

Lecture 5: Logging (Part I)

CREATING THE NEXT®

Today's Agenda

Recap

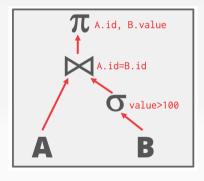
Motivation

Failure Classification

Buffer Pool Policies

Shadow Paging

Conclusion



Query Plan

- The operators are arranged in a tree.
- Data flows from the leaves of the tree up towards the root.
- The output of the root node is the result of the query.

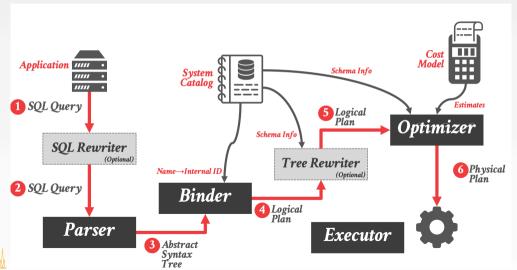
SELECT A.id, B.value FROM A, B WHERE A.id = B.id AND B.value > 100

Query Processing

- Access methods are the alternative ways for retrieving specific tuples
- Hashing is almost always better than sorting for operator execution.
- Caveats:
 - Sorting is better on non-uniform data.
 - Sorting is better when result needs to be sorted.
- Good DBMSs use either or both.

Process Models

- The same query plan be executed in multiple ways.
- A DBMS's **processing model** defines how the system executes a query plan.
- (Most) DBMSs will want to use an index scan as much as possible.
- Parallel execution is important.
- (Almost) every DBMS supports this.
- This is really hard to get right.

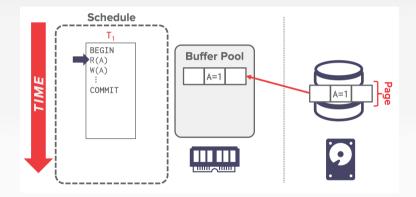


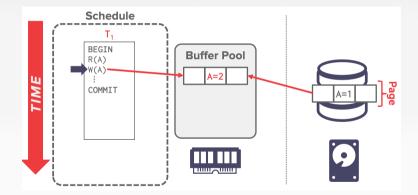
Today's Agenda

- Motivation
- Failure Classification
- Buffer Pool Policies
- · Shadow Paging

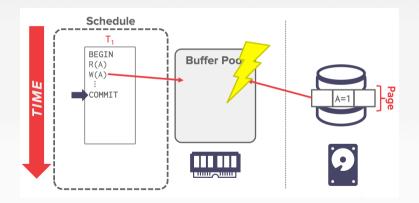
Anatomy of a Database System [Monologue]

Anatomy of a Database System [Monologue]


- · Process Manager
 - Manages client connections
- Query Processor
 - ▶ Parse, plan and execute queries on top of storage manager
- Transactional Storage Manager
 - Knits together buffer management, concurrency control, logging and recovery
- Shared Utilities
 - Manage hardware resources across threads


Anatomy of a Database System [Monologue]

- Process Manager
 - Connection Manager + Admission Control
- Query Processor
 - Query Parser
 - Query Optimizer (a.k.a., Query Planner)
 - Query Executor
- Transactional Storage Manager
 - Lock Manager
 - Access Methods (a.k.a., Indexes)
 - Buffer Pool Manager
 - Log Manager
- Shared Utilities
 - Memory, Disk, and Networking Manager



Crash Recovery

- Recovery algorithms are techniques to ensure database **consistency**, transaction **atomicity**, and **durability** despite failures.
- Recovery algorithms have **two parts**:
 - Actions during normal txn processing to ensure that the DBMS can recover from a failure.
 - Actions after a failure to recover the database to a state that ensures atomicity, consistency, and durability.

Failure Classification

Crash Recovery

- DBMS is divided into different components based on the underlying storage device.
- We must also classify the different **types of failures** that the DBMS needs to handle.

Storage Types

Volatile Storage

- Data does not persist after power loss or program exit.
- Examples: DRAM, SRAM

Non-volatile Storage

- Data persists after power loss and program exit.
- Examples: HDD, SDD

Stable Storage

- A non-existent form of non-volatile storage that survives all possible failures scenarios.
- Approximated using a collection of storage devices.

Failure Classification

- Type 1 Transaction Failures
- Type 2 **System Failures**
- Type 3 Storage Media Failures

Transaction Failures

• Logical Errors:

 Transaction cannot complete due to some internal error condition (e.g., integrity constraint violation).

• Internal State Errors:

 DBMS must terminate an active transaction due to an error condition (e.g., deadlock).

System Failures

• Software Failure:

▶ Problem with the DBMS implementation (*e.g.*, uncaught divide-by-zero exception).

• Hardware Failure:

- ► The computer hosting the DBMS crashes (*e.g.*, power plug gets pulled).
- Fail-stop Assumption: Non-volatile storage contents are assumed to not be corrupted by system crash.

Storage Media Failure

• Non-Repairable Hardware Failure:

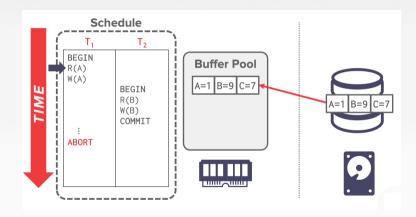
- A head crash or similar disk failure destroys all or part of non-volatile storage.
- ▶ Destruction is assumed to be detectable (*e.g.*, disk controller use checksums to detect failures).
- No DBMS can recover from this! Database must be restored from archived version.

Observation

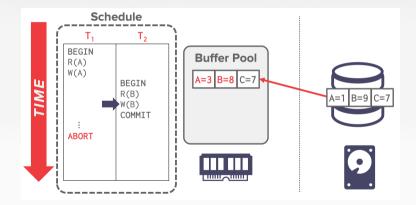
- The primary storage location of the database is on non-volatile storage, but this is much slower than volatile storage.
- Use volatile memory for faster access:
 - First copy target record into memory.
 - ▶ Perform the writes in memory.
 - Write dirty records back to disk.

Observation

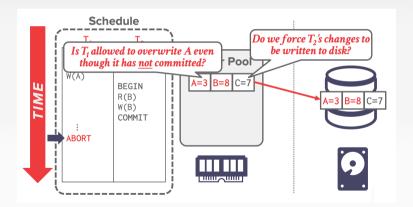
- The DBMS needs to ensure the following guarantees:
 - The changes for any txn are durable once the DBMS has told somebody that it committed.
 - ▶ No partial changes are durable if the txn aborted.

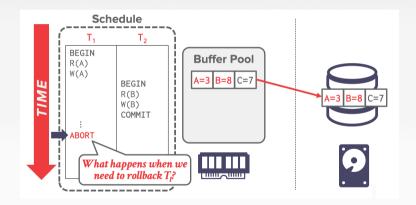


Buffer Pool Policies


Undo vs. Redo

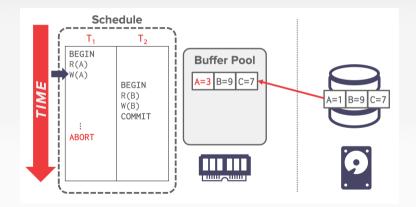
- **Undo:** The process of removing the effects of an incomplete or aborted txn.
- **Redo:** The process of re-instating the effects of a committed txn for durability.
- How the DBMS supports this functionality depends on how it manages the buffer pool...



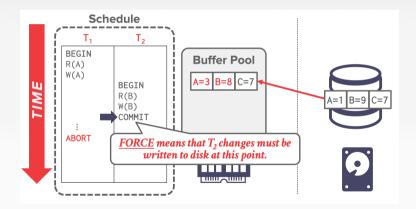


Steal Policy

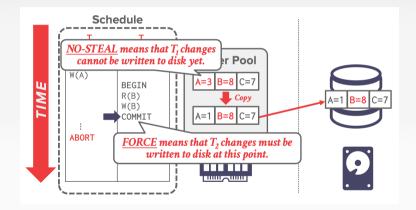
- Whether the DBMS allows an uncommitted txn to overwrite the most recent committed value of an object in non-volatile storage.
- STEAL: Is allowed.
- **NO-STEAL:** Is **not** allowed.

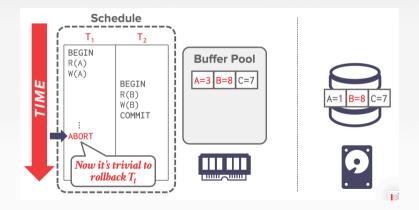


Force Policy


- Whether the DBMS requires that all updates made by a txn are reflected on non-volatile storage before the txn is allowed to commit.
- **FORCE:** Is required.
- **NO-FORCE:** Is **not** required.

NO-STEAL + FORCE



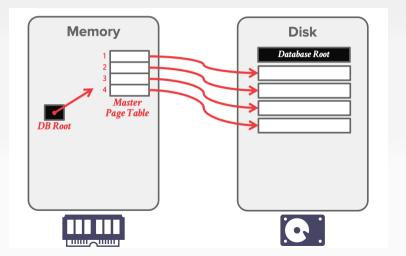


NO-STEAL + FORCE

NO-STEAL + FORCE

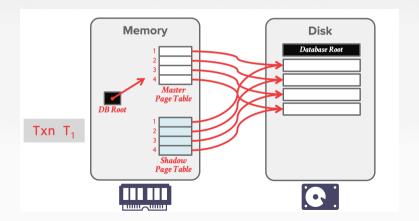
NO-STEAL + FORCE

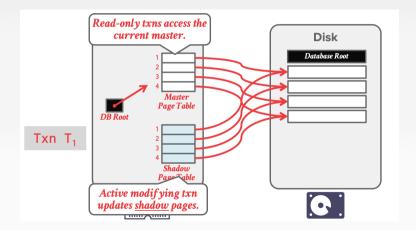
- This approach is the easiest to implement:
 - Never have to undo changes of an aborted txn because the changes were not written to disk.
 - Never have to redo changes of a committed txn because all the changes are guaranteed to be written to disk at commit time (assuming atomic hardware writes).
- Previous example cannot support <u>write sets</u> that exceed the amount of physical memory available.



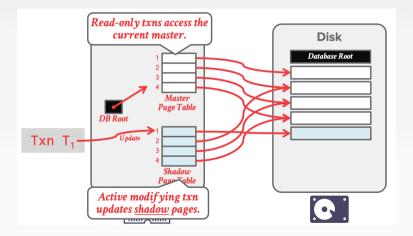
- Maintain two separate copies of the database:
 - ► Master: Contains only changes from committed txns.
 - ▶ Shadow: Temporary database with changes made from uncommitted txns.
- Txns only make updates in the shadow copy.
- When a txn commits, atomically switch the shadow to become the new master.
- Buffer Pool Policy: NO-STEAL + FORCE

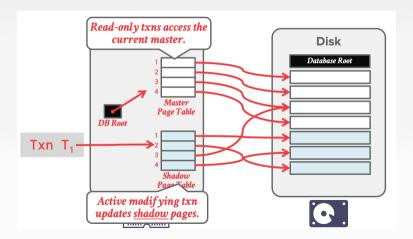
- Instead of copying the entire database, the DBMS copies pages on write.
- Organize the database pages in a tree structure where the root is a single disk page.
- There are two copies of the tree, the master and shadow
 - ► The root points to the master copy.
 - Updates are applied to the shadow copy.

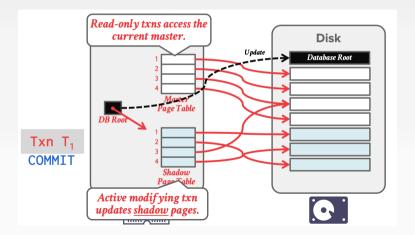


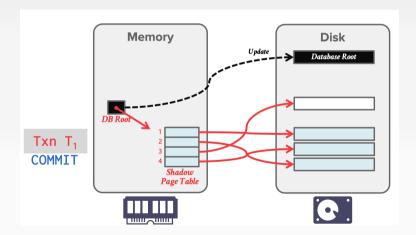


- To install the updates, overwrite the root so it points to the shadow, thereby swapping the master and shadow:
 - Before overwriting the root, none of the txn's updates are part of the disk-resident database
 - After overwriting the root, all the txn's updates are part of the disk-resident database.



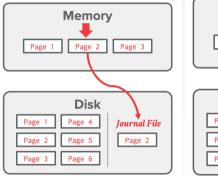


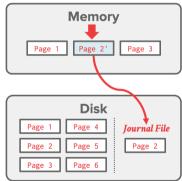


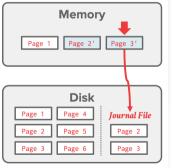


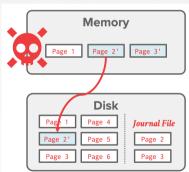
Shadow Paging - Undo/Redo

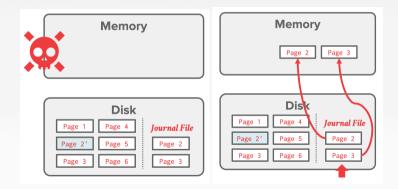
- Supporting rollbacks and recovery is easy.
- <u>Undo:</u> Remove the shadow pages. Leave the master and the DB root pointer alone.
- Redo: Not needed at all.

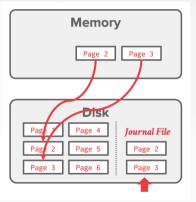

Shadow Paging - Disadvantages


- Copying the entire page table is expensive:
 - ▶ Use a page table structured like a B+tree.
 - No need to copy entire tree, only need to copy paths in the tree that lead to updated leaf nodes.
- · Commit overhead is high:
 - Flush every updated page, page table, and root.
 - Data gets fragmented.
 - Need garbage collection.
 - Only supports one writer txn at a time or txns in a batch.


- When a txn modifies a page, the DBMS copies the original page to a separate **journal file** before overwriting master version.
- After restarting, if a journal file exists, then the DBMS restores it to undo changes from uncommitted txps.







Observation

- Shadowing page requires the DBMS to perform writes to random non-contiguous pages on disk.
- We need a way for the DBMS convert random writes into sequential writes.

Conclusion

Parting Thoughts

- Recovery algorithms are techniques to ensure database <u>consistency</u>, transaction atomicity, and durability despite failures.
- Recovery algorithms have two parts:
 - Actions during normal txn processing to ensure that the DBMS can recover from a failure.
 - Actions after a failure to recover the database to a state that ensures atomicity, consistency, and durability.
- Three types of failures: transaction, system, and hardware failures
- Buffer policies: NO-STEAL + FORCE

Next Class

• Write Ahead Logging

