← H(s∗i )⊕ r+

i

returnC∗

i ‖ t∗i
whenA makesj-th queryCj ‖ tj

to DG(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

returnDG(·),H(·)

f−1
(Cj ‖ tj)

Until A returns a bitd
Return 1 iff b = d

Game-2G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k )
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0 , g+

i

$
← {0, 1}k2−k0

Run A on inputfk and
whenG(·) is queried onr

andr = r+
l for some1 ≤ l ≤ qe

then returnG(r) , otherwise returnG(r)

whenH(·) is queried ons, returnH(s)
whenA makesi-th query(M0,i, M1,i)

to EG(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)
Computes∗i ← g+

i ⊕Mb,i||0
k1

ComputeC∗

i ← fk(s∗i )
Computet∗i ← H(s∗i )⊕ r+

i

returnC∗

i ‖ t∗i
whenA makesj-th queryCj ‖ tj

to DG(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

returnDG(·),H(·)

f−1 (Cj ‖ tj)

Until A returns a bitd
Return 1 iff b = d

and g+
i is used in place ofG(r+

i ), for all 1 ≤ i ≤ qe.
I.e. each challenge ciphertext has the formfk(s∗i ||t

∗
i ), where

s∗i = (Mi,b ‖ 0k1)⊕ g+
i , t∗i = h+

i ⊕ r∗i for r∗i = r+
i and

h+
i = H(s∗i ). And wheneverA queries the random oracleG

on r+
i for any1 ≤ i ≤ qe, it is given backg+

i . These changes
do not affect the distribution of the view ofA compared
to that in Game 0, because(r∗1 , G(r∗1), . . . , r∗qe

, G(r∗qe
)) and

(r+
1 , g+

1 , . . . , r+
qe

, g+
qe

) have the same distribution, sinceG is a
random oracle:

Pr[Game1] = Pr[Game0] .
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Game-3G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k )
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0 , g+

i

$
← {0, 1}k2−k0

s+
i

$
← {0, 1}k2−k0 , h+

i

$
← {0, 1}k0

Run A on inputfk and
whenG(·) is queried onr

then returnG(r)
whenH(·) is queried ons

ands = s+
l for some1 ≤ l ≤ qe

then returnh+
l , otherwise returnH(s)

whenA makesi-th query(M0,i, M1,i)

to EG(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)
ComputeC∗

i ← fk(s+
i )

Computet∗i ← h+
i ⊕ r+

i

returnC∗

i ‖ t∗i
whenA makesj-th queryCj ‖ tj

to DG(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

returnDG(·),H(·)

f−1
(Cj ‖ tj)

Until A returns a bitd
Return 1 iff b = d

Game-4G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k )
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0 , g+

i

$
← {0, 1}k2−k0

s+
i

$
← {0, 1}k2−k0 , h+

i

$
← {0, 1}k0

Run A on inputfk and
whenG(·) is queried onr

then returnG(r)
whenH(·) is queried ons

ands = s+
l for some1 ≤ l ≤ qe

then returnH(s) , otherwise returnH(s)

whenA makesi-th query(M0,i, M1,i)

to EG(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)
ComputeC∗

i ← fk(s+
i )

Computet∗i ← h+
i ⊕ r+

i

returnC∗

i ‖ t∗i
whenA makesj-th queryCj ‖ tj

to DG(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

returnDG(·),H(·)

f−1
(Cj ‖ tj)

Until A returns a bitd
Return 1 iff b = d

Game 2 differs from Game 1 only in that the queries
to the random oracleG on pointsr+

1 , . . . , r+
qe

made by the
adversary or by the decryption oracle are answered at random
independently from the valuesg+

1 , . . . , g+
qe

used to compute
the challenge ciphertexts (e.g. by callingG(·)). Hence the
challenge ciphertexts are independent from the challenge bit b
(since they are uniformly distributed, independent of the rest
of A’s view) and

Pr[Game2] =
1

2
.

Game-5G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k )
$
← K(1k)

For 1 ≤ i ≤ qe pick

r+
i

$
← {0, 1}k0 , g+

i

$
← {0, 1}k2−k0

s+
i

$
← {0, 1}k2−k0 , h+

i

$
← {0, 1}k0

Run A on inputfk and
whenG(·) is queried onr

then returnG(r)
whenH(·) is queried ons

returnH(s)
whenA makesi-th query(M0,i, M1,i)

to EG(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Computes∗i
$
← {0, 1}k2−k0 ; C∗

i ← fk(s∗i )

Computet∗i
$
← {0, 1}k0

returnC∗

i ‖ t∗i
whenA makesj-th queryCj ‖ tj

to DG(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

returnDG(·),H(·)

f−1
(Cj ‖ tj)

Until A returns a bitd
Return 1 iff b = d

Game-6G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k )
$
← K(1k)

Run A on inputfk and
whenG(·) is queried onr

then returnG(r)
whenH(·) is queried ons

returnH(s)
whenA makesi-th query(M0,i, M1,i)

to EG(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Computes∗i
$
← {0, 1}k2−k0 ; C∗

i ← fk(s∗i )

Computet∗i
$
← {0, 1}k0

returnC∗

i ‖ t∗i
whenA makesj-th queryCj ‖ tj

to DG(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

If H(f−1(Cj))⊕ tj was queried toG(·)

then returnDG(·),H(·)

f−1
(Cj ‖ tj)

otherwise return⊥
Until A returns a bitd
Return 1 iff b = d

Similarly to [12] we can argue that the view ofA and thus its
outputs have the same distribution in Games 1 and 2 unlessA
queriesG oracle on either of the pointsr∗1 , . . . , r∗qe

(directly or
making the decryption oracle make this query). Let us denote
the probability of such event in this gamePr[AskG2], and such
an event is defined similarly in the following games.

Pr[Game1]− Pr[Game2] ≤ Pr[AskG2] .

Game 3 is different from Game 2 in that it moves the
computation of s+

1 , . . . , s+
qe

and h+
1 , . . . , h+

qe
explicitly up

front. By computation we mean choosing the values at random
from the corresponding domains ({0, 1}k2−k0 and {0, 1}k0

resp.) and storing the results. Furthers+
i is used in place of

s∗i and h+
i is used in place ofH(s+

i ), for all 1 ≤ i ≤ qe.
I.e. each challenge ciphertext has the formfk(s∗i ||t

∗
i ), where
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Game-7G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k )
$
← K(1k)

Run A on inputfk and
whenG(·) is queried onr

then returnG(r)
whenH(·) is queried ons

returnH(s)
whenA makesi-th query(M0,i, M1,i)

to EG(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Computes∗i
$
← {0, 1}k2−k0 ; C∗

i ← fk(s∗i )

Computet∗i
$
← {0, 1}k0

returnC∗

i ‖ t∗i
whenA makesj-th queryCj ‖ tj

to DG(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

If f−1(Cj) was queried toH(·)

andH(f−1(Cj))⊕ tj was queried toG(·)

then returnDG(·),H(·)

f−1
(Cj ‖ tj)

otherwise return⊥
Until A returns a bitd
Return 1 iff b = d

Game-8G(·),H(·)
A (k):

b
$
← {0, 1} ; (fk, f−1

k )
$
← K(1k)

Run A on inputfk and
whenG(·) is queried onr

then returnG(r) ; store(r, G(r)) in arrayG-list
whenH(·) is queried ons

returnH(s) ; store(s,H(s)) in arrayH-list
whenA makesi-th query(M0,i, M1,i)

to EG(·),H(·)
fk

(LR(·, ·, b)), (1 ≤ i ≤ qe)

Computes∗i
$
← {0, 1}k2−k0 ; C∗

i ← fk(s∗i )

Computet∗i
$
← {0, 1}k0

returnC∗

i ‖ t∗i
whenA makesj-th queryCj ‖ tj

to DG(·),H(·)

f
−1

k

(·), (1 ≤ j ≤ qd)

If f−1(Cj) was queried toH(·) andH(f−1(Cj))⊕ tj

was queried toG(·) ,

If G-list contains(r, Gr) andH-list contains(s, Hs),

so thatHs ⊕ tj = r, fk(s ‖ tj) = Cj ‖ tj

and the lastk1 bits of s⊕Gr are zeros

then return the rest ofs⊕Gr, otherwise return⊥
Until A returns a bitd
Return 1 iff b = d

s∗i = s+
i , t∗i = h+

i ⊕ r∗i for r∗i = r+
i and h+

i = H(s∗i ).
And wheneverA queries the random oracleH on s+

i for any
1 ≤ i ≤ qe, it is given backh+

i . These changes do not affect
the distribution of the view ofA compared to that in Game 2,
because we replaced each quadruple(s∗i , H(s∗i ), g

+
i , b) with

another having the same distribution, sinceH is a random
oracle:

Pr[AskG2] = Pr[AskG3] .

In Game 4, the difference with Game 3 is only in that the
queries to the random oracleH made by the adversary or by

the decryption oracle on pointss+
1 , . . . , s+

qe
are answered at

random independently from the valuesh+
1 , . . . , h+

qe
used in

the challenge ciphertexts (e.g by callingH(·)).
Similarly to [12] we can argue that the view ofA and thus

its outputs have the same distribution in Games 3 and 4 unless
A or the decryption oracle queries theH oracle on either of
the pointss+

1 , . . . , s+
qe

. Let’s denote the probability of such
event in this gamePr[AskH4], and such an event is defined
similarly in the following games.

Pr[AskG3]− Pr[AskG4] ≤ Pr[AskH4]

and

Pr[AskG4] ≤
qe(qG + qd)

2k0

.

Game 5 is similar to Game 4 except the way the challenge
ciphertexts are generated. In this game they are simply picked
at random, independently from everything else. We can argue
similarly to the proof in [12] that this does not change the view
and the outputs ofA. The reason is thatfk is a permutation
and in Game 4 it was applied to uniformly distributed points
s∗i ‖ t∗i , wheres∗i = s+

i and t∗i = h+
i ⊕ r+

i .

Pr[AskH4] = Pr[AskH5] .

Note that the pre-computed valuesr+
i , g+

i , s+
i , h+

i for 1 ≤
i ≤ qe are not used further in the game any more. Therefore
in the following games we remove the code generating them
for convenience.

Games 6–8 deal with answering decryption oracle queries
which were simulated perfectly before that. The definitionsof
the games and their analysis done in [12] hold for our modified
scheme and are independent of the number of the challenge
encryption oracle queriesA does, but we describe them for
completeness. For ak2-bit ciphertextC we call its lastk0 bits
t, and the fistk2− k0 bits of f−1

k (C) we call s. We callr the
result of xoringt with H(s).

Game 6 is like Game 5 except the decryption oracle rejects
all ciphertexts for which the underlyingr-value has not been
previously queried to theG oracle by the adversary. The views
of A in Games 5 and 6 are different only ifA queries a valid
ciphertext without querying the underlyingr-value toG oracle.
A ciphertext is valid if the lastk1 bits of s⊕G(r) are zeros.
But if r has not been queried, thenG(r) is an independent
random string and validity will be satisfied with probability at
most2−k1 . For qd decryption queries we get

Pr[AskH5]− Pr[AskH6] ≤
qd

2k1

.

Game 7 is like Game 6 except that the decryption oracle
rejects all ciphertexts for which the underlyings-value has not
been previously queried to theH oracle by the adversary. The
views of A in Games 6 and 7 are different only ifA queries
a valid ciphertext without querying the underlyings-value to
H oracle when the queryr was made to theG oracle. Since
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r = H(s)⊕ t, H(s) was not previously defined, it is random
and independent. Hence the probability thatr was queried is
at mostqG/2k0 . And for qd decryption queries we get

Pr[AskH6]− Pr[AskH7] ≤
qdqG

2k0

.

In the last Game 8 the decryption oracle queries, for which
either of the correspondingr and s values have not been
queried, are rejected. The game stores the pairs of the random
oracle queries and the corresponding answers in the arrays
G-list andH-list. The other ciphertexts are decrypted by using
a simple plaintext extractor who expects all previously madeG
andH queries made byA and returns the matching plaintext.
Namely, to decrypt a ciphertextC ‖ t, take every(sj , H(sj))
in H-list for 1 ≤ j ≤ qH , computer ← H(sj)⊕ t and check
if there is a pair(r, Gr) for anyGr in theG-list. If so, check
if fk(sj ‖ t) = C ‖ t and the lastk1 bits of si ⊕Gr are zeros,
then return the rest ofsj ⊕Gr. Otherwise, return⊥.

The view of the adversary does not change and thus

Pr[AskH7] = Pr[AskH8] .

Putting it all together we get

1

2
·Adv

ind-cca-mq
OAEP[Fk],A(k) = Pr[Game0]−

1

2

= Pr[Game1]−
1

2

≤ Pr[Game2]−
1

2
+ Pr[AskG2]

≤ Pr[AskG2]

= Pr[AskG3]

≤ Pr[AskG4] + Pr[AskH4]

≤
qe(qG + qd)

2k0

+ Pr[AskH5]

≤
qe(qG + qd)

2k0

+
qd

2k1

+ Pr[AskH6]

≤
qe(qG + qd) + qdqG

2k0

+
qd

2k1

+ Pr[AskH7]

=
qe(qG + qd) + qdqG

2k0

+
qd

2k1

+ Pr[AskH8] .

PROOF CONCLUSION FORTHEOREM 4.1. We show that there
exists an adversaryB such that

Pr[AskH8] ≤ qe ·Advowf
Fk,B(k) . (2)

B is givenf and the challengey. It first picks a random index
j from {1, . . . qe}. Next B picks qe values at random from
{0, 1}k, let us call themv1, . . . , vqe

; andqe values at random
from {0, 1}p−k, let us call themw1, . . . , wqe

. B re-assignsy to
vj . B runsA on input public keyf answers its RO queries with
random and independent values (and records all queries and

answers). To answer the decryption oracle queriesB checks
if the correspondingG and H queries were made, and in
this case a simple plaintext extractor that uses the recorded
queries to the random oracles and the (random) answers as
we described above is used; otherwise, the ciphertexts are
rejected (B returns⊥). For 1 ≤ i ≤ qe for an i-th query
to the challenge oracle made byA, B returnsvi ‖ wi.

We claim thatB simulates the view ofA in Game 8 per-
fectly. The challenge ciphertexts are random and independent
strings, and the decryption queries are answered correctlyby
the plaintext extractor. EventAskH8 means thatA made a
queryh to the random oracleH so thatf(h[1, . . . , k]) = vi

for some1 ≤ i ≤ qe. B searches for such query and outputs
h[1, . . . , k], which is f−1(y), if i = j. Therefore,B breaks
one-wayness ofF with probability 1/qe, since the indexj
was picked at random from{1, . . . , qe} independently from
A’s view.

We finally justify the running time ofB. In addition to
runningA, in order to answer each ofqd decryption queries
B does onef computation for each ofqH pairs stored inH-list.
The reason why the bound in the proof in [12] for the original
OAEP[F ] is worse (regardless of the fact that the reduction
there is to an easier problem of partial-domain one-wayness)
is because there for each decryption oracle query the adversary
has to apply the random instancef to values corresponding to
all possible combinations of pairs stored inG-list and H-list
or use more storage to speed up the check. But in any case
it stays proportional toqG · qH . In our case we do not need
to test everyr-value in G-list as the required value can be
computed using thet-part of the ciphertext.

PROOF CONCLUSION FORTHEOREM 5.1. We now consider
RSA trapdoor permutation generator in place ofF and claim
that there exists an adversaryB such that

Pr[AskH8] ≤ Advowf
RSA,B(k) . (3)

This is where we use self-reducibility of RSA to improve
tightness of the reduction. (Random) self-reducibility infor-
mally means that given a successful algorithm that can solve
a problem for an average case one can also solve the problem
in the worst case. We use this property to incorporate a
single challenge for the simulator into multiple challenges
for the adversary the simulator runs. Regardless of which
challenge the adversary breaks, the simulator can break its
own challenge.

To justify Equation (3) we constructB as follows. B is
given an RSA public key(N, e) and a challengey = xe

mod N for a randomx ∈ Z
∗
N . B picks qe values at random

from Z
∗
N , let us call themv1, . . . , vqe

; and qe values at
random from {0, 1}p−k, let us call themw1, . . . , wqe

. B
runs A on public key (N, e), answers its RO queries with
random and independent values (and records all queries and
answers). To answer the decryption oracle queriesB checks
if the correspondingG and H queries were made, and in
this case a simple plaintext extractor we described above is
used; otherwise, the ciphertexts are rejected (B returns⊥).
For 1 ≤ i ≤ qe for an i-th query to the challenge oracle made
by A, B returns(yve

i mod N) ‖ wi.
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We claim that B simulates the view ofA in Game 8
perfectly (except for the mismatch between the setsZ

∗
N

and {0, 1}k, on which we comment in Section VII). The
challenge ciphertexts are random and independent strings,and
the decryption queries are answered according to the simple
plaintext extractor algorithm that uses the recorded queries to
the random oracles and the (random) answers. EventAskH8

means thatA made a queryh to the random oracleG so
that h[1, . . . , k]e = yve

j ( mod N) for some1 ≤ j ≤ qe. B

searches for such query and outputsh[1, . . . , k]v−1
j mod N ,

which is yd mod N , i.e. it breaks one-wayness of RSA.
We finally justify the running time ofB. In addition to

runningA, to compute each ofqe challenge ciphertextsB does
one modulo multiplication (note that under our convention we
do not have to count RSA computations in encryption as they
are part of theA overlying experiment), to answer each ofqd

decryption queriesB does one RSA computation for each of
qH pairs stored inH-list, and does one modulo inverse and
one multiplication at the end.

REMARK . We comment on why does not the above proof
showing the security improvement work for the unmodified
OAEP[RSA] scheme. The reason is that in the original scheme
the RSA permutation is applied to the whole outputs ‖ t of
the OAEP transform. The tight security of OAEP[RSA] is only
shown assuming partial-domain one-wayness of RSA. In the
proof above the adversaryB given a challengey could still
use self-reducibility of RSA and generate challenge ciphertexts
for A asyve

1, . . . , yve
qe

mod N . In A’s view, these ciphertexts
have the right distribution (in Game 8) unlessA queries the
H oracle on any of the underlyings values (the first part of
ydv1, . . . , y

dvqe
). But if this happens,B cannot computeyd,

as it does not know the remaining part of the transform.

VI. ENCRYPTING LONG MESSAGES WITHMODIFIED

RSA-OAEP

We observe that the modified RSA-OAEP scheme can be
used to encrypt long messages without employing symmetric
encryption in the hybrid encryption construct. For that the
functionG in the transform is made variable-output-length, i.e.
its output is the length of the message plus the zero padding
of lengthk1. For a fixed-output-length hashG′(·) one can effi-
ciently constructG(·) asG′(〈0〉‖·)‖G′(〈1〉‖·) . . . ‖G′(〈l〉‖·),
where 〈i〉 means the binary representation of the counter
i ∈ N. In the RO modelG is a random oracle ifG′ is. The
functionH in the transform needs to be variable-input-length,
which is not a problem, since most of the hash functions are.
The RSA function is applied to the firstk (e.g. 1024) bits
of the s-part of the OAEP transform. The proof of security
stays virtually the same. This scheme yields more compact
ciphertexts for long messages than the one obtained through
the use of hybrid encryption because there is no need to
encrypt the symmetric key.

VII. O N {0, 1}k VS Z
∗
N M ISMATCH IN THE PROOF OF

THEOREM 5.1

In the proof of Theorem 5.1 we mostly ignored the fact
that the fist part of the OAEP output, to which RSA function

is applied, is distributed uniformly in{0, 1}k, while the pre-
image of the RSA challenge in the definition of one-wayness
(cf. Definition 2.2) is a random element ofZ

∗
N , whereN < 2k

is part of the public key. Keeping this discrepancy implicit
is common to the security proofs for RSA-OAEP and many
other RSA-based schemes. One solution for RSA-OAEP was
pointed out in [12]. Namely, a sender just re-computes the
output of the OAEP transform with new random coins until it
falls in Z

∗
N . The expected number of transform computations is

very low, and thus this solution is practical. However, one has
to remember that the running time of the encryption algorithm
and the adversary in the reduction is nowexpectedpolynomial
time.

We show how can this discrepancy be eliminated for RSA-
OAEP++ without relying on the success of multiple re-
computations, by slightly tweaking the transform as follows.
We introduce an additional parameter to the scheme,k3 ∈ N

so that k3 ≫ log2 qe, and make the random oracleG be
{0, 1}k0 → {0, 1}k2−k0+k3 , i.e. we extend the length of the
output by k3 bits. As before,H : {0, 1}k2−k0 → {0, 1}k0

and the message space is{0, 1}k2−k0−k1 . The encryption
algorithm parsesM ‖ 0k1 as w ‖ y, where |w| = k and

|y| = k2 − k0 − k, picks r
$
← {0, 1}k0 and parses the output

of G(r) asu ‖ v, where|u| = k + k3 and |v| = k2 − k0 − k.
It finally computesz ← w + u mod N and s ← y ⊕ v,
t← H(z ‖ s)⊕ r and returnsfk(z ‖ s ‖ t). HereN is part of
the public key description RSAk. The decryption algorithm is
defined accordingly.

The proof of Theorem 5.1 holds but we need to show thatu,
and thusz, is distributed almost uniformly inZN (and hence
for any efficient adversary this distribution is indistinguishable
from a uniform distribution inZ

∗
N ). Let 2k+k3 = aN + b,

wherea = ⌊(2k+k3/N)⌋ and b = 2k+k3 mod N . Note that
sinceN < 2k we have thata ≥ 2k3 .

Let $ denote a random variable uniformly distributed inZN .
Then the statistical distance betweenu and$ is

∆(u, $) = b

(

a + 1

aN + b
−

1

N

)

+ (N − b)

(

1

N
−

a

aN + b

)

=
2bN − 2b2

(aN + b)N
(4)

=
2bN − 2b2

2k+k3N
. (5)

It is easy to see that Equation 5 achieves the maximum when
b = N/2. Plugging it into Equation 4 we get

∆(u, $) =
1

2a + 1
≤

1

2k3+1 + 1
.

Since we haveqe ciphertexts,

qe∆(u, $) ≤
qe

2k3+1 + 1

should be negligible, sok3 should be chosen large enough
compared tolog2 qe.
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VIII. C ONCLUSIONS

We suggested a slight modification of the well-known and
practical RSA-OAEP encryption scheme. We showed that this
scheme has extra advantages, namely its IND-CCA security
remains tightly related (in the RO model) to hardness of the
RSA problem, even in the multi-query setting. Additionally,
this scheme can be used for encryption of long messages
without employing the hybrid encryption method and sym-
metric encryption. We believe the modification is very simple
to implement and may be considered by the standard bodies.
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