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How to Strengthen the Security of RSA-OAEP

Alexandra Boldyreva, Hideki Imai and Kazukuni Kobara

Abstract—OAEP is one of the few standardized and widely RSA. RSA-OAEP is standardized in RSAs PKCS #1 v2.1
deployed public-key encryption schemes. It was designed Bel-  and is part of the ANSI X9.44, IEEE P1363, ISO 18033-2
lare and Rogaway as a scheme based on a trapdoor permutation and SET standards. The scheme is parameterizeky, by, .

such as RSA. RSA-OAEP is standardized in RSA's PKCS #1 - . .
v2.1 and is part of several standards. OAEP was shown to be The encryption algorithm of OAEP'] takes a public keyf,

IND-CCA secure assuming the underlying trapdoor permutaton ~ Which is an instance of a trapdoor permutation fandilyand
is partial one-way, and RSA-OAEP was proven to be IND-CCA a messagé/, picks kq-bit string » at random, padg$/ with
under the standard RSA assumption, both in the random oracle £, zeros to get\/’ and computes the ciphertet= f(s|| t)
model. However, the latter reduction is not tight, meaning hat for s — G(r) @ M andt = H(s) @ r, whereG and H are

the guaranteed level of security is not very high for a practtal .
parameter choice. We observe that the situation is even woes hash functions. OAER| was proven to be IND-CPA secure

because both analyses were done in the single-query settjing @SSUMINGF is a one-way trapdoor permutation family [5]
i.e. where an adversary gets a single challenge ciphertexthis and IND-CCA secure assuming is partial one-way [12],
does not take into account the fact that in reality an adversey  poth in the random oracle (RO) model, i.e., whéteand H

can observe multiple ciphertexts of related messages. Thesults are modeled as random oracles [4]. Partial one-wayness is a

about the multi-query setting imply that the guaranteed corcrete . .
security can degrade by a factor ofg, which is the number of stronger property than one-wayness and it asks that given th

challenge ciphertexts an adversary can get. We propose a wer result of applying a random instance of the function family
simple modification of the OAEP encryption, which asks that to a random point: it be hard to compute the first part of

the trapdoor permutation instance is only applied to a part d RSA is believed to be one-way, so under this assumption the
the OAEP transform. We show that IND-CCA security of this result of [5] implies that OAEP[RSA] (RSA-OAEP) is IND-

scheme is tightly related to the hardness of one-wayness dfe - .
trapdoor permutation in the random oracle model. This implies CPA in the RO model. In [12] it was shown that one-waynes of

tight security for RSA-OAEP under the RSA assumption. We als  RSA also implies partial one-wayness, therefore RSA-OAEP
show that security does not degrade as the number of ciphertés  is IND-CCA under the standard RSA assumption (stating that
an adversary can see increases. Moreover, OAEP can be usedRSA is one-way), in the RO model.
to encrypt long messages without using hybrid encryption. W \ypjjle the concrete security reduction showing OAEP is
believe that this modification is easy to implement, and the IND-CCA secure assuming partial one-wayness of the under-
benefits it provides deserves the attention of standard bods. . i e .
lying permutation family is tight, the concrete bound shagvi
RSA-OAEP is IND-CCA under the RSA assumption is quite
loose, due to the “lossy” reduction from partial one-wages
to one-wayness of RSA. Such a loose concrete security bound
| INTRODUCTION implies that it may be easier to break the scheme than to
’ invert RSA, and to maintain reasonable security guarantees
This paper combines the results of the following tw@ne would need to use the scheme with a larger security
papers: Kazukuni Kobara and Hideki Imai, “OAEP++ : Aparameter. It was shown in [17] that keys of length about 4-5
Very Simple Way to Apply OAEP to Deterministic OW-thousand bits are necessary, i.e. at least 4 times largar tha
CPA Primitives,"Cryptology ePrint Archive, Report 2002/130the standard 1024-bit keys, and this means decryption will
2002, and Alexandra Boldyreva, “Strengthening Security @f abouts4 = 43 times slower than before (since decryption
RSA-OAEP,” inProceedings of the Topics in Cryptology - CTrequires a modulo exponentiation whose complexity is cubic
RSA 2009, The Cryptographers’ Track at the RSA Conferengethe length of the security parameter). This is basically
2009 LNCS, 2009. BCKGROUND AND MOTIVATION. OAEP impractical.

is one of the few standardized and widely deployed public-ke Moreover, we note that the definitions of security of en-
encryption schemes. It was designed by Bellare and Rogav#dyPtion in [5], [12] only consider an adversary given a ng

[5] as a scheme based on a trapdoor permutation suchchallenge ciphertext. In reality, of course, an adversay c
observe multiple ciphertexts of possibly related messages
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queries increases, and this loss cannot be avoided in denarass of RSA-OAEP. Namely, the proofs of security [5], [12]
However it is possible for some specific constructions, e.gnore the fact that the output of the transform is random
[3] shows that IND-CPA security of the EIGamal encryptioin Z,, when it needs to be random in the domain of the
scheme [11] stays tightly related to security of the decigio permutation instancg (Z% in the case of RSA, wherd/ is
Diffie-Hellman problem regardless of how many queries af~! < N < 2¥). Itis pointed out in [12] that this discrepancy
adversary makes. Concrete security in the multi-queryngett can be resolved by making the encryption algorithm repdated
of RSA-OAEP has not been explicitly addressed before ooompute the transform with fresh random coins until theltesu
work. The general reduction in [3] implies that in the multiis in Z3,. While practical, this solution makes the encryption
query setting the IND-CCA security of RSA-OAEP is everand the reduction expected polynomial-time. We show how to
worse by a factor of;, the number of challenge ciphertexteliminate this problem for RSA-OAEP++ without the need to
the adversary sees, than what was implied by already loasse fresh random coins multiple times.

bound from [12].
[12] We hope the standard bodies will pay attention to the

OUR CONTRIBUTIONS We propose an extremely simplemodified RSA-OAEP as the advantages it offers seem to be
modification to the RSA-OAEP scheme that permits severgkll worth a very simple modification to the standard scheme.
security improvements. Unlike most of alternative constru
tions that have been suggested [18], [9], [16], the modibcat More RELATED WORK After it was realized by [12] that
we suggest does not change the transform construction. TR&-CCA security of RSA-OAEP is not tight there ap-
modified scheme, which we called OAEP++ in [14], differpeared several alternative encryption schemes usingetiffe
from OAEP in that it uses trapdoor permutations of particulgransforms before applying the RSA function. These include
structure. Informally, they just leave the last part of thput OAEP+ [18], SAEP+ [9], REACT [16]. Another alternative,
(t-part of the output of the OAEP transform) in the clear. Th@hich was proposed in [19] is the simplest construction and
scheme can be immediately instantiated with the RSA family known as Simple RSA or RSA-KEM:; it can be viewed
if we apply an RSA function only to the-part of the OAEP 35 a special case of REACT. OAEP+ is slightly less efficient
transform output, or to a portion of thepart. than OAEP, SAEP+ and OAEP++ as it uses 3 hash function
We show that RSA-OAEP++ is IND-CCA secure in the R@pplications. Compared to OAEP++, OAEP+ and SAEP+ have
model under the standard RSA assumption and the reductiphertexts of length of RSA modulus. REACT and RSA-
is tight. Moreover, not only the bound in the reduction is-SIKEM are encryption schemes suitable for encryption of long
nificantly improved, but also the running time of the adveysamessages. OAEP++ yields more compact ciphertexts for long
in the reduction. messages than REACT and RSA-KEM. IND-CCA security
It turns out that this simple modification has even moref all of these schemes are tightly related to the hardness of
advantages. We prove that concrete IND-CCA security #fe RSA problem, in the RO model and in the single-query
the modified RSA-OAEP scheme stays tightly related to ongetting. The latter two schemes (REACT and RSA-KEM),
wayness of RSA regardless of how many challenge ciphertextdlike the former two, can also be shown to have an improved
an adversary sees (is independent of parampteFhe proof security reduction in the multi-query setting (though itswa
uses the self-reducibility property of RSA, and it does natot formally proven). We think it is important to show that
seem to be possible to apply the same idea to the origitla¢ standardized RSA-OAEP scheme has similar properties,
RSA-OAEP scheme. Hence, the modified RSA-OAEP pravith the help of a very simple modification that should be
vides significantly better security guarantees than thgirmal easy to implement, because it appears very hard to replace th
version, for very practical parameter sizes, which rednlta standardized schemes with completely different consonst
very efficient scheme. . . . .
Additionally, the modified RSA-OAEP scheme can be us Improving the concrete security bounds is very important.

. . : .Many papers besides the aforementioned work of [3] focused
to encrypt long messages without using symmetric encryptiQ i ics e, For example, Coron [10] showed a new proof
in the hybrid encryption construct. For that the functién ) '

in the transform is made variable-output-lenath. ie. iitoat with improved security reduction for the RSA-based Full-
L P gt 1.€. spu_ D?main Hash signature scheme and his technique has been
size is of the length of the message plus the zero paddlngv\(l)Idel used since then. Abe et al. [1] improved the time
length k;. For a fixed-output-length hash’(-) one can effi- y ' ' b

ciently constructG(-) asG'((0) | ) [ G"((D)]]-) .- . | G (WY1]-), bound in the security proofs of some of RSA-based encryption

. . schemes by considering 4-round Feistel network transforma
where (i) means the binary representation of the counter y g

¢ € N. The functionH in the transform needs to be variable-
input-length, which is not a problem. The RSA function is |t was shown in [15] that the OAEP++ transform is universal
applied to the firsk (e.g. 1024) bits of the-part of the OAEP in that it can also serve as a padding for signing with trapdoo
transform. The proof of security stays virtually the samieisT permutations. OAEP++ has been also used in [8] for an
scheme yields more compact ciphertexts for long messaggghogonal reason of showing some positive results abaut no
than the one obtained through the use of hybrid encryptiamalleability of OAEP when one or both ROs are instantiated
because there is no need to encrypt the symmetric key.  with existing functions, and those results serve as an iaddit
Finally, we show that a further small modification of theanotivation for OAEP++. The paper [8] neither considers the
RSA-OAEP++ helps to eliminate a lesser-known minor weakaulti-query setting nor provides concrete security bounds
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[1. PRELIMINARIES It is mandated the LR encryption oracle (also known as the
challenge oracle) is queried on pairs of messagesligSp (k)

NOTATION AND CONVENTIONS. We denote by 0, 1}* the set and of equal length and the decryption oracle is not queried
of all binary strings of finite length. We will refer to memiser on the outputs of the LR encryption oracle.
of {0,1}* as strings. IfX, Y are strings therX || Y denotes the  For an adversary4 who is allowed to make a single query
concatenation o andY. If S is a set thenX < S denotes to its challenge oracle (we will refer to such an adversary
that X is selected uniformly at random fros\ If k € N then @ single-query adversary) define the single-query(sg)-cca
1* denotes the string consisting biconsecutive “1” bits. IfA advantage,Adv;?g:fa'sq(k) as

is a randomized algorithm ande< N, then the notation’ & 9. Pr Expind-cca(lk) _ 1} 1.

A(Xq,Xo,...,X,,) denotes thatX is assigned the outcome PE.A

of the experiment of runningl on inputs Xy, X, ..., X,. We define the multi-query(mq)-cca-advantage,

When describing algorithms, iX is a variable andy” is a ind-cca-mq

string, thenX — Y denotes thatX is assigned the value of Advpe. 4 %) t_he exact same way, but fo_r the adversary
g, 9 A who can query its challenge oracle an arbitrary number of

Y. times. We will refer to suchl a multi-query adversary.

All algorithms we consider are possibly randomized unless o schemePs is said to be IND-CCA secure in the single-
indicgted ptherwise. By coqvention, theT running-time of aflesp. multi-) query setting if the single-query (resp, finul
algorithm is measured relative to .the pn—length of the mplthuery) -cca-advantage of any polynomial-time adversary is
and rgfers to both the actt_JaI running-time and program sizgsgjigible. |
including that of any overlying experiment, according to® | is shown by using a hybrid argument in [3], [2] that for

fixed RAM model of computationk denotes the security any k € N, a schemeP& and any multi-query adversary

parameter. All algorithms we consider run in time polyndmigy, Jying , queries to its challenge oracle there exists a single-
(or expected polynomial) irk. query adversanB so that

SYNTAX OF PUBLIC-KEY ENCRYPTION. A public-key encryp-
tion (PKE) scheméP& = (K, £, D) with associated message
spaceMsgSp, which may depend on the security paraméter
consists of three algorithms. The key-generation algorit

on input1”* returns a public keyk and matching secret key

sk. The encryption algorithn takespk and a plaintexth/ and cannot be improved in general. But for specific schemes,

to return a ciphertext. The deterministic decryption ailtpon - : )
D takes sk and a ciphertextC' to return a plaintext. The €.g. ElGamal, the concrete security in the multi-queryirsgtt

consistency condition requires that for &l € N and all 's basically the same as in the single-query setting.

] I N . In this paper we are interested in improving the bound
?geep}ggiiﬁi(t];)i;hc?vg:(iggbg)l(tge?ifrﬁgkn? ) = Mis 1, where in concrete security treatment of the popular RSA-OAEP

5 g scheme in the multi-query setting. Accordingly we recaé th
(pk,sk) < K(1%); C & Epp (M) . computational assumptions used in the analyses of the schem

SECURITY OF PKE. We recall the notions of security of COMPUTATIONAL ASSUMPTIONS A trapdookr-permutation
public-key encryption (PKE). We only consider the definiso 9&neratoris an algorithm7 that on input1 retglrns the
addressing chosen-ciphertext attack (as opposed to a wedl&scription of a permutation and its invergef~". The
version for chosen-plaintext attack). We present two vasiaf {rapdoor proptlerty_means that for every instaticthere exist
the standard IND-CCA definition. In the first one the adveysaf® function /= with the same domain and range so that
is given a single challenge ciphertext, and in the secodd/ ) =/ (f) = ID, the identity function. _
definition the adversary can see multiple challenge cipiest ~ Definition 2.2: [One-wayness] A trapdoor permutation
We then show the relation between the definitions. generatorF is called one-way if for every € N and every

owf

Definition 2.1: [Single- and Multi-query CCA Security ~adversaryl its advantageAdvy; (k) defined as
of PKE] Let P¢€ = (K,£,D) be a PKE scheme. Let s
the left or right selector be the map.R defined by Pr[«’ﬂle cal = I(1 f(I))} ,
LR(My, M;1,b) = M, for all equal-length stringsM, M,
and for anyb € {0,1}. For an adversaryA define the Where f, f~ are generated byF(1*) and z is picked at

AdvRETTMYE) < g Advpe ET(E), (D)

where the running time oB is that of A plus O(log ¢), and
B does the same number of decryption oracle queried.as
It was also shown in [3] that the above bound is tight

experiment: random from the domainD of every f output by F, is
' negligible. 1
Experiment Exp;‘;gjca(lk) Definition 2.3: [Partial-Domain One-wayness] A trap-
p & 0,1} door permutation generataf is called partial-domain one-

8 i way fork € N and some extra parametéf < k, whch can be
(pl;, sk) < K(1%) a linear function ofk, if for everyk € N and every adversary
d & AEp(LR(+.b)).Dak() I its advantageAdv’?, ' (k, k') defined as

If b = d then return 1 else return 0 5
Pr [x[lk’] =2 a2 & I(lk,f,f(a:))} ,
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where f, f~1 are generated byF(1%), = is picked at random and the running time ofB is that of A plus qg - qm -
from the domainD of every f output by F and z[1...k'] (Tr(k)+O(1))+ O(logq.), whereTr(k) is the time needed
denotes the first’ bits of z, is negligible. 1l for evaluating a random instance &t. |

An RSA trapdoor permutation generatisran algorithm that As we can see the reduction is not particularly tight, but the
on input1* returns(N, e), (N, d) where N is the product of situation becomes even worse if we use RSA, pretty much the
two random distinct k/2]-bit primes anced = 1 mod ¢(N). only practical trapdoor permutation. It is believed to bes-on
(Hereg(+) is Euler’s phi function.) The domain and range heray, and it was shown in [12] that under this assumption it
areZy. is partial one-way as well, but the reduction is not tighteTh

The standard assumption is that the RSA trapdoor permagncrete result is as follows.
tation generator is one-way, and the reasonable secuvigy le Theorem 3.2:[12], [3] Consider the RSA trapdoor per-
requiresk to be at leasti024 bits. It was shown in [12] that mutation generator with domain and randg®,1}*. Let
under this assumption RSA is also partial one-way. But tf@AEPIRSA] be the encryption scheme defined atfovEhen
concrete reduction in [12] is not tight showing that a mucfor any adversaryA making ¢. challenge oracle andy
larger RSA modulus is required to guarantee reasonablé ledlecryption oracle querieg;m, go queries to RO oracle¢!

of the stronger notion of partial one-wayness. and G there exists an adversafy such that
Advind-cca-mq k))g
I1l. OAEP AND ITS SECURITY AdvRsh p(k) > ( OAEZRSA]’A(
' de

OAEP ENCRYPTION. The OAEP encryption [5] is parame- 1 ind-cca-mq 4dqc + qa + q4a

) g . Advopeprsaa (k) k
terized byko, k; and k, (that can be linear functions df, PRSA, 2ko
but typically ky = k1 = 128 and ky = k) and makes use of qd 32
a trapdoor permutation generatér with domain and range + oki + ok—2kg |

{0,1}*2 and two random oracles R o
and the running time oB is 2 times that ofA plusqy - (g +

G : {0,1}* — {0,1}F2=* and 2qc) - O(k?) + O(log ¢.). 1
H {01}k — {0, 1}k . Such a loose concrete security bound implies that to maintai
reasonable security guarantees, i.e. so that it not muadehar
The message space ig0,1}%2~%—*_ The scheme to break the scheme than to invert 1024-bit RSA, one would
OAEPF] = (K,&,D) is defined as follows: need to use the scheme with a larger security parameter. It is
« The key generation algorithmiC(1%) picks a pair shown in [17] that keys of length about 4-5 thousand bits are
(f, f~H) S F(1*2) and returnsf as pk and f~! as necessary, i.e. at least 4 times Ia_rger that the standard- 102
k. bit keys, and this means decryption will be about = 43

. The encryption algorithng (pk, M) picks S (0,1}, times slower than before (since decryption requires a nwodul
computess — G(r) & (M || 6k1) t — H(s) @’T and exponentiation whose complexity is cubic in the length of
C — f(s||t) and returnsC. ’ the parameters). This is basically impractical. Note tig t

. The decryption algorithnD(sk, C) computess || ¢ — estimate is forg. = 1, i.e. when a single challenge ciphertext
FUC), r — t@® H(s) and M :_ s @ G(r). If the last is considered. If we take into account the maximum number

k1 bits of M are zeros, then it returns the fifst— ko — ki of queries to the challenge ora_cle an adversar_y makes -
bits of M, otherwise it returnsL.. then. to have rgasonable security guarantees in the piactica
multi-query settings the RSA parameters should be everiarg
SECURITY OF OAEP. The encryption scheme OAER is making the scheme’s algorithms prohibitively slow.
IND-CCA secure in the RO model if the underlying trapdoor
permutation generatgfF is partial-domain one-way [12]. The IV. SIMPLE MODIFICATION — OAEP++,AND ITS
concrete security results in [12] are done for the single- SECURITY

guery IND-CCA security. We “translate” them into the multi- Wi v simpl dificati hich
qguery IND-CCA security using the result from [3] recalled in . € propose an extremey_smp € modification, whic ber-
Equation 1. mits several concrete security improvements. The modified

Theorem 3.112], [3] Let  be a trapdoor permutationSCheme differs from OAEH(] in that it uses trapdoor per-

generator with domain and rande, 1}*. Let OAEFZ] be mutations of particular structure, which leave the lastt par

the encryption scheme defined above. Then for any adversgf fhe input in the clear. Let” be a generator producing

. . : & .
A makingq. challenge oracle ang; decryption oracle queries, traYpdoor permutauons.wnh domain r?md rar{@el_}l ' Def'f‘e
qm,qc queries to RO oracled! and G, there exists an a new generatory, _f'rSt to run F let (£,777) be its
ad\’/ersaryB such that ' output of 7, and define the first output af;, as f,(z) =
' flalt,.. . k) 1Dk +1,....p]) = f(z[L,....k]) | z[k +
Advmd'cca'mq(k) 1,...,p| for any inputsz of lengthp > k, wherex([1,. .., k]

OAEP[F],A X . .
2 P([]H] denotes the firsk bits of . The second output, the inverse
e

— ! 244G + 94 ¥ 96 + dd 2We comment on the mismatch between the domdifsand {0, 1}* in
qeqH 2ko 2k )7 Section VII.

AdvR LV (K, by — ko) >
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permutation, is defined straight-forwardly. With regardtte Note an improvement compared to the running time of the
OAEP construction we will be interested in cases whenk, adversary in the proof of Theorem 3.1. The number of trapdoor
andk < ko—kq, so that applyingF, to the output of the OAEP permutation computations there is proportionaj¢oqy . Here
transform leaves theépart in the clear. it is proportional tog, - ¢i. This is much better as in practice
It is not hard to see that i is one-way, ther#;, is partial the number of decrypted ciphertexts can be much smaller that
one-way, in that it is infeasible to recover firktbits of the the number of hash computations. We explain the reason for
preimage. With respect to RSA, we get that RSApplying this saving in the next section, where we provide the proof.
RSA to only the firstk bits of the input, is partial-one-way The RSA instantiation result is immediate if we use an RSA
under the standard RSA assumption. That immediately impligapdoor permutation generator in place Bfand RSA, in
that OAEPJF.], whenk < ko — ko is IND-CCA in the RO place of F;, above.
model, if 7 is one-way, and we get that OAEP[RFJAs IND-
CCA in the RO model under the standard RSA assumption V- IMPROVING THE SECURITY IN THE MULTI-QUERY
For the concrete security result we can use the bound of SETTING
Theorem 3.1. For the RSA instantiation of the proposed scheme we can
But we can do even better. First, we can get rid of fact@et rid of the factorg. in the bound of Theorem 4.1. This
gn. This is possible for the modified scheme for the followshows that security in the multi-query setting does not have
ing reason. The proof of the original scheme constructs &h degrade as more messages are encrypted by each user
adversaryB breaking partial one-wayess & using the IND- (when an adversary does multiple queries to the challenge
CCA adversaryA for OAEP[F]. B needs to partially invert encryption oracle). Hence, the modified scheme provides eve
its inputy = f(s|t), i.e. finds. This inputy is given toA as better security guarantees than the original version, &y v
the challenge ciphertext. The proof argues that the only waypractical parameter sizes. The following theorem states th
can win the IND-CCA game is by querying the random oracigprovement result.
H ons at some point. While3 cannot check which of the RO  Theorem 5.1:Let RSA be a trapdoor permutation generator
queriesA made is the correct valuB is looking for (sinceB  With domain and rang€g(0,1}*. Let RSA, be a trapdoor
does not know the second parto verify this), it can just pick permutation generator with domain and range 1}? for
one query at random. This is where the faafprthe number p > k as defined in Section IV. Let OAERSA;] be the
of RO queries, is coming from. For the modified scheme, ti#cryption scheme defined in Section Il so that = p
proof from [12] applies without a single change, except wandk < ks — ko. Then for any adversaryl attacking IND-
can note thatB will now be able to select the correstout CCA security of the scheme making at mgstqueries to its
of A’s RO queries becauseis in the clear.B just checks if challenge oracley, decryption oracle queriegy, gc queries
f(si || t) =y for all queries to the random oracké that A to RO oraclesd andG, there exists an adversafy such that

makes. Advind'cca'mq (k)

In addition, the running time of the constructed adversary Adv%vgi\,B(k) > OAERIRSA].A
in the reduction for the modified scheme is also improved. 2
We comment on this below and give more details in the next (QdQG - Qe]:]d + 4edc + q—:) ,
section. 2r0 2

Here is the security result for the modified scheme us@éd the running time oB is that of A plus (e +1) - 15, (k) +
with any trapdoor permutation generator. (qa - qu + 1) - Te(k) + O(log ge), where T, (k) and T (k)

Theorem 4.1:14], [3] Let F be a trapdoor permutationare times required to compute one modulo multiplication and
generator with domain and rangg0,1}*. Let 7, be a e€xponentiation respectively iy, whereN < 2*. |
trapdoor permutation generator producing permutatiorts wiVhat does the improvement mean in practice? The current be-
domain and rangd0,1}? for p > k as defined above. Let lief is that 1024-bit RSA provides 80 bits of security, so &ory
OAEPF,| = (K, &, D) be the encryption scheme defined irRdversaryB with reasonable resourcelsdvsy (k) < 27
Section 1ll so thatp = ks andk < ks — ko. Then for any (and there are indications that this estimate is outdated in
adversaryd makinggq. challenge oracle querieg; decryption that it d_oes not take into account newer attacks gnd growing
oracle queriesqs, g queries to RO oraclesl and G there computing power, and the bound is likely to be higher [13]).

exists an adversar such that Now assume an adversary manages to ohdinciphertexts
, of chosen messages. This is about the number of TLS connec-
ot Advng';f;:]’j(k) tions that were required to mount the well-known attack on
Advrp(k) = % RSA-PKCS1 by Bleichenbacher [7] (though his attacks needed
1 qque+ dGtae g that many chosenig(iigcrlg_r;[!ixts). Then accordingEgQTheqrém 4.
“ (T + 271) ; the bound OnAdVOAEP[RSAk],A(k) is only about2—°”, which

is not a strong security level. Theorem 5.1 implies that in
and the running time oB is that of A plusq,-qx - (T, (k) + fact security of the scheme does not degrade as an adversary
O(1)), where Tx, (k) is the time needed for evaluating amounts more chosen-plaintext attacks and stays tightatee!
random instance af. | to the assumed security level of the underlying RSA problem.
We now give a single proof for the more general Theorem
3This was previously observed in [8] 4.1 and Theorem 5.1 dealing with the RSA-based instantiatio
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G
PROOF FOR THEOREMS 4.1 AND 5.1. We show how to Game-1577¢/(k):

modify the proof of security from [12], which assumes an b {0,1}; (fr, fi 1) & K17
adversaryA attacking IND-CCA security of OAEB] in the For 1 <i < ge pick
single-query setting (in the RO model). In our case we carsid
a special case of the scheme, OAER] and the practical in-
stantiation OAEP[RSA] (i.e. when the permutation is applied
to the firstk bits of the OAEP output, leaving thtepart in the

r & {0,130, gF & {o 1)k
Run A on input f;, and
whenG(-) is queried onr

andr = r;" for somel <1< ge

clear).

Following [12] we use the game-playing technique of [6], then returng,” , otherwise returrG(r)
[20] and consider a sequence of experiments or games, asso- WwhenH(-) is queried ons, return [ (s)
ciated with the adversaryt and random oracle€/(-), H (). when A makesi-th query (Mo.i, Mi.:)
For the most part the proof is a simple extension of the proof to £ TOLR(, b)), (1< < ge)
in [12]. Fori € N we let Pr[Game;] denote the probability Computes; — g @ M,;||0™

ComputeC; — fr(s;)

that Gamei outputs 1. Computet: — H (s )@T

G()H() 1y return C; || ¢}

GameEBOA() “(k): ) when A makeHsg th queryC; || t;
be{0,1}; (fr. fr ') < K(1%) toDG“H“() 1<) <qa)
Run A on input f; and CONH()

whenG(-) is queried onv, return G(r) returan UG | )
when H () is queried ons, return H (s) Until A returns a bitd
when A makesi-th query (Mo,;, M1;) Return 1 iffb =d
to £7MO(LR(, 1), (1 <i < q)
Pick 77 < {0,1}*0
Computes; «— G(r; ) ® M, ;||0" Game- 2G( OF
ComputeC; — fi(s7) b (0,1} (fi S H) S k()
Computet; «— H(s;f) or; For1 < i < g pick

returnCy || ¢}

+ 8 ko o+ 8 ko —ko
when A makesj-th queryC; || ¢; ri —{0,1}", g7 = {0,1}

Run A on input f;, and

G(-),H .
oD/ OO, 0 <i <) whenG(-) is queried onr
returnDG<1) HO (041 45) andr = " for somel <1< g.
Until A returns a bitd then returnG(r) , otherwise returrG(r)
Return 1 iffb =d when H (-) is queried ons, return H (s)

when A makesi-th query (Mo,;, M1 ;)
to &7 TR, b)), (1< < ge)
Computes <—g+€BMb [|0F
ComputeC; «— fi(s;)
Computet; «— H (s; ) orf

ind-cca K returnC; || ¢}
Game 0 corresponds tBxpoaepr, ), 4(1"7), the standard when A makesj-th queryC; | ¢;
multi-query IND-CCA experiment (c.f. Definition 2.1 for to DG()H()() 1<7<q)

the multi-query adversary). Each f challenge ciphertexts
is generated according to the definition of encryption of
OAEP[RSA] as follows. Forl < i < ¢., to encryptM; ; first
r¥ is chosen at random frof0, 1}*o. ThenC; « fi.(sf || t:),
wheres? = G(r}) @ M, ||0% andt; = r} @ H(s}). Decryp-
tion oracle queries are answered according to the decryptio
algorithm of OAEPJF,]. By construction and Definition 2.1
we get and g;” is used in place ofG(r}), for all 1 < i < g..
l.e. each challenge ciphertext has the fofms [|lt5), where

returnDG< ) H( )(Cj | £5)
Until A returns a bitd
Return 1 iffb = d

11 ind-ceamq 1 st = (M || 0") @ g, tf = hf @rf for rf = r and
5 T3 AdvVonepz,) (k) = Pr{Gameq] . h} = H(s?). And wheneverA queries the random oraclg

onr; foranyl <i < g, it is given backg;". These changes
Game 1 is different from Game 0 in that it moves thdo not affect the distribution of the view ofi compared

computation of the random coins; seeeyens7h, used in to that in Game 0, becaude;, G(r7),...,r; ,G(r; ) and
the challenge ciphertexts epr|C|tIy up front, togethetttwi (v, g;,..., qe,gqe) have the same distribution, sincgis a
the computations ofy;" ,-++, 94, the values simulating the random oracle:

corresponding random oradfe answers. By computation we
mean choosing the values at random from the corresponding
domains {0,1}* and {0,1}*2~* resp.) and storing the
results. Further in the game;" is used in place ofr}

Pr[Game;] = Pr[Game] .
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Game-3§<')’H(')(k):
$ 1\ S
b {0,1}; (fi, fy 1) = K(1¥)
For1 < i < g. pick
ri & {0,110, g & {0, 1}k2 ko

(3

s7 & {0, 1}k2ko bt & {0, 1}k

Run A on input f; and
whenG(+) is queried onr
then returnG(r)
when H(-) is queried ons

ands = s;” for somel <1< q.

then returnk;" , otherwise return (s)

when A makesi-th query (Mo,;, M ;)
G(-),H(- .

to £FOTOWMR(, b)), (1 <i < q0)

ComputeC; « fi(s])

Computet! — hf @rF

returnC; || ¢}
when A makesj-th queryC; || ¢;

to DY), (1< < q0)

k
returnD?,('l)’H(')(C’j II't;)
Until A returns a bitd
Return 1 iffb = d

Game-4i(')'H(')(k):
b 0,1} 5 (fi, £ 1) & K (1)
For1 < i < g. pick
rf {03, gf S {0, 1yke e
s7 & {0,112 ko B & {0, 1}
Run A on input f;, and
whenG(-) is queried onr
then returnG(r)
when H (-) is queried ons
ands = s for somel <1< g.
then returnH (s) , otherwise returnf (s)
when A makesi-th query (Mo,;, M ;)
G(), . .
to £ O(LR(, -, b)), (1 <0 < qe)
ComputeC; « fr(s})
Computet} «— hf @t
returnCy || ¢}
when A makesj-th queryCj || ¢;
0 D?E'B'H(')(’)y (1<j<aq)
k
returnD?f'l)’H(')(Cj II't5)

Until A returns a bitd
Return 1 iffb = d

Game-5§(')’H(-)(k):
$ —1y 8
b= {0,135 (fu, fi 1) = K(1¥)
For1 < i < g pick
r & 40,130, g+ & {0, 1}k ko
s & {0, 13R ko, mf & qo, 13k
Run A on input f;, and
whenG(-) is queried onr
then returnG(r)
when H (-) is queried ons
return H (s)
when A makesi-th query (Mo,:, M1,:)
to £¢OHTOLR(, b)), (1< < qe)

Computes; < {0, 1}F27k0 ; O — f.(s])

Computet; & {0, 1}*0
returnC; || ¢}
when A makesj-th queryCj || t;
G().H() . ;
tonk,1 (), 1 <37 <qa)
return DO (G | 1)
Until A returns a bitd
Return 1 iffb =d
Game-Gi(‘)’H(‘)(k):
$ Z1y 8
Run A on input f; and
whenG(+) is queried onr
then returnG(r)
when H(-) is queried ons
return H (s)
when A makesi-th query (Mo,;, M ;)

to £5OHTOLR(, b)), (1< < qe)
Computes; < {0,1}¥27%0 ;. 07 — fi(s?)
Computet; < {0, 1}*0
returnC; || ¢}
when A makesj-th queryCj || ¢;
to D7), (1< < q0)
k

If H(f~'(Cj)) @t; was queried taz(-)
then returrfD?f'l)'H(')(Cj Il ;)
otherwise returnlL

Until A returns a bitd
Return 1 iffb = d

Similarly to [12] we can argue that the view dfand thus its
outputs have the same distribution in Games 1 and 2 unless
queries: oracle on either of the points, ..., r; (directly or
making the decryption oracle make this query). Let us denote
the probability of such event in this garfe[AskG], and such

Game 2 differs from Game 1 only in that the queriean event is defined similarly in the following games.

to the random oraclé&’ on pointsr, ... ,rj[c made by the
adversary or by the decryption oracle are answered at random
independently from the values', ..., g, used to compute Pr(Game,| — Pr[Game,] < Pr[AskG,] .

the challenge ciphertexts (e.g. by callidg(-)). Hence the
challenge ciphertexts are independent from the challeiige b  Game 3 is different from Game 2 in that it moves the
(since they are uniformly distributed, independent of testr computation ofsf,...,sf and hf,...,h} explicitly up

et seees S _
of A’s view) and front. By computation we mean choosing the values at random

from the corresponding domaing(( 1}*2~%0 and {0, 1}*o
resp.) and storing the results. Furthgr is used in place of
sy and b is used in place of(s}"), for all 1 < i < g..
l.e. each challenge ciphertext has the fofpis’||t}), where

Pr[Games] = % .
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Game-?i‘(‘)’H(‘)(k):

$ —1y 8
b {0,1}; (fr, fi ) = k(1Y)
Run A on input f; and
whenG(-) is queried onr
then returnG(r)
when H(-) is queried ons
return H (s)
when A makesi-th query (Mo, ;, M ;)
to EFOHTOLRC, b)), (1< < qe)
Computes? < {0, 1}¥27k0 ;. 07 — fi(s?)
Computet; < {0, 1}*o
returnC; || ¢}
when A makesj-th queryCj || ¢;
to DY (), (1< < q0)
k

If f=(C;) was queried taf(-)

and H(f~*(C;)) @t; was queried taz(-)
then returnD?f‘f’H(‘)(Cj ;)
otherwise returnl

Until A returns a bitd
Return 1 iffb =d

Game-8g<‘)’H<‘)(k:):

b 0,1} (fi, i) & K(1F)
Run A on input f;, and
whenG(-) is queried onr

then returnG(r) ; store(r, G(r)) in array G-list
when H (-) is queried ons
return H (s) ; store(s, H(s)) in array H-list
when A makesi-th query (Mo,;, M1;)
to €7 HOWLR(, b)), (1< < qo)
Computes; < {0, 1}*27%0 ; CF — fu(s7)
Computet; & {0, 1}%o
returnCy || ¢}
when A makesj-th queryC; || ¢;
to DET (), (1<) < qu)
If f’kl(Cj) was queried taH (-) and H(f1(C;)) @ t;
was queried ta&(-) ,
If G-list contains(r, G») and H-list contains(s, Hs),
so thatH @t; =r, fk(s || tj) =Cj || t;
and the lastc; bits of s @ G, are zeros

then return the rest of © G, otherwise returnL

Until A returns a bitd
Return 1 iffb = d

— ot — pt — .t +
sf = s, tf = hf@r; forrf =7 and h] = H(s]).

And wheneverA queries the random oracké on s for any

the decryption oracle on points', .. ., s, are answered at
random independently from the valué%,...,h;e used in
the challenge ciphertexts (e.g by calliffy-)).

Similarly to [12] we can argue that the view df and thus
its outputs have the same distribution in Games 3 and 4 unless
A or the decryption oracle queries tlié oracle on either of
the pointssy, .. ,sgf Let's denote the probability of such
event in this gamér[AskHy4], and such an event is defined
similarly in the following games.

Pr[AskGs] — Pr[AskGy] < Pr[AskH,]
and

ge(9G + qa)
PI‘[ASkG4] S T .

Game 5 is similar to Game 4 except the way the challenge
ciphertexts are generated. In this game they are simplyedick
at random, independently from everything else. We can argue
similarly to the proof in [12] that this does not change thewi
and the outputs ofi. The reason is thaf; is a permutation
and in Game 4 it was applied to uniformly distributed points
st || tr, wheres = s andt; = h @ r).

Pr[AskH4] = Pr[AskHs] .

Note that the pre-computed values, g;", s;, bt for 1 <
i < q. are not used further in the game any more. Therefore
in the following games we remove the code generating them
for convenience.

Games 6-8 deal with answering decryption oracle queries
which were simulated perfectly before that. The definitiohs
the games and their analysis done in [12] hold for our modified
scheme and are independent of the number of the challenge
encryption oracle queried does, but we describe them for
completeness. For/a-bit ciphertextC we call its lastk, bits
t, and the fistes — ko bits of f, ' (C) we call s. We callr the
result of xoringt with H(s).

Game 6 is like Game 5 except the decryption oracle rejects
all ciphertexts for which the underlyingvalue has not been
previously queried to thé&' oracle by the adversary. The views
of A in Games 5 and 6 are different only A queries a valid
ciphertext without querying the underlyimgvalue toG oracle.

A ciphertext is valid if the lask; bits of s & G(r) are zeros.
But if » has not been queried, the®(r) is an independent
random string and validity will be satisfied with probalyilat

1 <i< g, itis given backhj. These changes do not affecimost2—*. For ¢, decryption queries we get

the distribution of the view ofd compared to that in Game 2,

because we replaced each quadruple H (s}),g;",b) with

another having the same distribution, sinfeis a random

oracle:

Pr[AskG,] = Pr[AskGs] .

Pr[AskHs] — Pr[AskHg] < ;Td .

Game 7 is like Game 6 except that the decryption oracle
rejects all ciphertexts for which the underlyisgyalue has not
been previously queried to thé oracle by the adversary. The
views of A in Games 6 and 7 are different only 4f queries

In Game 4, the difference with Game 3 is only in that the valid ciphertext without querying the underlyirgvalue to
gueries to the random oraclké made by the adversary or by H oracle when the query was made to th& oracle. Since



JOURNAL OF ETEX CLASS FILES, VOL. ?, NO. ?, ? 2010 9

r = H(s)®t, H(s) was not previously defined, it is randomanswers). To answer the decryption oracle queBeshecks
and independent. Hence the probability thavas queried is if the correspondingz and H queries were made, and in

at mostqg /2%, And for ¢4 decryption queries we get this case a simple plaintext extractor that uses the redorde
gueries to the random oracles and the (random) answers as
qaqa we described above is used; otherwise, the ciphertexts are

- < ) .
Pr{AskHg] — Pr{Askhy] < 2ko rejected B returns L). For1 < i < ¢, for ani-th query

to the challenge oracle made by B returnswv; || w;.

In the last Game 8 the decryption oracle queries, for which We claim thatB simulates the view ofd in Game 8 per-
either of the corresponding and s values have not beenfectly. The challenge ciphertexts are random and indepgnde
queried, are rejected. The game stores the pairs of the mandsirings, and the decryption queries are answered corrbgtly
oracle queries and the corresponding answers in the arrétys plaintext extractor. EveniskHg means thatd made a
G-list andH-list. The other ciphertexts are decrypted by usinguery i to the random oracléf so thatf(h[l,...,k]) = v;

a simple plaintext extractor who expects all previously m@d for somel < i < ¢q.. B searches for such query and outputs
and H queries made byl and returns the matching plaintexth[1, ..., k], which is f~1(y), if i = j. Therefore,B breaks
Namely, to decrypt a ciphertext || ¢, take every(s;, H(s;)) one-wayness of* with probability 1/q., since the indexj

in H-list for 1 < j < ¢g, computer — H(s;) &t and check was picked at random fronjl,...,q.} independently from

if there is a pair(r, G,.) for any G, in the G-list. If so, check A’s view.

if fr(s;|t)=Ctand the lask; bits of s; ® G, are zeros,  We finally justify the running time ofB. In addition to
then return the rest of; ¢ G,. Otherwise, returnL. running A, in order to answer each @f; decryption queries

The view of the adversary does not change and thus B does onef computation for each afy pairs stored iH-list.
The reason why the bound in the proof in [12] for the original
OAEP[F] is worse (regardless of the fact that the reduction
there is to an easier problem of partial-domain one-wayness
is because there for each decryption oracle query the aatyers
Putting it all together we get has to apply the random instangeo values corresponding to

all possible combinations of pairs stored @alist and H-list

Pr[AskH;] = Pr[AskHs] .

ind-cca-mq 1 or use more storage to speed up the check. But in any case
“Advoaepr, (k) = PrGameg] — ) it stays proportional tays - ¢z. In our case we do not need
1 to test everyr-value in G-list as the required value can be
= PrfGame;] — 5 computed using the-part of the ciphertext.
< Pr[Game;y] — % + Pr[AskG,] PROOF CONCLUSION FORTHEOREM 5.1. We now consider
< Pr[AskGy] RSA trapdoor permutation generator in placerofind claim
- that there exists an adversaBysuch that
= PI‘[ASng]
< Pr[AskGy] + Pr[AskH,] PrlAskHs] < AdvResp(k) . €
< 4e(dc + 4a) + Pr[AskH;] This is where we use self-reducibility of RSA to improve
R tightness of the reduction. (Random) self-reducibilityoir
< 4e(dc + 4a) + =L 4 Pr[AskHg] Mmally means that given a successful algorithm that can solve
2%o 2k a problem for an average case one can also solve the problem
- ¢e(qc + qa) + qaqc in the worst case. We use this property to incorporate a
- 2ko single challenge for the simulator into multiple challesge
+ 27 + Pr[AskH7] for the adversary the simulator runs. Regardless of which
challenge the adversary breaks, the simulator can break its
~ qelge + qd) + qa9c
= ko own c.hall_enge. _ _
To justify Equation (3) we construcB as follows. B is
+ QT + PriAskHs] . given an RSA public key(N,e) and a challenge) =
mod N for a randomz € Z%,. B picks ¢. values at random
PROOF CONCLUSION FORTHEOREM4.1. We show that there from 7%, let us call themvl, ..,v,; and g, values at
exists an adversarj such that random  from {0,1}7=*, let us call themwy,...,w, . B
PriAskHs] < g.- Advowf L) . @) runs A on public key (N, e), answers its RO queries with

random and independent values (and records all queries and
B is givenf and the challengg. It first picks a random index answers). To answer the decryption oracle queBeshecks
j from {1,...¢.}. Next B picks ¢. values at random from if the correspondingz and H queries were made, and in
{0,1}*, let us call themvy, ..., v, ; andg. values at random this case a simple plaintext extractor we described above is
from {0,1}?~*, let us call themuy, ..., w, . B re-assigng to  used; otherwise, the ciphertexts are reject&dréturns L).
v;. B runsA on input public keyf answers its RO queries withFor 1 < i < ¢, for ani-th query to the challenge oracle made
random and independent values (and records all queries &yd4, B returns(yvf mod N) || w;.
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We claim that B simulates the view ofA in Game 8 is applied, is distributed uniformly ig0, 1}*, while the pre-
perfectly (except for the mismatch between the séts image of the RSA challenge in the definition of one-wayness
and {0,1}*, on which we comment in Section VII). The(cf. Definition 2.2) is a random element @f,, whereN < 2*
challenge ciphertexts are random and independent stiamgls, is part of the public key. Keeping this discrepancy implicit
the decryption queries are answered according to the simgecommon to the security proofs for RSA-OAEP and many
plaintext extractor algorithm that uses the recorded g@seio other RSA-based schemes. One solution for RSA-OAEP was
the random oracles and the (random) answers. Efekitls  pointed out in [12]. Namely, a sender just re-computes the
means thatd made a queryh to the random oracl€ so output of the OAEP transform with new random coins until it
that a[t, ..., k]° = yv$( mod N) for somel < j < ¢.. B fallsinZj},. The expected number of transform computations is
searches for such query and outphs, . . ., k]v;l mod N, Vvery low, and thus this solution is practical. However, oas h
which isy? mod N, i.e. it breaks one-wayness of RSA. to remember that the running time of the encryption algarith

We finally justify the running time ofB. In addition to and the adversary in the reduction is nempectecolynomial
running A, to compute each af. challenge ciphertext8 does time.
one modulo multiplication (note that under our conventiam w We show how can this discrepancy be eliminated for RSA-
do not have to count RSA computations in encryption as th&®AEP++ without relying on the success of multiple re-
are part of thed overlying experiment), to answer eachq@f computations, by slightly tweaking the transform as fobow
decryption querie3 does one RSA computation for each ofVe introduce an additional parameter to the scheipes N
qm pairs stored inH-list, and does one modulo inverse ango thatks > log,¢., and make the random oraclé be
one multiplication at the endl {0, 1}k — {0,1}k2—kot+ks j e, we extend the length of the
utput by k3 bits. As before,H: {0,1}k2=ko — {0, 1}ko
nd the message space {8, 1}*2~*—F1 The encryption
Igorithm parsesM | 0 asw || y, where |w| = k and

REMARK. We comment on why does not the above proo(}
showing the security improvement work for the unmodified
OAEP[RSA] scheme. The reason is that in the original scherft ) g
the RSA permutation is applied to the whole output¢ of ¥l = k2 — ko — k, picksr < {0,1}* and parses the output
the OAEP transform. The tight security of OAEP[RSA] is onlf G(r) asu || v, where|u| = k + k3 and |v| = ky — ko — k.
shown assuming partial-domain one-wayness of RSA. In tHefinally computesz — w + u mod N and s — y @,
proof above the adversar§ given a challengey could still £ H(z || s) & and returnsfy.(z || s || t). Here N is part of
use self-reducibility of RSA and generate challenge cigxés the public key description RSA The decryption algorithm is
for Aasyvf,...,yvs, mod N.In A’s view, these ciphertexts defined accordingly.

have the right distribution (in Game 8) unledsqueries the ~ The proof of Theorem 5.1 holds but we need to show that
H oracle on any of the underlying values (the first part of and thusz, is distributed almost uniformly iy (and hence
v, ..., y%,,). But if this happensB cannot compute?, for any efficient adversary this distribution is indistinghable

as it does not know the remaining part of the transform. ~from a uniform distribution inZy). Let 2***s = aN + b,
wherea = [(2¥+#3 /N)| andb = 2¥** mod N. Note that

VI. ENCRYPTING LONG MESSAGES WITHMODIFIED since N < 2* we have that, > 2",
RSA-OAEP Let $ denote a random variable uniformly distributedZin .
We observe that the modified RSA-OAEP scheme can B8en the statistical distance betweerands is
used to encrypt long messages without employing symmetric a+1 1
encryptlon_ in the hybrid e_ncryptlon (_:onstruct. For that Fhe Alu,8) = (aN+ b N)
functionG in the transform is made variable-output-length, i.e. 1 “
its output is the length of the message plus the zero padding + (N-=0) (— — 7)
of lengthk; . For a fixed-output-length hasi (-) one can effi- N aN+b
ciently constructy(-) asG’({0) [|)[|G' (1) [|-) . |G" (D)), S (4)
where (i) means the binary representation of the counter (aN +b)N
i € N. In the RO modelG is a random oracle it is. The 20N — 2b2
function H in the transform needs to be variable-input-length, = ok+ks N ®)

which is not a problem, since most of the hash functions arlcte. N that Equation 5 achi th . h
The RSA function is applied to the firgt (e.g. 1024) bits IS €asy to see that Equation > achieves the maximum when

of the s-part of the OAEP transform. The proof of securit);’ = N/2. Plugging it into Equation 4 we get
stays virtually the same. This scheme yields more compact

ciphertexts for long messages than the one obtained through Alu,$) = 1 < 1 .
the use of hybrid encryption because there is no need to 2041 7 2kt 1
encrypt the symmetric key. Since we havey. ciphertexts,

VII. ON {0, 1}* vs Z% MISMATCH IN THE PROOF OF Au,$) < T
THEOREM5.1 R

In the proof of Theorem 5.1 we mostly ignored the factshould be negligible, sé&s; should be chosen large enough
that the fist part of the OAEP output, to which RSA functiomompared tdogs ge.
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VIIl. CONCLUSIONS

RSA problem, even in the multi-query setting. Additionally

this scheme can be used for encryption of long messaﬁﬁﬁ

without employing the hybrid encryption method and sy

metric encryption. We believe the modification is very siepl[20]
to implement and may be considered by the standard bodies.
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