
Lecture 1:
Course Introduction

Welcome to CS 4423/6423!
• Joy Arulraj (School of Computer Science)
• This course is all about building database systems.
• Why do we even care about database systems?

Importance of Database Systems

Banking

Healthcare

Airlines

E-Commerce

Curiosity

Scalability

Efficiency

Versatility

Why take this course?

Storage Management

Query Optimization

Index Structures

SIMD Instructions

Why take this course?

Course Overview

Course Objectives
• Learn about building a database system from scratch.
• Become proficient in systems programming.
• Understand the impact of hardware trends on software design.

Course Topics
• This course focuses on the internals of a database system:

§ Logging and Recovery
§ Concurrency Control
§ Query Optimization
§ Potpourri of advanced topics

Previous Course (4420/6422)
• This course builds upon a prior course that covered:

§ Relational Databases
§ Storage Management
§ Index Structures
§ Query Execution

Expected Background
• Should have taken an introductory course on computer systems.
• All programming assignments will be in C++.
• Programming assignment #1 will help get you caught up with C++.
• If you have not encountered C++ before, need to put in extra effort.
• Use a large language model like ChatGPT for assistance.
• Relevant parts of C++ will be briefly covered in this course.

Course Logistics
• Course Website (link on Canvas)
• Discussion Tool: Ed (link on Canvas)
• Grading Tool: Gradescope (link on Canvas)
• In-Class Quiz Tool: Point Solutions (link on Canvas)

Course Rubric
• Exams (50%)
• Programming Assignments (20%)
• Exercise Sheets (15%)
• In-Class Quizzes (15%)
• Extra-Credit Project (+10%)

Course Policies
• Programming assignments & exercise sheets must be own work.
• Not group assignments.
• You may not copy source code from other people or the web.
• Plagiarism will not be tolerated.
• We will follow the late submission policy listed on Canvas.

• Academic Honesty
• Refer to Georgia Tech Academic Honor Code.
• If you are not sure, ask me.

Textbooks for Reference
• Silberschatz, Korth, & Sudarshan:
• Database System Concepts. McGraw Hill, 2020.

• Hector Garcia-Molina, Jeff Ullman, and Jennifer Widom:
• Database Systems: The Complete Book. Prentice-Hall, 2008.

Intro Sheet
• Upload a one-page PDF with your details on Gradescope.
• Picture (ideally 2x2 inches of face).
• Name, interests, and other details mentioned on Gradescope.

• Purpose of this sheet
• Help me know more about your background for tailoring the course.
• Recognize you in class.

In-Person Office Hours
• Sign up for a ten-minute slot in the sign-up sheet (link on Canvas)
• Teaching assistants will guide you with assignments & sheets.

Auditing + Late Policy
• Course not tailored for auditing or P/F mode
• Late Policy: 25% reduction in grade for every late day
• 4 penalty-free late days for the entire semester

Motivating Application

Social Trends

Sentiments

Interactions

Social
Media

Analytics

Social Media Analytics Application

Users.txt

Posts.txt

Interactions.txt

Data

Flat-File Database System

Users.txt

UserName, Location

Timothée Chalamet, Paris

Lana Condor, Los Angeles

Liu Yifei, Beijing

Burna Boy, Lagos

Kriti Sanon, Mumbai

Users
Text File

Posts.txt

PostID, UserName, Location
1001, Timothée

Chalamet,
Excited to start filming my new movie!

1002, Lana
Condor,

Had a great time at the beach today!
🌊☀

1003, Liu Yifei, Enjoying the scenery in Beijing! 🏞

1004, Burna Boy, Live performance tonight in Lagos! 🎤🎶

1005, Kriti Sanon, Loving the vibrant energy of Mumbai! 🌆

Posts
Text File

Interactions.txt

PostID, UserName, Reaction
Type,

Comment

1001, Lana Condor, Comment, Love it!
1002, Liu Yifei, Like, -

1003, Burna Boy Like, -
1004, Kriti Sanon Comment, Wish I could be there!

Interactions
Text File

Limitations of
Flat-File Database

PostID, UserName, PostContent
1001, Timothée

Chalamet,
Excited to start filming my new movie!

1006, Timothée
Chalamet,

Exploring the streets of Paris! 🇫🇷‍

1007, Timothée
Lamet,

Just wrapped up a day of filming 🎬

1008, Timothée
Chalamet,

Any book recommendations?

Limitation #1: Data Redundancy

Limitation #2: Slow Operations

UserName, Location

Timothée Chalamet, Paris

Lana Condor, Los Angeles

Liu Yifei, Beijing

Burna Boy, Lagos

Kriti Sanon, Mumbai

Limitation #3: Slow Queries

USER 1

Timothée Chalamet,
Paris

USER 2

Timothée Chalamet,
Paris

USER 1

Xavier Laurent,
Paris

USER 2

Timothée Chalamet,
New York

USER 2

Xavier Laurent,
New York

Limitation #4: Concurrent Updates

UserName, Location, Country

Timothée Chalamet, Paris,

Lana Condor, Los Angeles,

Liu Yifei, Beijing,

Burna Boy, Lagos

Kriti Sanon, MumbaiUsers.txt

Limitation #5: Handling Disk Failure

France

USA

China

Cached Pages

Database

Faster access - not durable

Limitation #6: Memory Management

Slower access - but durable

DRAM

Disk

Limitation #7: Usability

Custom Code Comments Query Code

def get_comments_by_user(file_path, user_name):
comments = []
with open(file_path, 'r') as file:

for line in file:
post_id, user, reaction_type, comment_text = line.strip().split(', ')
if user == user_name and reaction_type == "Comment":

comments.append((post_id, comment_text))
return comments

Relational Database

Relational Database

UserName Location

Timothée Chalamet Paris

Lana Condor Los Angeles

Liu Yifei Beijing

Burna Boy Lagos

Kriti Sanon Mumbai

Relational Database

UserID UserName Location
1 Timothée Chalamet Paris
2 Lana Condor Los Angeles
3 Liu Yifei Beijing
4 Burna Boy Lagos
5 Kriti Sanon Mumbai

PostID UserID PostContent
1001 1 Excited to start filming my new movie!
1002 2 Had a great time at the beach today! 🌊☀
1003 3 Enjoying the scenery in Beijing! 🏞
1004 4 Live performance tonight in Lagos! 🎤🎶
1005 5 Loving the vibrant energy of Mumbai! 🌆

PostID UserID ReactionType Content
1001 2 Comment Love it!
1002 3 Like -
1003 4 Like -
1004 5 Comment Wish I could be there!

Users Posts

Interactions

Logical

Physical

Relational Database

List of Tables

Storage
Formats

Indexing Data
Structures

Simple Query Language for
Complex Data Manipulation

Logical Database
Design

Relational Database

Physical Database
Design

Optimize Indexing for Storage
Hardware

Benefits of
Relational Database

Benefit #1: No Data Redundancy

UserID UserName Location

1 Timothée Chalamet Paris

PostID UserID PostContent
1001 1 Excited to start filming my new movie!
1006 1 Exploring the streets of Paris!
1007 1 Just wrapped up a day of filming
1008 1 Any book recommendations?

Sir Timothée Chalamet

Benefit #2: Fast Operations

vEfficient Data Deletion

vUser (Tuple) Removal

v Fast Deletion

Benefit #3: Fast Queries

Index Database

Apps in labeled
folders

Location-based
index

Benefit #3: Fast Queries

UserName, Location

Timothée Chalamet, Paris

Lana Condor, Los Angeles

Liu Yifei, Beijing

Burna Boy, Lagos

Kriti Sanon, Mumbai

SELECT *
FROM Users
WHERE LOCATION = 'Mumbai';

Transaction 3Transaction 2

Benefit #4: Concurrent Updates

Transaction 1

Concurrency
Control

Concurrency
Control

USER 1

Xavier Laurent,
Paris

USER 1

Timothée Chalamet,
Paris

USER 2

Timothée Chalamet,
New York

USER 2

Timothée Chalamet,
Paris

USER 2

Xavier Laurent,
New York

UserName Location
Timothée Chalamet Paris
Lana Condor Los Angeles
Liu Yifei Beijing
Burna Boy Lagos
Kriti Sanon Mumbai

Benefit #5: Handling Failures

UserName Location Country
Timothée Chalamet Paris France
Lana Condor Los Angeles USA
Liu Lifei Beijing China
Burna Boy Lagos
Kriti Sanon Mumbai

Atomic Transactions “All or Nothing”

Reversion

UserName Location
Louis Garrel Paris
Lana Condor Los Angeles
Liu Yifei Beijing
Burna Boy Lagos
Kriti Sanon Mumbai

UserName Location Country

Timothée Chalamet Paris

Lana Condor Los Angeles

Liu Lifei Beijing

Burna Boy Lagos

Kriti Sanon Mumbai

France

USA

China

Benefit #5: Handling Failures

Benefit #6: Memory Management

Cached Pages

Database

Faster access
- not durable

Memory

Disk

Transaction LogSlower access
- but durable

1

2 3

45

Benefit #7: Usability

SELECT PostContent, CommentText
FROM Posts
JOIN Interactions ON Posts.PostID = Interactions.PostID
WHERE Interactions.UserName = 'Lana Condor'
AND Interactions.ReactionType = 'Comment';

UserName Location

Timothée Chalamet Paris

Lana Condor Los Angeles

Liu Yifei Beijing

Burna Boy Lagos

Kriti Sanon Mumbai

Python, C++ = ImperativeSQL = Declarative

Relational Operators

Relations

SELECT GROUP BY SUM

Relational Operators

SELECT GROUP BY SUM

Relational Operators

SELECT (Projection Operator)

SELECT Location
FROM Users;

Select specific columns from a table
Example: Retrieve locations of all users.

WHERE (Selection Operator)

SELECT *
FROM Interactions
WHERE ReactionType = 'Like';

Filters rows based on specified
conditions

Example: Find all interactions that are "Like" reactions.
σ

GROUP BY (Grouping Operator)

SELECT PostID,
• COUNT(*) AS ReactionCount

FROM Interactions
GROUP BY PostID;

• Groups rows of same values
• Used with aggregate functions like SUM

Example: Count the number of reactions that each post received.

γ

SUM (Aggregation Operator)

SELECT UserID,
COUNT(PostID) AS TotalPosts

FROM Posts
GROUP BY UserID;

• Adds group values
• Defined by GROUP BY clauseΣ

Example: Total number of posts made by each user, grouping the
results by UserID.

JOIN (Join Operator)

SELECT Posts.PostID,
COUNT(Interactions.ReactionType) AS TotalInteractions

FROM Posts
JOIN Interactions ON Posts.PostID = Interactions.PostID
GROUP BY Posts.PostID;

• Links rows from two different tables
• Combine information from both⨝

Example: Total number of interactions each post receives.

Relational Algebra

Relational Algebra

Creating
a Query

Combine
Operators

Theoretical
Foundation

Query
Data

Aggregat
e Data

Sequence of
Operators

SELECT Interactions.PostID,
COUNT(*) AS Likes,
Users.UserID, Users.Username

FROM Interactions
JOIN Users ON Interactions.UserID =
Users.UserID
WHERE Interactions.ReactionType = 'Like'
GROUP BY Interactions.PostID,

Users.UserID,
Users.Username

ORDER BY Likes DESC;

Combine Operators

Filter Interactions

Combine Tables

Group & Count
Results

Project Fields

Sort Popular Posts

Relational Algebra

Τ Likes DESC
(π PostID, Likes, UserID, Username
(γ PostID, UserID, Username;

COUNT(∗)→Likes
(σ ReactionType=′Like′
(Interactions) ⨝ Users)
)
)

Filters Interactions

Combine Tables

Group & Aggregate

Project Output

Order Posts

Relational Algebra

BuzzDB

BuzzDB

void BuzzDB)*insert(int key, int value) {
Tuple newTuple = {key, value};
table.push_back(newTuple); // Add to main table

vector
index[key].push_back(value); // Also, update the index

map
}

UserName, Location
Timothée
Chalamet,

Paris

Lana Condor, Los Angeles
Liu Yifei, Beijing
Burna Boy, Lagos
Kriti Sanon, Mumbai

Key-Based Tuple Retrieval

Insertion Operator in C++

int main() {
BuzzDB db;
// Populating the database
db.insert(1, 100); db.insert(1, 200);
db.insert(2, 50);
db.insert(3, 200); db.insert(3, 200); db.insert(3, 100);
db.insert(4, 500);
// Executing aggregation query
db.selectGroupBySum();
return 0;

}

BuzzDB Insert Method Creation

Populating the Database

void BuzzDB::selectGroupBySum() {
// Iterate over each key
for (auto const &pair : index) {
int sum = 0;
// Sum values for this key
for (auto const &value : pair.second) {
sum += value;

}
std::cout << "key: " << pair.first << ", sum: " << sum

<< '\n';
}

}

selectGroupBySum
method

Tally Summarization

Iterate Over Keys

Iterate Over Values

Aggregation Query

Sum Key
Values

int main() {
...
// Executing aggregation query
db.selectGroupBySum();
return 0;

}
// PROGRAM OUTPUT
key: 1, sum: 300
key: 2, sum: 50
key: 3, sum: 500
key: 4, sum: 500

Aggregat
e

Database
Initiation

Aggregation Query

C++ vs Python

Superior
Performance

Executable Code

Fast & Efficient

Transactions

SELEC
T GROUP

BY
SUM

Multiple Database Changes

Queries vs Transactions

Transaction: Atomicity Property

Transaction: Atomicity Property

BEGIN TRANSACTION;

-- Withdraw $100 from account 1
UPDATE ACCOUNT SET Balance = Balance – 100 WHERE AccountID = 1;

-- Deposit $100 into account 2
UPDATE ACCOUNT SET Balance = Balance + 100 WHERE AccountID = 2;

COMMIT;

$100 from Account 1 to Account 2

Update Failure à No Partial Updates

Transaction: Consistency Property

-- Clerk 1: Deposits $500 into account 1
BEGIN TRANSACTION;
SELECT Balance FROM ACCOUNT WHERE AccountID = 1; -- Suppose it returns $1000
UPDATE ACCOUNT SET Balance = 1000 + 500 WHERE AccountID = 1;
COMMIT;
-- Clerk 2: Deposits $300 into account 1 almost at the same time
BEGIN TRANSACTION;
SELECT Balance FROM ACCOUNT WHERE AccountID = 1; -- Suppose it still returns $1000
UPDATE ACCOUNT SET Balance = 1000 + 300 WHERE AccountID = 1;
COMMIT;

$1500 vs
$1800

Clerk 2 à
$300

Clerk 1 à
$500

Transaction: Isolation Property

BEGIN TRANSACTION;
UPDATE ACCOUNT SET Balance = Balance – 500 WHERE AccountID = 1; -- Customer withdraws $500
COMMIT;

Durable
Storage

Crucial Write-
Ahead LogsDurability

Transaction: Durability Property

Atomicity Consistency Isolation Durability

ACID Properties

Photo: Gülay Keskin/Heidelberg Institute for Theoretical Studies
(HITS)

Andreas Reuter (1983)

Reliable Management

Multi-User Capability

History of “ACID”

Photo: Gülay Keskin/Heidelberg Institute for Theoretical Studies
(HITS)

Andreas Reuter (1983)

Reliable Management

Multi-User Capability

History of “ACID”

Conclusion
• Illustrative Social Media Analytics
• Limitations of a Flat-file Database System
• Benefits of a Relational Database System
• Relational Algebra
• ACID Properties

