
Lecture 9:
Multi-Threading &

Synchronization

Logistics
• Point Solutions App

§ Session ID: database

• Programming assignment 2 due on Sep 24 (Gradescope)
• Exercise sheet 1 due on Sep 24 (Gradescope)

Recap
• Cache Replacement Policy
• Buffer Pool Flooding
• 2Q Policy

Lecture Overview
• Multi-Threading
• Synchronization
• Fine-Grained Locking
• Debugging

Multi-Threading

History of CPUs

1970-1980s
First CPUs

Few
Megahertz

1990s
100s of
MHz to

over 1 GHz

Early 2000s
Top-end

CPUs
over 3 GHz

Mid 2000s
3.8 GHz
Thermal

Wall

History of CPUs

Today
64-core

CPUs
AMD

Threadripper

2006
onwards

4-core CPUs
AMD

Phenom X4

2005
First 2-core

CPUs
Parallel

Processing

Multi-Core CPUs

Clock Speed

Rhythm of Drumbeat

One Instruction Per
Beat

Single-Core CPU

Faster Drumbeat

Caused Overheating
& Other Issues

Multi-Core CPU

Multiple Drummers

Same-Time Multiple
Instructions

Parallel Processing

Threading

Thread 1
Txn 1 from User 1

Thread 2
Txn 2 from User 2

Thread: Database Instructions for CPU

Multi-Core CPUs: Threads Used in
Parallel

Multi-Threading Example

#include <iostream>
#include <thread>
#include <vector>

int bankBalance = 1000; // Initial bank balance

void performTransactions() {
for (int i = 0; i < 10000; ++i) {

bankBalance += 10; // Deposit
bankBalance -= 10; // Withdrawal

}
}

A shared bank balance variable accessed by
multiple threads representing different bank
transactions

Context

int main() {
std::vector<std::thread> threads;
for (int i = 0; i < 8; ++i) {

// Initiate transactions without synchronization
threads.emplace_back(performTransactions);

}
for (auto& thread : threads) {

thread.join(); // Wait for all threads to finish
}
std::cout << "Expected balance: 1000\nActual balance: " <<

bankBalance << std::endl;
return 0;

}

Multi-Threading Example

Need for Synchronization

Run 1
Expected Output: $1000
Actual Output : $910

Run 2
Expected Output: $1000
Actual Output : $1020

Without proper synchronization, simultaneous
deposits and withdrawals can lead to an

inaccurate balance – race condition
Challenge

Playground Slide Example

Playground
Slide

Thread 2

Thread 1

• bankBalance += 10 maps to three assembly instructions.
• LOAD value of bankBalance from memory to register

• Assembly: MOV EAX, [bankBalance]

• ADD 10 to increment the value in the register
• Assembly: ADD EAX, 10

• STORE the new value in register back to the memory location of
bankBalance
• Assembly: MOV [bankBalance], EAX

Assembly Level Explanation

Race Condition

Thread 1 LOAD $1000 into a register.

Thread 1 ADDs $10 to its register (now
$1010) and STOREs it back in bankBalance.

Thread 2 also LOADs $1000 into another
register around the same time

Thread 2, unaware that Thread 1 has
modified bankBalance, still has the old

value (1000) in its register

Thread 2 also ADDs $10 and STOREs
$1010 back to bankBalance.

Thread 1 Thread 2

Time

Non-Atomic Load-ADD-STORE Sequence

1 LOAD $1000
2 LOAD $1000
3 ADD $10
4 STORE $1010
5 ADD $10
6 STORE $1010

Time

Thread 1 Thread 2

Synchronization

std::mutex (mutual exclusion)

mutex

Shared
Variable

Thread 2 Thread 1

a door lock to a room with the shared
variablemutex

std::mutex bankMutex;

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {

bankMutex.lock(); // Manually lock the
mutex

bankBalance += 10; // Deposit
bankBalance -= 10; // Withdrawal
bankMutex.unlock(); // Manually unlock

the mutex
}

}

std::mutex (mutual exclusion)

Prevents data
corruption

Transactions
processed
atomically

Mutex manual
locking &
unlocking

bankMutex.lock(); // Manually lock the mutex
// CRITICAL SECTION STARTS
bankBalance += 10; // Deposit
bankBalance -= 10; // Withdrawal
// CRITICAL SECTION ENDS
bankMutex.unlock(); // Manually unlock the
mutex

Critical Section

• Lock and unlock operations form critical
code sections

• Only one thread enters at a time

Mutex Operations at Assembly Level

; Locking the Mutex
retry:

; EAX is set to the expected old value (unlocked = 0)
MOV EAX, 0
; EBX is set to the new value to store if comparison is successful (locked = 1)
MOV EBX, 1
; Atomically compare [mutex] to 0, if equal replace [mutex] with 1
LOCK CMPXCHG [mutex], EBX;
; Test if the original value of [mutex] (now in EBX) was 1
TEST EBX, EBX;
; If the mutex was already locked (EBX was 1), jump to retry
JNZ retry

Mutex Operations at Assembly Level

; Critical section to update bankBalance
MOV EAX, [bankBalance] ; Load bank balance
ADD EAX, 10 ; Modify bank balance
MOV [bankBalance], EAX ; Store bank balance

; Unlocking the Mutex
MOV EBX, 0 ; Set EBX to 0, which represents the
unlocked state
MOV [mutex], EBX ; Store 0 into the mutex, effectively
unlocking it

Mutex Prevents Data Race

1 LOCK mutex
2 LOAD $1000
3 ADD $10
4 STORE $1010
5 UNLOCK mutex
6 LOCK mutex
7 LOAD $1010
8 ADD $10
9 STORE $1020
10 UNLOCK mutex

Thread 1 Thread 2

Time

Multiple Bank Accounts

std::mutex bankMutex;
int bankAccounts[5] = {1000, 2000, 3000, 4000, 5000}; // Initial balances

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {

bankMutex.lock(); // Single mutex for all accounts
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
bankMutex.unlock();

}
}

Managing transactions across 5 bank accounts in a multi-threaded
application

Single Mutex

Thread 2 Thread 1

Multiple Bank Accounts

Account
1

Account
2

Account
3

Account
4

Account
5

Fine-Grained Locking

Fine-Grain Locking

5 separate mutexes

Account 1

Thread 2

Thread 1

Account 2

Account 3

Account 4

Account 5

Use a separate mutex for each bank account to improve concurrency

std::mutex bankAccountMutexes[5]; // A mutex for each bank account
int bankAccounts[5] = {1000, 2000, 3000, 4000, 5000}; // Initial balances

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {

bankAccountMutexes[account].lock(); // Lock only the mutex for specified
account

bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
bankAccountMutexes[account].unlock(); // Unlock the mutex for the specified

account
}

}

Fine-Grain Locking
Non-conflicting transactions can now run in

parallel

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {

bankAccountMutexes[account].lock(); // Lock only the mutex for
specified account

bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
// Forgot to unlock the mutex

}
}

Manual Locking and Unlocking

Manual locking and unlocking the mutex comes with
risk

Thread Starvation

Mutex of Account 3

Thread 4

Thread 1

Locked

Waiting For

std::lock_guard

void performTransactions(int account) {
for (int i = 0; i < 10000; ++i) {

// Automatically locks
std::lock_guard<std::mutex>

lock(bankAccountMutexes[account]);
bankAccounts[account] += 10; // Deposit
bankAccounts[account] -= 10; // Withdrawal
// Mutex automatically unlocked when lock goes out of scope

}
}

A solution to avoid forgetting to unlock a mutex is to use std::lock_guard

std::lock_guard automatically manages mutex locking and unlocking

RAII Principle

std::mutex myMutex;
std::lock_guard<std::mutex> lock(myMutex); // Object
created here

another example of C++ RAIIstd::lock_guard

an instance of
std::lock_guardObjectlock on the mutexResource

RAII Principle in C++

RAII Object Resource Managed Acquisition Release

std::lock_guard Mutex Locks the mutex upon
creation.

Automatically releases the
lock when the object is

destroyed.

std::unique_ptr Dynamic memory Allocates memory and
takes ownership.

Automatically deallocates
memory when the object is

destroyed.

std::fstream File handle Opens a file and
acquires the file handle.

Closes the file and releases
the file handle when the object

is destroyed.

Simplify resource management by tying resource allocation to object
lifespan

Debugging

Debugging
• Bugs can lead to data corruption, performance degradation, and system

crashes.
• Tools for debugging
• GDB
• print statements

Origin of Debugging

GRACE HOPPER
James S. Davis

Public domain, via Wikimedia Commons

IMAGE NEEDS ATTRIBUTION

Using GDB for Debugging
• gdb is a tool that allows developers to see what is going on 'inside' a

program while it executes or at the moment it crashed.

g++ -g program.cpp -o program
gdb ./program

Using GDB for Debugging
• Consider the following code snippet:

#include <iostream>
using namespace std;
int add(int x, int y) {

return x + y; // Set a breakpoint here
}
int main() {

int sum = 0;
for(int i = 1; i <= 10; ++i) {

sum = add(sum, i);
cout << "Sum: " << sum << endl;

}
return 0;

}

GDB Commands
• run: Start the program.
• next: Execute the next line.
• print: Display the value of a variable.
• break: Set a breakpoint at a specific line or function.
• continue: Continue running the program until the next breakpoint.
• backtrace (bt): Show the call stack to see how the program reached

current point.
• info locals: Display local variables in the current stack frame.

Breakpoints and Backtrace
• Breakpoints temporarily halt the program execution at a specific point.
• Backtrace reveals the path taken by the program to reach current

execution point.

Examples of GDB Session
(gdb) break add
Breakpoint 1 at 0x...: file main.cpp, line 4.
(gdb) run
Starting program: /path/to/your_program

Breakpoint 1, add (x=0, y=1) at main.cpp:4
4 return x + y;
(gdb) info locals
x = 0
y = 1
(gdb) next
5 }

Examples of GDB Session
(gdb) print x
$1 = 0
(gdb) print y
$2 = 1
(gdb) continue
Continuing.
Sum: 1
(gdb) backtrace
#0 add (x=1, y=2) at main.cpp:4
#1 0x... in main () at main.cpp:8

Using Print Statements for Debugging
• Print statements allow you to track how your program's execution flow

and how variables change over time.

std::cout << "Loading page: " << page_id << std::endl;
std::cout << "Evicting page: " << evictedPageId << std::endl;

Overload << operator
• Print statements allow you to track how your program's execution flow

and how variables change over time.

// Define the operator<< function
std::ostream& operator<<(std::ostream& os, const Person& person) {

os << "Person[name=" << person.name << ", age=" << person.age << "]";
return os;

}
int main() {

Person alice("Alice", 30);
std::cout << alice << std::endl;

}
Person[name=Alice, age=30]

Conclusion
• Multi-Threading
• Synchronization
• Fine-Grained Locking
• Debugging

