
Lecture 18:
Learned Index

Logistics
• Programming assignment 3 (B+Tree) due on Nov 2

Recap
• RTree
• ND RTree

Lecture Overview
• Learned Index
• Learned Index using Neural Network

Learned Index

• Fixed Structure:
• Hierarchical nodes require multiple levels of traversal (log(n) comparisons), leading to higher

CPU and memory costs.

• Memory Overhead:
• Each node holds pointers, using significant memory for large datasets.

• Rigid Partitioning:
• B+ Trees don’t adapt to predictable key patterns, which can cause unnecessary disk I/O and

slower access.

Limitations of B+Tree

Learned Index

[0~1000]
[]

[0~250]
[]

[250~900]
[]

[900~1000]
[]

[50|120|200]
[V|V|V]

[300|400|650]
[V|V|V]

[900|950|1000]
[V|V|V]

MODELS

LEAF NODES

• Data-Adaptive Structure:
• Root Model predicts which region (sub-model) to access, based on the data’s distribution.
• Sub-models provide fine-grained predictions, reducing the need for multiple tree levels.

• Reduced Memory and Faster Lookups:
§ Learned indexes minimize the need for pointers and log(n) comparisons, using a more

compact model.

Learned Index

• In 2018, Google researchers proposed the learned index as an innovative approach
to indexing.

• Inspired by advancements in machine learning, they recognized that indexes could
be trained as models to predict data positions instead of relying on rigid structures.

History

Tim Kraska (2018)

• Data Distribution Awareness: Learned indexes use machine learning (often
regression models) to approximate the mapping of keys to positions, adapting to
the underlying data distribution.

• Predictive Power: By leveraging data patterns, a learned index can skip multiple
search steps typical in traditional indexes.

Key Idea

B+ Tree Learned Index
Structure Fixed, hierarchical Data-adaptive, predictive

Search Cost Log(n) comparisons Direct prediction with neighborhood
search

Memory Use High, with pointers per node Lower, fewer nodes needed

Adaptability Fixed partitions, no data patterns Fits patterns, reduces overhead

B+Tree vs Learned Index

• Root Model: Predicts a range of data positions.

• Sub-models: Finer-grained models handle local data within that range.

Structure of a Learned Index

struct Model {
double slope = 0.0;
double intercept = 0.0;
void train(const std::vector<int>& keys, const std::vector<size_t>& positions);
size_t predict(int key) const;
void print() const;

};

• Root Model: Learns a rough mapping of keys to sub-models.

• Sub-models: Fine-tune predictions for localized clusters of data.

Training the Root and Sub-models

void train(const std::vector<int>& keys, const std::vector<size_t>& positions) {
// Calculate mean
for (size_t i = 0; i < keys.size(); ++i) {

mean_x += keys[i];
mean_y += positions[i];

}
// Compute slope and intercept
slope = num / denom;
intercept = mean_y - slope * mean_x;

}

• A statistical method for modeling the relationship between a dependent variable (x)
and an independent variable (y).

Regression

y(x) = slope * x + intercept

Position(key) = slope * key + intercept

• Calculate the mean of keys (x) and positions (y).

• Find the slope and intercept to define the linear relationship.

Training Regression Model

position 0 1 2 3 4

key 50 100 120 200 250

• Trains models by calculating mean, slope, and intercept to fit the data distribution.

Training Regression Model

double num = 0.0, denom = 0.0;
for (size_t i = 0; i < keys.size(); ++i) {

double x_diff = keys[i] - mean_x;
num += x_diff * (positions[i] - mean_y);
denom += x_diff * x_diff;

}
}
slope = num / denom;
intercept = mean_y - slope * mean_x;

• Numerator accumulate values to compute the covariance of keys and positions.

• Denominator accumulates the variance of keys

Training Regression Model

slope = num / denom = 500 / 20000 = 0.025

intercept = mean_y − (slope × mean_x) = 2 − (0.025 × 150) = −1.75

y = 0.025 × x − 1.75

Trained Regression Model

y = 0.025 × x − 1.75

position 0 1 2 3 4

key 50 100 120 200 250

y -0.5 0.75 2 3.25 4.5

• Root and sub-models are trained sequentially, with each sub-model learning its
local cluster of data.

Loading Training Data

for (int i = 0; i < num_sub_models; ++i) {
cluster_keys.clear();
cluster_positions.clear();
for (size_t j = start; j < end; ++j) {

cluster_keys.push_back(sorted_data[j].first);
cluster_positions.push_back(j);
leaves[i].push_back(sorted_data[j]);

}
sub_models[i].train(cluster_keys, cluster_positions);

}

• Root model predicts the sub-model to use.

• Sub-model predicts the approximate position of the key within the data cluster.

Position Prediction Process

int sub_model_idx = root_model.predict(key);
size_t pos = sub_models[sub_model_idx].predict(key);

• Root model predicts the sub-model to use.

• Sub-model predicts the approximate position of the key within the data cluster.

Position Prediction Process

[0~1000]
[]

[0~250]
[]

[250~900]
[]

[900~1000]
[]

[50|120|200]
[V|V|V]

[300|400|650]
[V|V|V]

[900|950|1000]
[V|V|V]

• Map key to position

Using Trained Regression Model

size_t predict(int key) const {
return static_cast<size_t>(std::max(0.0, slope * key + intercept));

}

• Root model predicts sub-model.

• Sub-model predicts approximate position within the data cluster.

Executing a Search with Learned Index

int sub_model_idx = root_model.predict(key);
size_t pos = sub_models[sub_model_idx].predict(key);

• Searches nearby positions for accuracy, as regression may only predict an
approximate location.

Neighborhood Search Around Predicted Position

int search_radius = 5;
int start = std::max(0, int(pos) - search_radius);
int end = std::min(int(leaves[sub_model_idx].size() - 1), int(pos) + search_radius);

for (int i = start; i < end; ++i) {
if (key == leaves[sub_model_idx][i].first) {

return leaves[sub_model_idx][i].second;
}

}

Visual Example of Neighborhood Search
• Predicted position = 10
• Search radius = 2

8 9 10 11 12

3 7 15 25 32

• Choosing Radius:

• Larger radius increases the likelihood of finding a key but will reduce speed.

• Radius depends on data distribution and prediction accuracy of the regression
model.

• Optimizing for Real-World Data:

• Skewed or clustered data may benefit from dynamic radius adjustment.

Practical Considerations for Neighborhood Search

• Demonstrates search for keys within predicted ranges, highlighting the search
speedup over traditional methods.

Testing the Learned Index

for(auto search_key : search_keys){
std::cout << "Search for key " << search_key << " : " <<
index.search(search_key) << std::endl;

}

• Benefits:

• Fast lookups with reduced memory usage.

• Flexible to data distributions.

• Limitations:

• May need neighborhood search due to approximate predictions.

• Effective for clustered data; less accurate for highly scattered data.

Benefits and Limitations of Learned Indexes

• Lookup speed: Learned indexes can transform lookup operations from the typical
B-Tree complexity of O(log n) into near-constant time operations.

• Memory usage: Learned indexes use less memory by eliminating redundant
pointers and nodes.

• Prediction accuracy: By training models to understand the data’s cumulative
distribution function (CDF), learned indexes achieve high accuracy for point and
range queries, even with relatively simple models like linear regression.

Evaluation Metrics

Learned Index using
Neural Network

• The relationship between keys and positions can be highly non-
linear, with gaps increasing at an exponential rate.

• A linear regression model would struggle to capture these
intervals accurately.

Limitation of Learned Index using Regression

0 1 2 3 4 5 6 7 8

10 20 45 100 200 350 600 1000 1500

• Data Distribution: Real-world datasets often exhibit complex, non-linear
relationships that cannot be accurately modeled by a simple line or function.

• Examples: Customer purchase behavior, seasonal data patterns, and geographic
data often show non-linear trends.

• Limitations of Linear Models: Linear regression can only capture straightforward
relationships.

• For data that fluctuates unpredictably or has clusters and non-uniform
distributions, linear models fall short.

Non-Linearity

• A neural network can capture non-linear data patterns by learning the complex
mapping.

• With multiple hidden layers and neurons, they can model intricate relationships that
simpler models miss.

Neural Network

• Defines a general model interface with train, predict, and print methods.

Abstract Model Class

struct Model {
virtual ~Model() {}
virtual void train(const std::vector<int>& inputs, const std::vector<double>& targets) = 0;
virtual double predict(int x) const = 0;
virtual void print() const = 0;

};

• A single-layer neural network model with input_weights, output_weights, input_bias,
and output_bias.

• hidden_neurons: Defines the number of neurons in the hidden layer.

SimpleNeuralNetwork Class

class SimpleNeuralNetwork : public Model {
std::vector<double> input_weights;
std::vector<double> output_weights;
double input_bias, output_bias;
int hidden_neurons;
// other variables and helper functions...

};

• Input Layer: 1 neuron for the key.

• Hidden Layer: 10 neurons, with weights and biases initialized randomly.

• Output Layer: 1 neuron for the predicted position.

Network Structure

SimpleNeuralNetwork nn(10); // 10 hidden neurons

• Data Normalization:
§ Inputs are normalized to [0, 1] to enhance training performance.

Training the Neural Network for Learned Index

void train(const std::vector<int>& inputs, const std::vector<double>& targets) {
for (int epoch = 0; epoch < epochs; ++epoch) {

for (size_t i = 0; i < inputs.size(); ++i) {
// Forward and backward pass...
output_bias += learning_rate * delta_output;
input_bias += learning_rate * delta_hidden;

}
}

}

• Forward Pass: Calculates hidden layer outputs using sigmoid activation, then sums
outputs for final prediction.

• Backward Pass: Adjusts weights and biases based on error between prediction and
actual target.

• Epochs and Learning Rate: Trains over multiple epochs with a small learning rate to
improve prediction accuracy.

Training the Neural Network for Learned Index

• Input Normalization:

• Normalize each key by dividing by the maximum key (1500) to improve training.

• Input to Hidden Layer:

• Each hidden neuron computes its output using:

• Here, x is the normalized key, w_i,j is the weight for hidden neuron j, and b_j is the
bias for neuron j.

Training the Neural Network for Learned Index

• Hidden to Output Layer:

• Compute the final predicted position by summing up:

• Here, h_j: Output of hidden neuron j; w_hj: weight from hidden neuron j to output;
b_o: output bias.

Training the Neural Network for Learned Index

• (key = 10, position = 0)
• Key is normalized to 10/1500 = 0.0067
• Assume initial weights and biases are small values, e.g., 0.1, 0.1.
• h_1=sigmoid(0.0067⋅0.1+0.1) ≈ 0.525
• Repeat for each hidden neuron
• Compute predicted position y
• Suppose the predicted position for key = 10 is initially 0.5
• Calculate the loss: (0.5−0)2=0.25(0.5 - 0)^2 = 0.25(0.5−0)2=0.25.
• Perform backpropagation to adjust weights and biases for improved predictions on

the next pass.

Example Iteration

• Root and Sub-Models in the RMI Using Neural Networks

Recursive Model Index

void initModels(bool use_neural_network) {
if (use_neural_network) {

root_model = std::make_unique<SimpleNeuralNetwork>();
for (int i = 0; i < 4; ++i) {

sub_models.push_back(std::make_unique<SimpleNeuralNetwork>());
}

}
}

• The root_model predicts which sub-model to use.

• The selected sub-model then predicts the position of the key within its data cluster.

Using Neural Network Prediction for Key Search

int sub_model_idx = root_model->predict(key);
size_t pos = sub_models[sub_model_idx]->predict(key);

• Benefits:

• Flexibility in capturing non-linear data patterns.

• Reduced lookup time by direct key position prediction.

• Considerations:

• Requires tuning for hidden neuron count, learning rate, and epochs.

• Higher memory usage due to network weights.

Benefits and Limitations

Conclusion
• Learned Index
• Learned Index using Neural Network

