
Chapter 3

Pseudorandom Functions

Pseudorandom functions (PRFs) and their cousins, pseudorandom permutations
(PRPs), figure as central tools in the design of protocols, especially those for shared-
key cryptography. At one level, PRFs and PRPs can be used to model block ciphers,
and they thereby enable the security analysis of protocols based on block ciphers.
But PRFs and PRPs are also a useful conceptual starting point in contexts where
block ciphers don’t quite fit the bill because of their fixed block-length. So in this
chapter we will introduce PRFs and PRPs and investigate their basic properties.

3.1 Function families

A function family is a map F : K×D → R. Here K is the set of keys of F and D is
the domain of F and R is the range of F . The set of keys and the range are finite,
and all of the sets are nonempty. The two-input function F takes a key K and an
input X to return a point Y we denote by F (K,X). For any key K ∈ K we define
the map FK : D → R by FK(X) = F (K,Y). We call the function FK an instance
of function family F . Thus F specifies a collection of maps, one for each key. That’s
why we call F a function family or family of functions.
Sometimes we write Keys(F) for K, Dom(F) for D, and Range(F) for R.
Usually K = {0, 1}k for some integer k, the key length. Often D = {0, 1}` for

some integer ` called the input length, and R = {0, 1}L for some integers L called the
output length. But sometimes the domain or range could be sets containing strings
of varying lengths.
There is some probability distribution on the (finite) set of keys K. Unless

otherwise indicated, this distribution will be the uniform one. We denote by K $←K
the operation of selecting a random string from K and naming it K. We denote by
f $← F the operation: K $←K; f ← FK . In other words, let f be the function FK

where K is a randomly chosen key. We are interested in the input-output behavior
of this randomly chosen instance of the family.

1

2 PSEUDORANDOM FUNCTIONS

A permutation is a bijection (i.e. a one-to-one onto map) whose domain and
range are the same set. That is, a map π: D → D is a permutation if for every
y ∈ D there is exactly one x ∈ D such that π(x) = y. We say that F is a family of
permutations if Dom(F) = Range(F) and each FK is a permutation on this common
set.

Example 3.1 A block cipher is a family of permutations. In particular DES is a
family of permutations DES: K ×D → R with

K = {0, 1}56 and D = {0, 1}64 and R = {0, 1}64 .

Here the key length is k = 56 and the input length and output length are ` = L =
64. Similarly AES (when “AES” refers to “AES128”) is a family of permutations
AES: K ×D → R with

K = {0, 1}128 and D = {0, 1}128 and R = {0, 1}128 .

Here the key length is k = 128 and the input length and output length are ` = L =
128.

3.2 Random functions and permutations

LetD,R ⊆ {0, 1}∗ be finite nonempty sets and let `, L ≥ 1 be integers. There are two
particular function families that we will often consider. One is Func(D,R), the family
of all functions of D to R. The other is Perm(D), the family of all permutations
on D. For compactness of notation we let Func(`,L), Func(`), and Perm(`) denote
Func(D,R), Func(D,D), and Perm(D), respectively, where D = {0, 1}` and R =
{0, 1}L. A randomly chosen instance of Func(D,R) will be a random function from
D to R, and a randomly chosen instance of Perm(D) will be a random permutation
on D. Let us now look more closely at these families in turn.

3.2.1 Random functions

The family Func(D,R) has domainD and rangeR. The set of instances of Func(D,R)
is the set of all functions mappingD to R. The key describing any particular instance
function is simply a description of this instance function in some canonical notation.
For example, order the domain D lexicographically as X1, X2, . . ., and then let the
key for a function f be the list of values (f(X1), f(X2), . . .). The key-space of
Func(D,R) is simply the set of all these keys, under the uniform distribution.
Let us illustrate in more detail for the case of Func(`,L). The key for a function

in this family is simply a list of of all the output values of the function as its input
ranges over {0, 1}`. Thus

Keys(Func(`,L)) = { (Y1, . . . , Y2`) : Y1, . . . , Y2` ∈ {0, 1}L }

is the set of all sequences of length 2` in which each entry of a sequence is an L-bit
string. For any x ∈ {0, 1}` we interpret X as an integer in the range {1, . . . , 2`} and

Bellare and Rogaway 3

set

Func(`,L)((Y1, . . . , Y2`), X) = YX .

Notice that the key space is very large; it has size 2L2`
. There is a key for every

function of `-bits to L-bits, and this is the number of such functions. The key space
is equipped with the uniform distribution, so that f $← Func(`,L) is the operation of
picking a random function of `-bits to L-bits.

Example 3.2 We exemplify Func(3,2), meaning ` = 3 and L = 2. The domain is
{0, 1}3 and the range is {0, 1}2. An example instance f of the family is illustrated
below via its input-output table:

x 000 001 010 011 100 101 110 111

f(x) 10 11 01 11 10 00 00 10

The key corresponding to this particular function is

(10, 11, 01, 11, 10, 00, 00, 10) .

The key-space of Func(3,2) is the set of all such sequences, meaning the set of all
8-tuples each component of which is a two bit string. There are

22·2
3
= 216 = 65, 536

such tuples, so this is the size of the key-space.

We will hardly ever actually think about these families in terms of this formalism.
It is worth pausing here to see how to think about them more intuitively, because
they are important objects.

We will consider settings in which you have black-box access to a function g.
This means that there is a box to which you can give any value X of your choice
(provided X is in the domain of g), and the box gives you back g(X). But you can’t
“look inside” the box; your only interface to it is the one we have specified.

A random function g: D → R (where R is a finite set) being placed in this box
corresponds to the following. Each time you give the box an input, you get back
a random element of R, with the sole constraint that if you twice give the box the
same input X, it will be consistent, returning both times the same output g(X).

The dynamic view of a random function can be thought of as implemented by
the following computer program. The program maintains the function in the form
of a table T where T [X] holds the value of the function at X. Initially, the table is
empty. The program processes an input X ∈ D as follows:

if T [X] is not defined

then Y $←R ; T [X]← Y
fi
return T [X]

4 PSEUDORANDOM FUNCTIONS

The answer on any point is random and independent of the answers on other points.
It is this “dynamic” view that we suggest the reader have in mind when thinking
about random functions or random permutations.

One must remember that the term “random function” is misleading. It might
lead one to think that certain functions are “random” and others are not. (For
example, maybe the constant function that always returns 0L on any input is not
random, but a function with many different range values is random.) This is not
right. The randomness of the function refers to the way it was chosen, not to an
attribute of the selected function itself. When you choose a function at random, the
constant function is just as likely to appear as any other function. It makes no sense
to talk of the randomness of an individual function; the term “random function”
just means a function chosen at random.

Example 3.3 Let’s do some simple probabilistic computations to understand ran-
dom functions. In all of the following, the probability is taken over a random choice
of f from Func(`,L), meaning that we have executed the operation f $← Func(`,L).

1. Fix X ∈ {0, 1}` and Y ∈ {0, 1}L. Then:
Pr [f(X) = Y] = 2−L .

Notice that the probability doesn’t depend on `. Nor does it depend on the
values of X,Y .

2. Fix X1, X2 ∈ {0, 1}` and Y1, Y2 ∈ {0, 1}L, and assume X1 6= X2. Then

Pr [f(X1) = Y1 | f(X2) = Y2] = 2−L .

The above is a conditional probability, and says that even if we know the value
of f on X1, its value on a different point X2 is equally likely to be any L-bit
string.

3. Fix X1, X2 ∈ {0, 1}` and Y ∈ {0, 1}L. Then:

Pr [f(X1) = Y and f(X2) = Y] =

{

2−2L if X1 6= X2

2−L if X1 = X2

4. Fix X1, X2 ∈ {0, 1}` and Y ∈ {0, 1}L. Then:

Pr [f(X1)⊕ f(X2) = Y] =

2−L if X1 6= X2

0 if X1 = X2 and Y 6= 0L
1 if X1 = X2 and Y = 0L

5. Suppose l ≤ L and let τ : {0, 1}L → {0, 1}l denote the function that on input
Y ∈ {0, 1}L returns the first l bits of Y . Fix distinct X1, X2 ∈ {0, 1}`, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(f(X2)) = Z2 | f(X1) = Y1] = 2
−l .

Bellare and Rogaway 5

3.2.2 Random permutations

The family Perm(D) has domain and range D. The set of instances of Perm(D) is
the set of all permutations on D. The key describing a particular instance is some
description of the function. Again, let us illustrate with Perm(`). In this case

Keys(Perm(`)) = {(Y1, . . . , Y2`) : Y1, . . . , Y2` ∈ {0, 1}` and
Y1, . . . , Y2` are all distinct} .

For any X ∈ {0, 1}` we interpret X as an integer in the range {1, . . . , 2`} and set

Perm(`)((Y1, . . . , Y2`), X) = YX .

The key space is again equipped with the uniform distribution, so that π $← Perm(l)
is the operation of picking a random permutation on {0, 1}`. In other words, all the
possible permutations on {0, 1}` are equally likely.

Example 3.4 We exemplify Perm(3), meaning ` = 3. The domain and range are
both {0, 1}3. An example instance π of the family is illustrated below via its input-
output table:

x 000 001 010 011 100 101 110 111

π(x) 010 111 101 011 110 100 000 001

The function π is a permutation because each 3-bit string occurs exactly once in the
second row of the table. The key corresponding to this particular permutation is

(010, 111, 101, 011, 110, 100, 000, 001) .

The key-space of Perm(3) is the set of all such sequences, meaning the set of all
8-tuples whose components consist of all 3-bit strings in some order. There are

8! = 40, 320

such tuples, so this is the size of the key-space.

In the dynamic view, we again want to consider having black-box access to a per-
mutation π. A random permutation π: D → D (where D is a finite set) being
placed in this box corresponds to the following. If you give the box an input X ∈ D,
it returns the same answer as before if X has already been queried, but, if not,
it returns a point chosen at random from D − S where S is the set of all values
previously returned by the box in response to queries different from X.

The dynamic view of a random permutation can be thought of as implemented
by the following computer program. The program maintains the function in the
form of a table T where T [X] holds the value of the function at X. Initially, the
table is empty, and the set S below is also empty. The program processes an input
X ∈ D as follows:

6 PSEUDORANDOM FUNCTIONS

if T [X] is not defined

then Y $←D − S ; T [X]← Y ; S ← S ∪ {T [X]}
fi
return T [X]

The answer on any point is random, but not independent of the answers on other
points, since it is distinct from those.

Example 3.5 Random permutations are somewhat harder to work with than ran-
dom functions, due to the lack of independence between values on different points.
Let’s look at some probabilistic computations involving them. In all of the following,
the probability is taken over a random choice of π from Perm(`), meaning that we

have executed the operation π $← Perm(`).

1. Fix X,Y ∈ {0, 1}`. Then:
Pr [π(X) = Y] = 2−` .

This is the same as if π had been selected at random from Func(`,`) rather than
from Perm(`). However, the similarity vanishes when more than one point is to
be considered.

2. Fix X1, X2 ∈ {0, 1}` and Y1, Y2 ∈ {0, 1}L, and assume X1 6= X2. Then

Pr [π(X1) = Y1 | π(X2) = Y2] =

1

2` − 1 if Y1 6= Y2

0 if Y1 = Y2

The above is a conditional probability, and says that if we know the value of π
on X1, its value on a different point X2 is equally likely to be any L-bit string
other than π(X1). So there are 2

` − 1 choices for π(X2), all equally likely, if
Y1 6= Y2.

3. Fix X1, X2 ∈ {0, 1}` and Y ∈ {0, 1}L. Then:

Pr [π(X1) = Y and π(X2) = Y] =

{

0 if X1 6= X2

2−` if X1 = X2

This is true because a permutation can never map distinct X1 and X2 to the
same point.

4. Fix X1, X2 ∈ {0, 1}` and Y ∈ {0, 1}`. Then:

Pr [π(X1)⊕ π(X2) = Y] =

1

2` − 1 if X1 6= X2 and Y 6= 0`

0 if X1 6= X2 and Y = 0`

0 if X1 = X2 and Y 6= 0`
1 if X1 = X2 and Y = 0`

In the case X1 6= X2 and Y 6= 0` this is computed as follows:
Pr [π(X1)⊕ π(X2) = Y]

Bellare and Rogaway 7

=
∑

Y1

Pr [π(X2) = Y1 ⊕ Y | π(X1) = Y1] · Pr [π(X1) = Y1]

=
∑

Y1

1

2` − 1 ·
1

2`

= 2` · 1

2` − 1 ·
1

2`

=
1

2` − 1 .

Above, the sum is over all Y1 ∈ {0, 1}`. In evaluating the conditional probability,
we used item 2 above and the assumption that Y 6= 0`.

5. Suppose l ≤ ` and let τ : {0, 1}` → {0, 1}l denote the function that on input
Y ∈ {0, 1}` returns the first l bits of Y . (Note that although π is a permutation,
τ(π(·)) is not a permutation when l < `.) Fix distinct X1, X2 ∈ {0, 1}`, Y1 ∈
{0, 1}L and Z2 ∈ {0, 1}l. Then:

Pr [τ(π(X2)) = Z2 | π(X1) = Y1] =

2`−l

2` − 1 if Z2 6= Y1[1 . . . l]

2`−l − 1
2` − 1 if Z2 = Y1[1 . . . l]

This is computed as follows. Let

S = { Y2 ∈ {0, 1}` : Y2[1 . . . l] = Z2 and Y2 6= Y1 } .
We note that |S| = 2`−l if Y1[1 . . . l] 6= Z2 and |S| = 2`−l − 1 if Y1[1 . . . l] = Z2.
Then

Pr [τ(π(X2)) = Z2 | π(X1) = Y1] =
∑

Y2∈S

Pr [π(X2) = Y2 | π(X1) = Y1]

= |S| · 1

2` − 1 ,

and the claim follows from what we said about the size of S.

3.3 Pseudorandom functions

A pseudorandom function is a family of functions with the property that the input-
output behavior of a random instance of the family is “computationally indistin-
guishable” from that of a random function. Someone who has only black-box access
to a function, meaning can only feed it inputs and get outputs, has a hard time
telling whether the function in question is a random instance of the family in ques-
tion or a random function. The purpose of this section is to arrive at a suitable
definition of this notion. Later we will look at motivation and applications.
We fix a family of functions F : K×D → R. (You may want to think K = {0, 1}k,

D = {0, 1}` and R = {0, 1}L for some integers k, `, L ≥ 1.) Imagine that you are in

8 PSEUDORANDOM FUNCTIONS

a room which contains a terminal connected to a computer outside your room. You
can type something into your terminal and send it out, and an answer will come
back. The allowed questions you can type must be elements of the domain D, and
the answers you get back will be elements of the range R. The computer outside
your room implements a function g: D → R, so that whenever you type a value X
you get back g(X). However, your only access to g is via this interface, so the only
thing you can see is the input-output behavior of g. We consider two different ways
in which g will be chosen, giving rise to two different “worlds.”

World 0: The function g is drawn at random from Func(D,R), namely, the func-

tion g is selected via g $← Func(D,R).

World 1: The function g is drawn at random from F , namely, the function g is
selected via g $← F . (Recall this means that a key is chosen via K $←K and then g
is set to FK .)

You are not told which of the two worlds was chosen. The choice of world, and of
the corresponding function g, is made before you enter the room, meaning before
you start typing questions. Once made, however, these choices are fixed until your
“session” is over. Your job is to discover which world you are in. To do this, the
only resource available to you is your link enabling you to provide values X and get
back g(X). After trying some number of values of your choice, you must make a
decision regarding which world you are in. The quality of pseudorandom family F
can be thought of as measured by the difficulty of telling, in the above game, whether
you are in World 0 or in World 1.

In the formalization, the entity referred to as “you” above is an algorithm called
the adversary. The adversary algorithm A may be randomized. We formalize the
ability to query g as giving A an oracle which takes input any string X ∈ D and
returns g(X). We write Ag to mean that adversary A is being given oracle access to
function g. (It can only interact with the function by giving it inputs and examining
the outputs for those inputs; it cannot examine the function directly in any way.)
Algorithm A can decide which queries to make, perhaps based on answers received to
previous queries. Eventually, it outputs a bit b which is its decision as to which world
it is in. Outputting the bit “1” means that A “thinks” it is in world 1; outputting
the bit “0” means that A thinks it is in world 0. The following definition associates
to any such adversary a number between 0 and 1 that is called its prf-advantage,
and is a measure of how well the adversary is doing at determining which world it
is in. Further explanations follow the definition.

Definition 3.6 Let F : K × D → R be a family of functions, and let A be an
algorithm that takes an oracle for a function g: D → R, and returns a bit. We
consider two experiments:

Bellare and Rogaway 9

Experiment Expprf-1
F (A)

K $←K
b $←AFK

Return b

Experiment Expprf-0
F (A)

g $← Func(D,R)

b $←Ag

Return b

The prf-advantage of A is defined as

Advprf
F (A) = Pr

[

Expprf-1
F (A) = 1

]

− Pr
[

Expprf-0
F (A) = 1

]

.

It should be noted that the family F is public. The adversary A, and anyone else,
knows the description of the family and is capable, given values K,X, of comput-
ing F (K,X).
The worlds are captured by what we call experiments. The first experiment picks

a random instance FK of family F and then runs adversary A with oracle g = FK .
Adversary A interacts with its oracle, querying it and getting back answers, and
eventually outputs a “guess” bit. The experiment returns the same bit. The second
experiment picks a random function g: D → R and runs A with this as oracle, again
returning A’s guess bit. Each experiment has a certain probability of returning 1.
The probability is taken over the random choices made in the experiment. Thus,
for the first experiment, the probability is over the choice of K and any random
choices that A might make, for A is allowed to be a randomized algorithm. In the
second experiment, the probability is over the random choice of g and any random
choices that A makes. These two probabilities should be evaluated separately; the
two experiments are completely different.
To see how well A does at determining which world it is in, we look at the

difference in the probabilities that the two experiments return 1. If A is doing a
good job at telling which world it is in, it would return 1 more often in the first
experiment than in the second. So the difference is a measure of how well A is doing.
We call this measure the prf-advantage of A. Think of it as the probability that A
“breaks” the scheme F , with “break” interpreted in a specific, technical way based
on the definition.
Different adversaries will have different advantages. There are two reasons why

one adversary may achieve a greater advantage than another. One is that it is more
“clever” in the questions it asks and the way it processes the replies to determine
its output. The other is simply that it asks more questions, or spends more time
processing the replies. Indeed, we expect that as an adversary sees more and more
input-output examples of g, or spends more computing time, its ability to tell which
world it is in should go up.
The “security” of family F as a pseudorandom function must thus be thought

of as depending on the resources allowed to the attacker. We may want to want to
know, for any given resource limitations, what is the prf-advantage achieved by the
most “clever” adversary amongst all those who are restricted to the given resource
limits.
The choice of resources to consider can vary. One resource of interest is the

time-complexity t of A. Another resource of interest is the number of queries q

10 PSEUDORANDOM FUNCTIONS

that A asks of its oracle. Another resource of interest is the total length µ of all of
A’s queries. When we state results, we will pay attention to such resources, showing
how they influence maximal adversarial advantage.

Let us explain more about the resources we have mentioned, giving some im-
portant conventions underlying their measurement. The first resource is the time-
complexity of A. To make sense of this we first need to fix a model of computation.
We fix some RAM model, as discussed in Chapter 1. Think of the model used in
your algorithms courses, often implicitly, so that you could measure the running
time. However, we adopt the convention that the time-complexity of A refers not
just to the running time of A, but to the maximum of the running times of the
two experiments in the definition, plus the size of the code of A. In measuring the
running time of the first experiment, we must count the time to choose the key K
at random, and the time to compute the value FK(x) for any query x made by A
to its oracle. In measuring the running time of the second experiment, we count
the time to choose the random function g in a dynamic way, meaning we count the
cost of maintaining a table of values of the form (X, g(X)). Entries are added to
the table as g makes queries. A new entry is made by picking the output value at
random.

The number of queries made by A captures the number of input-output examples
it sees. In general, not all strings in the domain must have the same length, and
hence we also measure the sum of the lengths of all queries made.

The strength of this definition lies in the fact that it does not specify anything
about the kinds of strategies that can be used by a adversary; it only limits its
resources. A adversary can use whatever means desired to distinguish the function
as long as it stays within the specified resource bounds.

What do we mean by a “secure” PRF? Definition 3.6 does not have any explicit
condition or statement regarding when F should be considered “secure.” It only
associates to any adversary A attacking F a prf-advantage function. Intuitively, F
is “secure” if the value of the advantage function is “low” for all adversaries whose
resources are “practical.”

This is, of course, not formal. However, we wish to keep it this way because
it better reflects reality. In real life, security is not some absolute or boolean at-
tribute; security is a function of the resources invested by an attacker. All modern
cryptographic systems are breakable in principle; it is just a question of how long it
takes.

This is our first example of a cryptographic definition, and it is worth spending
time to study and understand it. We will encounter many more as we go along.
Towards this end let us summarize the main features of the definitional framework
as we will see them arise later. First, there are experiments, involving an adversary.
Then, there is some advantage function associated to an adversary which returns
the probability that the adversary in question “breaks” the scheme. These two
components will be present in all definitions. What varies is the experiments; this
is where we pin down how we measure security.

Bellare and Rogaway 11

3.4 Pseudorandom permutations

A family of functions F : K×D → D is a pseudorandom permutation if the input-
output behavior of a random instance of the family is “computationally indistin-
guishable” from that of a random permutation on D.

In this setting, there are two kinds of attacks that one can consider. One, as
before, is that the adversary gets an oracle for the function g being tested. How-
ever when F is a family of permutations, one can also consider the case where the
adversary gets, in addition, an oracle for g−1. We consider these settings in turn.
The first is the setting of chosen-plaintext attacks while the second is the setting of
chosen-ciphertext attacks.

3.4.1 PRP under CPA

We fix a family of functions F : K ×D → D. (You may want to think K = {0, 1}k
and D = {0, 1}`, since this is the most common case. We do not mandate that F be
a family of permutations although again this is the most common case.) As before,
we consider an adversary A that is placed in a room where it has oracle access to a
function g chosen in one of two ways.

World 0: The function g is drawn at random from Perm(D), namely, we choose g

according to g $← Perm(D).

World 1: The function g is drawn at random from F , namely g $← F . (Recall this

means that a key is chosen via K $←K and then g is set to FK .)

Notice that World 1 is the same in the PRF setting, but World 0 has changed. As
before the task facing the adversary A is to determine in which world it was placed
based on the input-output behavior of g.

Definition 3.7 Let F : K × D → D be a family of functions, and let A be an
algorithm that takes an oracle for a function g: D → D, and returns a bit. We
consider two experiments:

Experiment Expprp-cpa-1
F (A)

K $←K
b $←AFK

Return b

Experiment Expprp-cpa-0
F (A)

g $← Perm(D)

b $←Ag

Return b

The prp-cpa-advantage of A is defined as

Advprp-cpa
F (A) = Pr

[

Expprp-cpa-1
F (A) = 1

]

− Pr
[

Expprp-cpa-0
F (A) = 1

]

.

The intuition is similar to that for Definition 3.6. The difference is that here the
“ideal” object that F is being compared with is no longer the family of random
functions, but rather the family of random permutations.

12 PSEUDORANDOM FUNCTIONS

Experiment Expprp-cpa-1
F (A) is actually identical to Expprf-1

F (A). The probabil-
ity is over the random choice of key K and also over the coin tosses of A if the latter
happens to be randomized. The experiment returns the same bit that A returns. In
Experiment Expprp-cpa-0

F (A), a permutation g: D → D is chosen at random, and
the result bit of A’s computation with oracle g is returned. The probability is over
the choice of g and the coins of A if any. As before, the measure of how well A did
at telling the two worlds apart, which we call the prp-cpa-advantage of A, is the
difference between the probabilities that the experiments return 1.

Conventions regarding resource measures also remain the same as before. Infor-
mally, a family F is a secure PRP under CPA if Advprp-cpa

F (A) is “small” for all
adversaries using a “practical” amount of resources.

3.4.2 PRP under CCA

We fix a family of permutations F : K×D → D. (You may want to think K = {0, 1}k
and D = {0, 1}`, since this is the most common case. This time, we do mandate
that F be a family of permutations.) As before, we consider an adversary A that
is placed in a room, but now it has oracle access to two functions, g and its inverse
g−1. The manner in which g is chosen is the same as in the CPA case, and once g
is chosen, g−1 is automatically defined, so we do not have to say how it is chosen.

World 0: The function g is drawn at random from Perm(D), namely via g $← Perm(D).
(So g is just a random permutation on D.)

World 1: The function g is drawn at random from F , namely g $← F .

In World 1 we let g−1 = F−1
K be the inverse of the chosen instance, while in World 0

it is the inverse of the chosen random permutation. As before the task facing the
adversary A is to determine in which world it was placed based on the input-output
behavior of its oracles.

Definition 3.8 Let F : K ×D → D be a family of permutations, and let A be an
algorithm that takes an oracle for a function g: D → D, and also an oracle for the
function g−1: D → D, and returns a bit. We consider two experiments:

Experiment Expprp-cca-1
F (A)

K $←K
b $←AFK ,F−1

K

Return b

Experiment Expprp-cca-0
F (A)

g $← Perm(D)

b $←Ag,g−1

Return b

The prp-cca-advantage of A is defined as

Advprp-cca
F (A) = Pr

[

Expprp-cca-1
F (A) = 1

]

− Pr
[

Expprp-cca-0
F (A) = 1

]

.

The intuition is similar to that for Definition 3.6. The difference is that here the
adversary has more power: not only can it query g, but it can directly query g−1.

Bellare and Rogaway 13

Conventions regarding resource measures also remain the same as before. However,
we will be interested in some additional resource parameters. Specifically, since there
are now two oracles, we can count separately the number of queries, and total length
of these queries, for each. As usual, informally, a family F is a secure PRP under
CCA if Advprp-cca

F (A) is “small” for all adversaries using a “practical” amount of
resources.

3.4.3 Relations between the notions

If an adversary does not query g−1 the oracle might as well not be there, and
the adversary is effectively mounting a chosen-plaintext attack. Thus we have the
following:

Proposition 3.9 [PRP-CCA implies PRP-CPA] Let F : K × D → D be a
family of permutations and let A be a (PRP-CPA attacking) adversary. Suppose
that A runs in time t, asks q queries, and these queries total µ bits. Then there exists
a (PRP-CCA attacking) adversary B that runs in time t, asks q chosen-plaintext
queries, these queries totaling µ bits, and asks no chosen-ciphertext queries, where

Advprp-cca
F (B) ≥ Advprp-cpa

F (A) .

Though the technical result is easy, it is worth stepping back to explain its inter-
pretation. The theorem says that if you have an adversary A that breaks F in the
PRP-CPA sense, then you have some other adversary B breaks F in the PRP-CCA
sense. Furthermore, the adversary B will be just as efficient as the adversary A was.
As a consequence, if you think there is no reasonable adversary B that breaks F
in the PRP-CCA sense, then you have no choice but to believe that there is no
reasonable adversary A that breaks F in the PRP-CPA sense. The inexistence of a
reasonable adversary B that breaks F in the PRP-CCA sense means that F is PRP-
CCA secure, while the inexistence of a reasonable adversary A that breaks F in the
PRP-CPA sense means that F is PRP-CPA secure. So PRP-CCA security implies
PRP-CPA security, and a statement like the proposition above is how, precisely, one
makes such a statement.

3.5 Modeling block ciphers

One of the primary motivations for the notions of pseudorandom functions (PRFs)
and pseudorandom permutations (PRPs) is to model block ciphers and thereby
enable the security analysis of protocols that use block ciphers.
As discussed in Section ??, classically the security of DES or other block ciphers

has been looked at only with regard to key recovery. That is, analysis of a block
cipher F has focused on the following question: Given some number of input-output
examples

(X1, FK(X1)), . . . , (Xq, FK(Xq))

14 PSEUDORANDOM FUNCTIONS

where K is a random, unknown key, how hard is it to find K? The block cipher is
taken as “secure” if the resources required to recover the key are prohibitive. Yet, as
we saw, even a cursory glance at common block cipher usages shows that hardness
of key recovery is not sufficient for security. We had discussed wanting a master
security property of block ciphers under which natural usages of block ciphers could
be proven secure. We suggest that this master property is that the block cipher be
a secure PRP, under either CPA or CCA.
We cannot prove that specific block ciphers have this property. The best we

can do is assume they do, and then go on to use them. For quantitative security
assessments, we would make specific conjectures about the advantage functions of
various block ciphers. For example we might conjecture something like:

Advprp-cpa
DES (At,q) ≤ c1 ·

t/TDES

255
+ c2 ·

q

240

for any adversary At,q that runs in time at most t and asks at most q 64-bit oracle
queries. Here TDES is the time to do one DES computation on our fixed RAM model
of computation, and c1, c2 are some constants depending only on this model. In other
words, we are conjecturing that the best attacks are either exhaustive key search
or linear cryptanalysis. We might be bolder with regard to AES and conjecture
something like

Advprp-cpa
AES (Bt,q) ≤ c1 ·

t/TAES

2128
+ c2 ·

q

2128
.

for any adversary Bt,q that runs in time at most t and asks at most q 128-bit oracle
queries. We could also make similar conjectures regarding the strength of block
ciphers as PRPs under CCA rather than CPA.
More interesting is Advprf

DES(t, q). Here we cannot do better than assume that

Advprf
DES(At,q) ≤ c1 ·

t/TDES

255
+

q2

264

Advprf
AES(Bt,q) ≤ c1 ·

t/TAES

2128
+

q2

2128
.

for any adversaries At,q, Bt,q running in time at most t and making at most q oracle
queries. This is due to the birthday attack discussed later. The second term in
each formula arises simply because the object under consideration is a family of
permutations.
We stress that these are all conjectures. There could exist highly effective attacks

that break DES or AES as a PRF without recovering the key. So far, we do not
know of any such attacks, but the amount of cryptanalytic effort that has focused
on this goal is small. Certainly, to assume that a block cipher is a PRF is a much
stronger assumption than that it is secure against key recovery. Nonetheless, the
motivation and arguments we have outlined in favor of the PRF assumption stay,
and our view is that if a block cipher is broken as a PRF then it should be considered
insecure, and a replacement should be sought.

Bellare and Rogaway 15

3.6 Example Attacks

Let us illustrate the models by providing adversaries that attack different function
families in these models.

Example 3.10 We define a family of functions F : {0, 1}k × {0, 1}` → {0, 1}L as
follows. We let k = L` and view a k-bit key K as specifying an L row by ` column
matrix of bits. (To be concrete, assume the first L bits of K specify the first column
of the matrix, the next L bits of K specify the second column of the matrix, and
so on.) The input string X = X[1] . . .X[`] is viewed as a sequence of bits, and the
value of F (K,x) is the corresponding matrix vector product. That is

FK(X) =

K[1, 1] K[1, 2] · · · K[1, `]

K[2, 1] K[2, 2] · · · K[2, `]
...

...

K[L, 1] K[L, 2] · · · K[L, `]

·

X[1]

X[2]
...

X[l]

=

Y [1]

Y [2]
...

Y [L]

where

Y [1] = K[1, 1] · x[1]⊕K[1, 2] · x[2]⊕ . . . ⊕K[1, `] · x[`]
Y [2] = K[2, 1] · x[1]⊕K[2, 2] · x[2]⊕ . . . ⊕K[2, `] · x[`]
... =

...

Y [L] = K[L, 1] · x[1]⊕K[L, 2] · x[2]⊕ . . . ⊕K[L, `] · x[`] .
Here the bits in the matrix are the bits in the key, and arithmetic is modulo two.
The question we ask is whether F is a “secure” PRF. We claim that the answer is
no. The reason is that one can design an adversary algorithm A that achieves a
high advantage (close to 1) in distinguishing between the two worlds.
We observe that for any key K we have FK(0

`) = 0L. This is a weakness since
a random function of `-bits to L-bits is very unlikely to return 0L on input 0`,
and thus this fact can be the basis of a distinguishing adversary. Let us now show
how the adversary works. Remember that as per our model it is given an oracle
g: {0, 1}` → {0, 1}L and will output a bit. Our adversary D works as follows:

Adversary Dg

Y ← g(0`)
if Y = 0L then return 1 else return 0

This adversary queries its oracle at the point 0`, and denotes by Y the `-bit string
that is returned. If y = 0L it bets that g was an instance of the family F , and if
y 6= 0L it bets that g was a random function. Let us now see how well this adversary
does. We claim that

Pr
[

Expprf-1
F (D) = 1

]

= 1

Pr
[

Expprf-0
F (D) = 1

]

= 2−L .

16 PSEUDORANDOM FUNCTIONS

Why? Look at Experiment Expprf-1
F (D) as defined in Definition 3.6. Here g = FK

for some K. In that case it is certainly true that g(0`) = 0L so by the code we wrote

for D the latter will return 1. On the other hand look at Experiment Expprf-0
F (D) as

defined in Definition 3.6. Here g is a random function. As we saw in Example 3.3,
the probability that g(0`) = 0L will be 2−L, and hence this is the probability that
D will return 1. Now as per Definition 3.6 we subtract to get

Advprf
F (D) = Pr

[

Expprf-1
F (D) = 1

]

− Pr
[

Expprf-0
F (D) = 1

]

= 1− 2−L .

Now let t be the time complexity of D. This is O(` + L) plus the time for one
computation of F , coming to O(`2L). The number of queries made by D is just
one, and the total length of all queries is l. Our conclusion is that there exists an
extremely efficient adversary whose prf-advantage is very high (almost one). Thus,
F is not a secure PRF.

Example 3.11 . Suppose we are given a secure PRF F : {0, 1}k×{0, 1}` → {0, 1}L.
We want to use F to design a PRF G: {0, 1}k×{0, 1}` → {0, 1}2L. The input length
of G is the same as that of F but the output length of G is twice that of F . We
suggest the following candidate construction: for every k-bit key K and every `-bit
input x

GK(x) = FK(x) ‖ FK(x) .

Here “ ‖ ” denotes concatenation of strings, and x denotes the bitwise complement
of the string x. We ask whether this is a “good” construction. “Good” means that
under the assumption that F is a secure PRF, G should be too. However, this is not
true. Regardless of the quality of F , the construct G is insecure. Let us demonstrate
this.
We want to specify an adversary attacking G. Since an instance of G maps `

bits to 2L bits, the adversary D will get an oracle for a function g that maps ` bits
to 2L bits. In World 0, g will be chosen as a random function of ` bits to 2L bits,
while in World 1, g will be set to GK where K is a random k-bit key. The adversary
must determine in which world it is placed. Our adversary works as follows:

Adversary Dg

y1 ← g(1`)
y2 ← g(0`)
Parse y1 as y1 = y1,1 ‖ y1,2 with |y1,1| = |y1,2| = L
Parse y2 as y2 = y2,1 ‖ y2,2 with |y2,1| = |y2,2| = L
if y1,1 = y2,2 then return 1 else return 0

This adversary queries its oracle at the point 1` to get back y1 and then queries its
oracle at the point 0` to get back y2. Notice that 1

` is the bitwise complement of
0`. The adversary checks whether the first half of y1 equals the second half of y2,

Bellare and Rogaway 17

and if so bets that it is in World 1. Let us now see how well this adversary does.
We claim that

Pr
[

Expprf-1
G (D) = 1

]

= 1

Pr
[

Expprf-0
G (D) = 1

]

= 2−L .

Why? Look at Experiment Expprf-1
G (D) as defined in Definition 3.6. Here g = GK

for some K. In that case we have

GK(1
`) = FK(1

`) ‖ FK(0
`)

GK(0
`) = FK(0

`) ‖ FK(1
`)

by definition of the family G. Notice that the first half of GK(1
`) is the same as the

second half of GK(0
`). So D will return 1. On the other hand look at Experiment

Expprf-0
G (D) as defined in Definition 3.6. Here g is a random function. So the

values g(1`) and g(0`) are both random and independent 2L bit strings. What is
the probability that the first half of the first string equals the second half of the
second string? It is exactly the probability that two randomly chosen L-bit strings
are equal, and this is 2−L. So this is the probability that D will return 1. Now as
per Definition 3.6 we subtract to get

Advprf
G (D) = Pr

[

Expprf-1
G (D) = 1

]

− Pr
[

Expprf-0
G (D) = 1

]

= 1− 2−L .

Now let t be the time complexity of D. This is O(` + L) plus the time for two
computations of G, coming to O(` + L) plus the time for four computations of F .
The number of queries made by D is two, and the total length of all queries is
2`. Thus we have exhibited an efficient adversary with a very high prf-advantage,
showing that G is not a secure PRF.

3.7 Security against key recovery

We have mentioned several times that security against key recovery is not sufficient
as a notion of security for a block cipher. However it is certainly necessary: if key
recovery is easy, the block cipher should be declared insecure. We have indicated
that we want to adopt as notion of security for a block cipher the notion of a PRF
or a PRP. If this is to be viable, it should be the case that any function family that
is insecure under key recovery is also insecure as a PRF or PRP. In this section we
verify this simple fact. Doing so will enable us to exercise the method of reductions.
We begin by formalizing security against key recovery. We consider an adver-

sary that, based on input-output examples of an instance FK of family F , tries to
find K. Its advantage is defined as the probability that it succeeds in finding K.

18 PSEUDORANDOM FUNCTIONS

The probability is over the random choice of K, and any random choices of the
adversary itself.

We give the adversary oracle access to FK so that it can obtain input-output
examples of its choice. We do not constrain the adversary with regard to the method
it uses. This leads to the following definition.

Definition 3.12 Let F : K × D → R be a family of functions, and let B be an
algorithm that takes an oracle for a function g: D → R and outputs a string. We
consider the experiment:

Experiment Expkr
F (B)

K $← Keys(F)
K ′ ← BFK

If K = K ′ then return 1 else return 0

The kr-advantage of B is defined as

Advkr
F (B) = Pr

[

Expkr
F (B) = 1

]

.

This definition has been made general enough to capture all types of key-recovery
attacks. Any of the classical attacks such as exhaustive key search, differential
cryptanalysis or linear cryptanalysis correspond to different, specific choices of ad-
versary B. They fall in this framework because all have the goal of finding the
key K based on some number of input-output examples of an instance FK of the
cipher. To illustrate let us see what are the implications of the classical key-recovery
attacks on DES for the value of the key-recovery advantage function of DES. As-
suming the exhaustive key-search attack is always successful based on testing two
input-output examples leads to the fact that there exists an adversary B such that
Advkr

DES(B) = 1 and B makes two oracle queries and has running time about 255

times the time TDES for one computation of DES. On the other hand, linear crypt-
analysis implies that there exists an adversary B such that Advkr

DES(B) ≥ 1/2 and
B makes 244 oracle queries and has running time about 244 times the time TDES for
one computation of DES.

For a more concrete example, let us look at the key-recovery advantage of the
family of Example 3.10.

Example 3.13 Let F : {0, 1}k × {0, 1}l → {0, 1}L be the family of functions from
Example 3.10. We saw that its prf-advantage was very high. Let us now compute
its kr-advantage. The following adversary B recovers the key. We let ej be the l-bit
binary string having a 1 in position j and zeros everywhere else. We assume that
the manner in which the key K defines the matrix is that the first L bits of K form
the first column of the matrix, the next L bits of K form the second column of the
matrix, and so on.

Bellare and Rogaway 19

Adversary BFK

K ′ ← ε // ε is the empty string

for j = 1, . . . , l do
yj ← FK(ej)
K ′ ← K ′ ‖ yj

return K ′

The adversary B invokes its oracle to compute the output of the function on input
ej . The result, yj , is exactly the j-th column of the matrix associated to the key
K. The matrix entries are concatenated to yield K ′, which is returned as the key.
Since the adversary always finds the key we have

Advkr
F (B) = 1 .

The time-complexity of this adversary is t = O(l2L) since it makes q = l calls to its
oracle and each computation of FK takes O(lL) time. The parameters here should
still be considered small: l is 64 or 128, which is small for the number of queries. So
F is insecure against key-recovery.

Note that the F of the above example is less secure as a PRF than against key-
recovery: its advantage function as a PRF had a value close to 1 for parameter values
much smaller than those above. This leads into our next claim, which says that for
any given parameter values, the kr-advantage of a family cannot be significantly
more than its prf or prp-cpa advantage.

Proposition 3.14 Let F : K × D → R be a family of functions, and let B be a
key-recovery adversary against F . Assume B’s running time is at most t and it
makes at most q < |D| oracle queries. Then there exists a PRF adversary A against
F such that A has running time at most t plus the time for one computation of F ,
makes at most q + 1 oracle queries, and

Advkr
F (B) ≤ Advprf

F (A) +
1

|R| . (3.1)

Furthermore if D = R then there also exists a PRP CPA adversary A against F
such that A has running time at most t plus the time for one computation of F ,
makes at most q + 1 oracle queries, and

Advkr
F (B) ≤ Advprp-cpa

F (A) +
1

|D| − q
. (3.2)

The Proposition implies that if a family of functions is a secure PRF or PRP
then it is also secure against all key-recovery attacks. In particular, if a block cipher
is modeled as a PRP or PRF, we are implicitly assuming it to be secure against
key-recovery attacks.
Before proceeding to a formal proof let us discuss the underlying ideas. The

problem that adversary A is trying to solve is to determine whether its given oracle

20 PSEUDORANDOM FUNCTIONS

g is a random instance of F or a random function of D to R. A will run B as a
subroutine and use B’s output to solve its own problem.

B is an algorithm that expects to be in a world where it gets an oracle FK

for some random key K ∈ K, and it tries to find K via queries to its oracle. For
simplicity, first assume that B makes no oracle queries. Now, when A runs B, it
produces some key K ′. A can test K ′ by checking whether F (K ′, x) agrees with
g(x) for some value x. If so, it bets that g was an instance of F , and if not it bets
that g was random.
If B does make oracle queries, we must ask how A can run B at all. The oracle

that B wants is not available. However, B is a piece of code, communicating with its
oracle via a prescribed interface. If you start running B, at some point it will output
an oracle query, say by writing this to some prescribed memory location, and stop.
It awaits an answer, to be provided in another prescribed memory location. When
that appears, it continues its execution. When it is done making oracle queries, it
will return its output. Now when A runs B, it will itself supply the answers to B’s
oracle queries. When B stops, having made some query, A will fill in the reply in
the prescribed memory location, and let B continue its execution. B does not know
the difference between this “simulated” oracle and the real oracle except in so far
as it can glean this from the values returned.
The value that B expects in reply to query x is FK(x) where K is a random key

from K. However, A returns to it as the answer to query x the value g(x), where g
is A’s oracle. When A is in World 1, g(x) is an instance of F and so B is functioning
as it would in its usual environment, and will return the key K with a probability
equal to its kr-advantage. However when A is in World 0, g is a random function,
and B is getting back values that bear little relation to the ones it is expecting.
That does not matter. B is a piece of code that will run to completion and produce
some output. When we are in World 0, we have no idea what properties this output
will have. But it is some key in K, and A will test it as indicated above. It will fail
the test with high probability as long as the test point x was not one that B queried,
and A will make sure the latter is true via its choice of x. Let us now proceed to
the actual proof.

Proof of Proposition 3.14: We prove the first equation and then briefly indicate
how to alter the proof to prove the second equation.

As per Definition 3.6, adversary A will be provided an oracle for a function g: D →
R, and will try to determine in which World it is. To do so, it will run adversary B
as a subroutine. We provide the description followed by an explanation and analysis.

Adversary Ag

i← 0
Run adversary B, replying to its oracle queries as follows
When B makes an oracle query x do

i← i+ 1 ; xi ← x
yi ← g(xi)

Bellare and Rogaway 21

Return yi to B as the answer
Until B stops and outputs a key K ′

Let x be some point in D − {x1, . . . , xq}
y ← g(x)
if F (K ′, x) = y then return 1 else return 0

As indicated in the discussion preceding the proof, A is running B and itself provid-
ing answers to B’s oracle queries via the oracle g. When B has run to completion it
returns some K ′ ∈ K, which A tests by checking whether F (K ′x) agrees with g(x).
Here x is a value different from any that B queried, and it is to ensure that such
a value can be found that we require q < |D| in the statement of the Proposition.
Now we claim that

Pr
[

Expprf-1
F (A) = 1

]

≥ Advkr
F (B) (3.3)

Pr
[

Expprf-0
F (A) = 1

]

=
1

|R| . (3.4)

We will justify these claims shortly, but first let us use them to conclude. Subtract-
ing, as per Definition 3.6, we get

Advprf
F (A) = Pr

[

Expprf-1
F (A) = 1

]

− Pr
[

Expprf-0
F (A) = 1

]

≥ Advkr
F (B)−

1

|R|

as desired. It remains to justify Equations (3.3) and (3.4).

Equation (3.3) is true because in Expprf-1
F (A) the oracle g is a random instance of F ,

which is the oracle that B expects, and thus B functions as it does in Expkr
F (B). If

B is successful, meaning the key K ′ it outputs equals K, then certainly A returns 1.
(It is possible that A might return 1 even though B was not successful. This would
happen ifK ′ 6= K but F (K ′, x) = F (K,x). It is for this reason that Equation (3.3) is

in inequality rather than an equality.) Equation (3.4) is true because in Expprf-0
F (A)

the function g is random, and since x was never queried by B, the value g(x) is
unpredictable to B. Imagine that g(x) is chosen only when x is queried to g. At
that point, K ′, and thus F (K ′, x), is already defined. So g(x) has a 1/|R| chance
of hitting this fixed point. Note this is true regardless of how hard B tries to make
F (K ′, x) be the same as g(x).

For the proof of Equation (3.2), the adversary A is the same. For the analysis we
see that

Pr
[

Expprp-cpa-1
F (A) = 1

]

≥ Advkr
F (B)

Pr
[

Expprp-cpa-0
F (A) = 1

]

≤ 1

|D| − q
.

22 PSEUDORANDOM FUNCTIONS

Subtracting yields Equation (3.2). The first equation above is true for the same
reason as before. The second equation is true because in World 0 the map g is now
a random permutation of D to D. So g(x) assumes, with equal probability, any
value in D except y1, . . . , yq, meaning there are at least |D| − q things it could be.
(Remember R = D in this case.)

The following example illustrates that the converse of the above claim is far from
true. The kr-advantage of a family can be significantly smaller than its prf or prp-
cpa advantage, meaning that a family might be very secure against key recovery yet
very insecure as a prf or prp, and thus not useful for protocol design.

Example 3.15 Define the block cipher E: {0, 1}k×{0, 1}` → {0, 1}` by EK(x) = x
for all k-bit keys K and all `-bit inputs x. We claim that it is very secure against
key-recovery but very insecure as a PRP under CPA. More precisely, we claim that
for any adversary B,

Advkr
E (B) = 2−k ,

regardless of the running time and number of queries made by B. On the other
hand there is an adversary A, making only one oracle query and having a very small
running time, such that

Advprp-cpa
E (A) ≥ 1− 2−` .

In other words, given an oracle for EK , you may make as many queries as you want,
and spend as much time as you like, before outputting your guess as to the value of
K, yet your chance of getting it right is only 2−k. On the other hand, using only
a single query to a given oracle g: {0, 1}` → {0, 1}`, and very little time, you can
tell almost with certainty whether g is an instance of E or is a random function of
` bits to ` bits. Why are these claims true? Since EK does not depend on K, an
adversary with oracle EK gets no information about K by querying it, and hence its
guess as to the value of K can be correct only with probability 2−k. On the other
hand, an adversary can test whether g(0`) = 0`, and by returning 1 if and only if
this is true, attain a prp-advantage of 1− 2−`.

3.8 The birthday attack

Suppose E: {0, 1}k×{0, 1}` → {0, 1}` is a family of permutations, meaning a block
cipher. If we are given an oracle g: {0, 1}` → {0, 1}` which is either an instance
of E or a random function, there is a simple test to determine which of these it is.
Query the oracle at distinct points x1, x2, . . . , xq, and get back values y1, y2, . . . , yq.
You know that if g were a permutation, the values y1, y2, . . . , yq must be distinct. If
g was a random function, they may or may not be distinct. So, if they are distinct,
bet on a permutation.

Surprisingly, this is pretty good adversary, as we will argue below. Roughly, it
takes q =

√
2` queries to get an advantage that is quite close to 1. The reason is

Bellare and Rogaway 23

the birthday paradox. If you are not familiar with this, you may want to look at
Appendix ??, and then come back to the following.
This tells us that an instance of a block cipher can be distinguished from a

random function based on seeing a number of input-output examples which is ap-
proximately 2`/2. This has important consequences for the security of block cipher
based protocols.

Proposition 3.16 Let E: {0, 1}k × {0, 1}` → {0, 1}` be a family of permutations.
Suppose q satisfies 2 ≤ q ≤ 2(`+1)/2. Then there is an adversary A, making q oracle
queries and having running time about that to do q computations of E, such that

Advprf
E (A) ≥ 0.3 · q(q − 1)

2`
. (3.5)

Proof of Proposition 3.16: Adversary A is given an oracle g: {0, 1}` → {0, 1}`
and works like this:

Adversary Ag

for i = 1, . . . , q do
Let xi be the i-th l-bit string in lexicographic order
yi ← g(xi)

if y1, . . . , yq are all distinct then return 1, else return 0

Let us now justify Equation (3.5). Letting N = 2l, we claim that

Pr
[

Expprf-1
E (A) = 1

]

= 1 (3.6)

Pr
[

Expprf-0
E (A) = 1

]

= 1− C(N, q) . (3.7)

Here C(N, q), as defined in Appendix ??, is the probability that some bin gets two
or more balls in the experiment of randomly throwing q balls into N bins. We will
justify these claims shortly, but first let us use them to conclude. Subtracting, we
get

Advprf
E (A) = Pr

[

Expprf-1
E (A) = 1

]

− Pr
[

Expprf-0
E (A) = 1

]

= 1− [1− C(N, q)]

= C(N, q)

≥ 0.3 · q(q − 1)
2l

.

The last line is by Proposition ??. It remains to justify Equations (3.6) and (3.7).

Equation (3.6) is clear because in World 1, g = EK for some key K, and since E is a
family of permutations, g is a permutation, and thus y1, . . . , yq are all distinct. Now,

24 PSEUDORANDOM FUNCTIONS

suppose A is in World 0, so that g is a random function of ` bits to ` bits. What
is the probability that y1, . . . , yq are all distinct? Since g is a random function and
x1, . . . , xq are distinct, y1, . . . , yq are random, independently distributed values in
{0, 1}`. Thus we are looking at the birthday problem. We are throwing q balls into
N = 2` bins and asking what is the probability of there being no collisions, meaning
no bin contains two or more balls. This is 1−C(N, q), justifying Equation (3.7).

3.9 The PRP/PRF switching lemma

When we come to analyses of block cipher based constructions, we will find a curious
dichotomy: PRPs are what most naturally model block ciphers, but analyses are
often considerably simpler and more natural assuming the block cipher is a PRF.
To bridge the gap, we relate the prp-security of a block cipher to its prf-security.
The following says, roughly, these two measures are always close—they don’t differ
by more than the amount given by the birthday attack. Thus a particular family
of permutations E may have prf-advantage that exceeds its prp-advantage, but not
by more than 0.5 q2/2n.

Lemma 3.17 [PRP/PRF Switching Lemma] Let E: K×{0, 1}n → {0, 1}n be
a function family. Let A be an adversary that asks at most q oracle queries. Then

∣

∣

∣Pr[ρ
$← Func(n) : Aρ⇒1]− Pr[π $← Perm(n) : Aπ⇒1]

∣

∣

∣ ≤ q(q − 1)
2n+1

. (3.8)

As a consequence, we have that

∣

∣

∣Adv
prf
E (A)−Adv

prp
E (A)

∣

∣

∣ ≤ q(q − 1)
2n+1

. (3.9)

The proof introduces a technique that we shall use repeatedly: a game-playing
argument. We are trying to compare what happens when an adversary A interacts
with one kind of object—a random permutation oracle—to what happens when the
adversary interacts with a different kind of object—a random function oracle. So
we set up each of these two interactions as a kind of game, writing out the game in
pseudocode. The two games are written in a way that highlights when they have
differing behaviors. In particular, any time that the behavior in the two games differ,
we set a flag bad. The probability that the flag bad gets set in one of the two games
is then used to bound the difference between the probability that the adversary
outputs 1 in one game and the the probability that the adversary outputs 1 in the
other game.

Proof: Let’s begin with Equation (3.8), as Equation (3.9) follows from that. We
need to establish that

−q(q − 1)
2n+1

≤ Pr[Aρ⇒1]− Pr[Aπ⇒1] ≤ q(q − 1)
2n+1

Bellare and Rogaway 25

where, for notational simplicity, we omit explicitly indicating that ρ $← Func(n) and

π $← Perm(n); the variable name will be enough to let you keep the experiments
straight. Let’s show the right-hand inequality, since the left-hand inequality works
in exactly the same way. So we are trying to establish that

Pr[Aρ⇒1]− Pr[Aπ⇒1] ≤ q(q − 1)
2n+1

. (3.10)

Since A is trying to distinguish a function ρ $← Func(n) from a function π $← Perm(n),
we can assume that A never asks an oracle query that is not an n-bit string. You
can assume that such an invalid oracle query would generate an error message. The
same error message would be generated on any invalid query, regardless of A’s oracle
being a π-oracle or a ρ-oracle, so asking invalid queries is pointless for A.

We can also assume that A never repeats an oracle query: if it asks a question X it
won’t later ask the same question X. It’s not interesting for A to repeat a question,
because it’s going to get the same answer as before, independent of whether A is
speaking to a π $← Perm(n) oracle or it is speaking to a ρ $← Func(n) oracle. More
precisely, with a little bit of bookkeeping the adversary can remember what was its
answer to each oracle query it already asked, and it doesn’t have to repeat an oracle
query because the adversary can just as well look up the prior answer.

Now we’re going to imagine answering A’s queries by running one of two games. In-
stead of thinking of A interacting with a random permutation oracle π $← Perm(n)
we’re going to think of A interacting with the game, call it game P, specified
in Figure 3.1. Instead of thinking of A interacting with a random function ora-
cle ρ $← Func(n) we’re going to think of A interacting with game R, also specified in
Figure 3.1. Read the caption of the figure to see how the two games are defined.

Let’s look at Games P and R. In both games, we start off performing the initializa-
tion step, setting a flag bad to false and setting a variable π to be undef at every
n-bit string. As the game run, we will “fill in” values of π(X) with n-bit strings. At
any point point in time, we let Range(π) be the set of all n-bit strings Y such that
π(X) = Y for some X. We let Domain(π) be the set of all n-bit strings X such that
π(X) 6= undef. We let Range(π) be all the n-bit strings that are not in Range(π),
and we let Domain(π) be all the n-bit strings that are not in Domain(π). We will
use this Domain/Range/Domain/Range notation from now on.

As Games P and R run, Domain(π) and Range(π) grow, getting more and more
values silently put there, while Domain(π) and Range(π) will shrink, having values
successively removed. Initially, |Domain(π)| = |Range(π)| = 0 and |Domain(π)| =
|Range(π)| = 2n.
Notice that the adversary never sees the flag bad. The flag bad will play a central
part in our analysis, but it is not something that the adversary A can get hold of.
It’s only for our bookkeeping.

26 PSEUDORANDOM FUNCTIONS

Initialization:
01 bad ← false; for X ∈ {0, 1}n do π(X)← undef

When A asks query X:

10 Y $←{0, 1}n

11 if Y ∈ Range(π) then bad ← true , Y $← Range(π)
12 π(X)← Y
13 return Y

Figure 3.1: Games used in the proof of the Switching Lemma. Game P is the pseu-
docode exactly as written. Game R is the same except we omit the highlighted
statement at line 11. To play either game, start off by executing the initialization
step, line 01. Then, whenever the adversary makes a query X, that query is an-
swered by performing the pseudocode at lines 10–13, with or without the highlighted
statement, as indicated.

Completing our description of the games, suppose that the adversary asks a queryX.
By our assumptions about A, the string X is an n-bit string that the adversary has
not yet asked about. In line 10, we choose a random n-bit string Y . Line 11, next,
is the most interesting step. If the point Y that we just chose is already in the
range of π then we set a flag bad. In such a case, if we are playing game P, then we
now make a fresh choice of Y , this time from the co-range of π. If we are playing
game R then we stick with our original choice of Y . Either way, we set π(X) to Y ,
effectively growing the domain of π and (usually) its range, and we return Y .

Now let’s think about what A sees as it plays Games R. Whatever query X is asked,
we just return a random n-bit string Y . So game R perfectly simulates a random
function ρ $← Func(n). Remember that the adversary isn’t allowed to repeat a query,

so what the adversary would get if it had a ρ $← Func(n) oracle is a random n-bit
string in response to each query—just what we are giving it. We say that A is
provided exactly the same view if we give it a random function ρ $← Func(n) or if
it is interacting with Game R. Since the environment A finds itself in is the same
in these two cases, the probability that A outputs 1 must be the same in these two
cases, too:

Pr[Aρ⇒1] = Pr[AGame R⇒1] (3.11)

Now if we’re in game P then what the adversary gets in response to each query X is
a random point Y that has not already been returned to A. Seeing this requires a
bit of thought. It’s important that we started off, in line 10, by choosing a random
point Y from a set, {0, 1}n, that is at least as big as Range(π). So if our sample point
is already in Range(π) then we’ve chosen a random point in Range(π); and if our
sample point is not already in Range(π) then we go ahead and choose a new random

Bellare and Rogaway 27

point in Range(π). So either way, we end up choosing a random point in Range(π)
and, overall, we are choosing a random point in Range(π). Now the behavior of a
random permutation oracle is to give a random new answer to each query, and that
is exactly the behavior that Game P exhibits, and so A’s distribution on views is
the same if it is given π $← Perm(n) or if it interacts with Game P. Since A’s view
is the same in the two cases, the probability that A outputs 1 must be the same in
these two cases and we have that

Pr[Aπ⇒1] = Pr[AGame P⇒1] . (3.12)

Now we are trying to bound Pr[Aρ⇒1]− Pr[Aπ⇒1] and at this point we have that

Pr[Aρ⇒1]− Pr[Aπ⇒1] = Pr[AGame R⇒1]− Pr[AGame P⇒1] . (3.13)

We next claim that

Pr[AGame R⇒1]− Pr[AGame P⇒1] ≤ Pr[AGame R sets bad] . (3.14)

To see Equation (3.14), let’s think about all the random choices that happen when
adversary A plays Games R or P. The adversary A may make make random choices
of its own; and the Games, R or P make random choices, too. You can imagine a
huge string of random coin tosses, C, that has all the random coins that might be
needed—both coins for A and coins for Games P and R. (Insofar as Game P needs
to sample in a set Range(π) that will sometimes have size that is not a power of
two, you can imagine that some subsequences of possible bits in C are excluded.
This is not an important detail.) There is a finite set C naming all the possible coin
flips that might be needed by adversary A and Games R and P. Each sequence of
coin tosses C ∈ C will result in a particular behavior of A as it plays Game P and
a particular behavior of A as it plays Game R.

For a bit b ∈ {0, 1}, lets think of all of those coin tosses C ∈ C that cause A to
output b if game R is played. Call this set CbR. Think of all of those coin tosses
C ∈ C that cause A to output b if game P is played. Call this set CbP. Finally, think
of all those coin tosses C ∈ C that cause A to set the flag bad to true in Game R or
Game P. Call this set C∗. Note that a C causes bad to be set to true in Game R if
and only if C causes bad to be set to true in game P.

Now Pr[AGame R⇒1] = |C1
R|/|C| and Pr[AGame P⇒1] = |C1

P|/|C| and Pr[AGame R⇒1]−
Pr[AGame P⇒1] = |C1

R∩C0
P|/|C|. In other words, the only way for coin tosses C ∈ C to

contribute to A’s advantage is for the coin tosses to result in a 1-output in Game R
and a 0-output in Game P. Any such sequence of coin tosses C ∈ C1

R − C0
P must

result in bad getting to true: C1
R − C0

P ⊆ C∗. This is because coin tosses C which do
not set bad result in the same sequence of responses in Games P and R, the same
sequence of internal choices by A, and so the same output. We thus have that

Pr[AGame R⇒1]− Pr[AGame P⇒1] ≤ |C∗|/|C| (3.15)

= Pr[AGame R sets bad] (3.16)

28 PSEUDORANDOM FUNCTIONS

as required.

To bound Pr[AGame R sets bad] is simple. Line 11 is executed q times. The first time
it is executed Range(π) contains 0 points; the second time it is executed Range(π)
contains 1 point; the third time it is executed Range(π) contains at most 2 points;
and so forth. Each time line 11 is executed we have just selected a random value Y
that is independent of the contents of Range(π). By the sum bound, the probability
that a Y will ever be in Range(π) at line 11 is therefore at most 0/2n+1/2n+2/2n+
· · ·+(q−1)/2n = (1+2+· · ·+(q−1))/2n = q(q−1)/2n+1. This completes the proof of

Equation (3.10). To go on and show thatAdvprf
E (A)−AdvprpE(A) ≤ q(q−1)/2n+1

note that

Advprf
E (A)−Adv

prp
E (A) ≤ Pr[AEK⇒1]−Pr[Aρ⇒1]− (Pr[AEK⇒1]−Pr[Aπ⇒1])

≤ Pr[Aρ⇒1]− Pr[Aπ⇒1]
≤ q(q − 1)/2n+1

where it is understood that K $←K. This completes the proof.

The PRP/PRF switching lemma is one of the central tools for understanding block-
cipher based protocols, and the game-playing method will be one of our central
techniques for doing proofs.

3.10 Historical notes

The concept of pseudorandom functions is due to Goldreich, Goldwasser and Micali
[2], while that of pseudorandom permutation is due to Luby and Rackoff [3]. These
works are however in the complexity-theoretic or “asymptotic” setting, where one
considers an infinite sequence of families rather than just one family, and defines
security by saying that polynomial-time adversaries have “negligible” advantage. In
contrast our approach is motivated by the desire to model block ciphers and is called
the “concrete security” approach. It originates with [1]. Definitions 3.6 and 3.7 are
from [1], as are Propositions 3.16 and 3.17.

3.11 Problems

Problem 3.1 Let E: {0, 1}k × {0, 1}n → {0, 1}n be a secure PRP. Consider the
family of permutations E ′: {0, 1}k × {0, 1}2n → {0, 1}2n defined by for all x, x′ ∈
{0, 1}n by

E′
K(x ‖ x′) = EK(x) ‖ EK(x ⊕ x′) .

Show that E′ is not a secure PRP.

Bellare and Rogaway 29

Problem 3.2 Consider the following block cipher E : {0, 1}3 × {0, 1}2 → {0, 1}2:

key 0 1 2 3

0 0 1 2 3

1 3 0 1 2

2 2 3 0 1

3 1 2 3 0

4 0 3 2 1

5 1 0 3 2

6 2 1 0 3

7 3 2 1 0

(The eight possible keys are the eight rows, and each row shows where the points to
which 0, 1, 2, and 3 map.) Compute the maximal prp-advantage an adversary can
get (a) with one query, (b) with four queries, and (c) with two queries.

Problem 3.3 Present a secure construction for the problem of Example 3.11. That
is, given a PRF F : {0, 1}k × {0, 1}n → {0, 1}n, construct a PRF G: {0, 1}k ×
{0, 1}n → {0, 1}2n which is a secure PRF as long as F is secure.

Problem 3.4 Design a block cipher E : {0, 1}k × {0, 1}128 → {0, 1}128 that is
secure (up to a large number of queries) against non-adaptive adversaries, but is
completely insecure (even for two queries) against an adaptive adversary. (A non-
adaptive adversary readies all her questions M1, . . . ,Mq, in advance, getting back
EK(M1), ..., EK(Mq). An adaptive adversary is the sort we have dealt with through-
out: each query may depend on prior answers.)

Problem 3.5 Let a[i] denote the i-th bit of a binary string i, where 1 ≤ i ≤ |a|.
The inner product of n-bit binary strings a, b is

〈 a, b 〉 = a[1]b[1] ⊕ a[2]b[2] ⊕ · · · ⊕ a[n]b[n] .

A family of functions F : {0, 1}k × {0, 1}` → {0, 1}L is said to be inner-product
preserving if for every K ∈ {0, 1}k and every distinct x1, x2 ∈ {0, 1}`−{0`} we have

〈 F (K,x1), F (K,x2) 〉 = 〈 x1, x2 〉 .
Prove that if F is inner-product preserving then there exists an adversary A, making
at most two oracle queries and having running time 2 ·TF +O(`), where TF denotes
the time to perform one computation of F , such that

Advprf
F A ≥ 1

2
·
(

1 +
1

2L

)

.

Explain in a sentence why this shows that if F is inner-product preserving then F
is not a secure PRF.

30 PSEUDORANDOM FUNCTIONS

Problem 3.6 Let E: {0, 1}k × {0, 1}` → {0, 1}` be a block cipher. The two-fold
cascade of E is the block cipher E(2): {0, 1}2k × {0, 1}` → {0, 1}` defined by

E(2)(K1 ‖K2, x) = E(K1, E(K2, x))

for all K1,K2 ∈ {0, 1}k and all x ∈ {0, 1}`. Prove that if E is a secure PRP then so
is E(2).

Problem 3.7 Let A be a adversary that makes at most q total queries to its two
oracles, f and g, where f, g : {0, 1}n → {0, 1}n. Assume that A never asks the same
query X to both of its oracles. Define

Adv(A) = Pr[π ← Perm(n) : Aπ(·),π(·) = 1]− Pr[π, π′ ← Perm(n) : Aπ(·),π′(·) = 1].

Prove a good upper bound for Adv(A), say Adv(A) ≤ q2/2n.

Problem 3.8 Let F : {0, 1}k×{0, 1}` → {0, 1}` be a family of functions and r ≥ 1
an integer. The r-round Feistel cipher associated to F is the family of permutations
F (r): {0, 1}rk × {0, 1}2` → {0, 1}2` defined as follows for any K1, . . . ,Kr ∈ {0, 1}k
and input x ∈ {0, 1}2`:

Function F (r)(K1 ‖ · · · ‖Kr, x)
Parse x as L0 ‖R0 with |L0| = |R0| = `
For i = 1, . . . , r do

Li ← Ri−1 ; Ri ← F (Ki, Ri−1) ⊕ Li−1

EndFor
Return Lr ‖Rr

(a) Prove that there exists an adversary A, making at most two oracle queries and
having running time about that to do two computations of F , such that

Advprf

F (2)(A) ≥ 1− 2−` .

(b) Prove that there exists an adversary A, making at most two queries to its first
oracle and one to its second oracle, and having running time about that to do
three computations of F or F−1, such that

Advprp-cca
F (3) (A) ≥ 1− 3 · 2−` .

Problem 3.9 Let E: K × {0, 1}n → {0, 1}n be a function family and let A be
an adversary that asks at most q queries. In trying to construct a proof that
|Advprp

E (A) −Advprf
E (A)| ≤ q2/2n+1, Michael and Peter put forward an argument

a fragment of which is as follows:

Consider an adversary A that asks at most q oracle queries to a func-
tion ρ, where ρ is determined by randomly sampling from Func(n). Let C

(for “collision”) be the event that A asks some two distinct queries X
and X ′ and the oracle returns the same answer. Then clearly

Pr[π $← Perm(n) : Aπ⇒1] = Pr[ρ $← Func(n) : Aρ⇒1 | C].

Bellare and Rogaway 31

Show that Michael and Peter have it all wrong: prove that Pr[π $← Perm(n) : Aπ⇒1]
is not necessarily the same as Pr[ρ $← Func(n) : Aρ⇒1 | C]. Do this by selecting a
number n and constructing an adversary A for which the left and right sides of the
equation above are unequal.

32 PSEUDORANDOM FUNCTIONS

Bibliography

[1] M. Bellare, J. Kilian and P. Rogaway. The security of the cipher block
chaining message authentication code. Journal of Computer and System Sci-

ences , Vol. 61, No. 3, Dec 2000, pp. 362–399.

[2] O. Goldreich, S. Goldwasser and S. Micali. How to construct random
functions. Journal of the ACM, Vol. 33, No. 4, 1986, pp. 210–217.

[3] M. Luby and C. Rackoff. How to construct pseudorandom permutations
from pseudorandom functions. SIAM J. Comput, Vol. 17, No. 2, April 1988.

33

