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Larger-than-Memory Databases

+ Allow an in-memory DBMS to store/access data on disk without bringing back
all the slow parts of a disk-oriented DBMS.
> Minimize the changes that we make to the DBMS that are required to deal with
disk-resident data.
> It is better to have only the buffer manager deal with moving data around
> Rest of the DBMS can assume that data is in DRAM.

« Need to be aware of hardware access methods

> In-memory Access = Tuple-Oriented.
> Disk Access = Block-Oriented.
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Background

« Much of the development history of DBMSs is about dealing with the limitations
of hardware.

+ Hardware was much different when the original DBMSs were designed in 1970s:
» Uniprocessor (single-core CPU)
> DRAM capacity was very limited.
> The database had to be stored on disk.
> Disks were even slower than they are now.

Georgia
Tech 7/85



O0@00000000000000

Background

+ But now DRAM capacities are large enough that most databases can fit in
memory.

» Structured data sets are smaller.

+ We need to understand why we can’t always use a “traditional” disk-oriented
DBMS with a large cache to get the best performance.
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Disk-Oriented DBMS

+ The primary storage location of the database is on non-volatile storage (e.g., HDD,
SSD).

+ The database is organized as a set of fixed-length pages (aka blocks).

+ The system uses an in-memory buffer pool to cache pages fetched from disk.

> Its job is to manage the movement of those pages back and forth between disk and
memory.
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Buffer Pool

« When a query accesses a page, the DBMS checks to see if that page is already in
memory:
» If it’s not, then the DBMS must retrieve it from disk and copy it into a frame in its
buffer pool.
> If there are no free frames, then find a page to evict.
> If the page being evicted is dirty, then the DBMS must write it back to disk.

« Once the page is in memory, the DBMS translates any on-disk addresses to
their in-memory addresses.
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Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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Disk-oriented DBMS: Data Organization

Index Buffer Pool Database (On-Disk)
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Buffer Pool

- Every tuple access goes through the buffer pool manager regardless of whether
that data will always be in memory.
> Always translate a tuple’s record id to its memory location.
> Worker thread must pin pages that it needs to make sure that they are not
swapped to disk.
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Disk-Oriented DBMS Overhead

Measured CPU Instructions

BEBUFFER POOL
BLATCHING
BLOCKING
BLOGGING
OB-TREE KEYS
BREAL WORK

Reference
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https://dl.acm.org/doi/10.1145/1376616.1376713
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In-memory DBMS

+ Assume that the primary storage location of the database is permanently in
memory.

« Early ideas proposed in the 1980s but it is now feasible because DRAM prices are
low and capacities are high.
« First commercial in-memory DBMSs were released in the 1990s.
» Examples: TimesTen, DataBlitz, Altibase
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https://www.oracle.com/database/technologies/related/timesten.html
https://dbdb.io/db/datablitz
http://altibase.com/
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Storage Access Latencies

L3 DRAM SSD HDD

Read Latency 20ns 60ns 25,000 ns 10,000,000 ns
Write Latency 20ns 60 ns 300,000 ns 10,000,000 ns

Reference
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https://dl.acm.org/doi/10.1145/2723372.2749441
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In-Memory DBMS: Data Organization

+ An in-memory DBMS does not need to store the database in slotted pages but it
will still organize tuples in pages:
> Direct memory pointers vs. record ids
» Fixed-length vs. variable-length data memory pools
» Use checksums to detect software errors from trashing the database.

 The OS organizes memory in pages too. We already covered this.
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In-Memory DBMS: Data Organization
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In-Memory DBMS: Data Organization
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Importance of Hardware

« People have been thinking about using hardware to accelerate DBMSs for
decades.

+ 1980s: Database Machines

+ 2000s: FPGAs + Appliances

« 2010s: FPGAs + GPUs

+ 2020s: PM + FPGAs + GPUs + CSAs + More! Reference
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https://en.wikichip.org/wiki/intel/configurable_spatial_accelerator
https://minds.wisconsin.edu/bitstream/handle/1793/58446/TR504.pdf?sequence=1&isAllowed=y

000000000000 00O0000000

Persistent Memory

+ Emerging storage technology that provide low latency read/writes like DRAM,
but with persistent writes and large capacities like SSDs.

> a.k.a., Non-Volatile Memory, Storage-class Memory
- First-generation devices were block-addressable

+ Second-generation devices are byte-addressable

Georgia
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Persistent Memory

« Block-addressable Optane SSD

> NVM Express works with PCI Express to transfer data to and from Optane SSDs
> NVMe enables rapid storage in SSDs and is an improvement over older
HDD-related interfaces (e.g., Serial Attached SCSI (SAS) and Serial ATA (SATA))

+ Byte-addressable Optane DIMMs

> New assembly instructions and hardware support

Georgia
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https://en.wikipedia.org/wiki/NVM_Express
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Fundamental Elements of Circuits

Capacitor Resistor Inductor
(5,745 ) (1827) (1831)

{H =/~
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Fundamental Elements of Circuits

 In 1971, Leon Chua at Berkeley predicted the existence of a fourth fundamental
element.

« A two-terminal device whose resistance depends on the voltage applied to it, but
when that voltage is turned off it permanently remembers its last resistive
state.

+ Reference
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Tech 28/85


https://www.nature.com/articles/nmat3338
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Fundamental Elements of Circuits

Capacitor Resistor Inductor Memristor
(?745) (1827) (1831) (1971)
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Memristors

+ A team at HP Labs led by Stanley Williams stumbled upon a nano-device that had
weird properties that they could not understand.

+ It wasn’t until they found Chua’s 1971 paper that they realized what they had
invented.
- Reference

» Video
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Tech 30/85


https://ieeexplore.ieee.org/document/4687366
https://www.youtube.com/watch?v=bKGhvKyjgLY
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NVM Technologies

+ Phase-Change Memory (PRAM)
« Resistive RAM (ReRAM)
+ Magnetoresistive RAM (MRAM)
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Phase-Change Memory

« Storage cell is comprised of two metal

electrodes separated by a resistive heater and
the phase change material (chalcogenide).
« The value of the cell is changed based on how
the material is heated. Heﬁerl
> A short pulse changes the cell to a ‘0’. Access
> Along, gradual pulse changes the cell to a

I

« Reference
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https://dl.acm.org/doi/10.1145/1785414.1785441
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Resistive RAM

+ Two metal layers with two TiO2 layers in

between.
 Running a current one direction moves Platinum
electrons from the top TiO2 layer to the
bottom, thereby changing the resistance.
Platinum

« Potential programmable storage fabric...

» Bertrand Russell’s Material Implication
Logic

» Reference
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https://ieeexplore.ieee.org/document/4687366
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Magnetoresistive RAM

« Stores data using magnetic storage elements
instead of electric charge or current flows.

+ Spin-Transfer Torque (STT-MRAM) is the Fixed FM Layer—
leading technology for this type of PM.

> Supposedly able to scale to very smallsizes Free FM Layer &

(10nm) and have SRAM-like latencies.
What is SRAM used for?

Reference

Georgia
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https://spectrum.ieee.org/semiconductors/memory/spin-memory-shows-its-might
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Why This is for Real

+ Industry has agreed to standard technologies

intel) 2
and form factors (JDEC). i s
+ Linux and Microsoft added support for PM u >
in their kernels (DAX).

- Intel added new instructions for flushing
cache lines to PM (CLFLUSH, CLWB).

Georgia
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PM Configurations
DRAM as Hardware- PM Next to
Managed Cache DRAM
DBMS DBMS
- - =~ ~ - - =~ ~
= ~ = ~
DBMS Address Space . . DBMS Address Space .
Virtual Memory Su1system Viirtual Memory Subsysti-m
¥ - _
H DRAM 1

_ (Moram | pv
PM

et e Reference
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http://sigmod2017.org/wp-content/uploads/2017/05/06-Data-Structures-Engineering-For-Byte-Addressable-Non-Volatile-Memory.pdf
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PM for Database Systems

+ Block-addressable PM is not that interesting.

- Byte-addressable PM will be a game changer but will require some work to use
correctly.
> In-memory DBMSs will be better positioned to use byte-addressable PM.
> Disk-oriented DBMSs will initially treat PM as just a faster SSD.

Georgia
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Storage & Recovery Methods

Understand how a DBMS will behave on a system that only has byte-addressable
PM.

Develop PM-optimized implementations of standard DBMS architectures.

Based on the N-Store prototype DBMS.

.

« Reference

Georgia
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https://github.com/jarulraj/storage
https://dl.acm.org/doi/10.1145/2723372.2749441
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Synchronization

- Existing programming models assume that any write to memory is non-volatile.
» CPU decides when to move data from caches to DRAM.

+ The DBMS needs a way to ensure that data is flushed from caches to PM.

Georgia
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Synchronization

STORE ﬁ CLWB ADR

Memor
» Lt Cache » i »
L2 Cache
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Synchronization

+ Cache-line Flush (CLFLUSH)

> This instruction allows the DBMS to flush a cache-line out to memory.
> If that cache line contains modified data at any level of the cache hierarchy, that
data is written back to memory.

« Cache-line Write Back (CLWB)

> Writes back the cache line (if modified) to memory

> The cache line may be retained in the cache hierarchy in non-modified state
> Improves performance by reducing cache misses

> CLWB instruction is ordered only by store-fencing (SFENCE) operation.

« Asynchronous DRAM Refresh (ADR)

> In case of a power loss, there is sufficient reserve power to flush the stores pending
in the memory controller back to Optane DIMM.
» Stores are posted to the Write Pending Queue (WPQ) in the memory controller

X Reference
Georgia
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https://www.usenix.org/system/files/login/articles/login_summer17_07_rudoff.pdf
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Naming

« If the DBMS process restarts, we need to make sure that all the pointers for
in-memory data point to the same data.

Index Table Heap
P 3 < Tuple #00 5
i — o — P Tuple #01
\/ i
\/ Tuple #00(v2) 4
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Naming

« If the DBMS process restarts, we need to make sure that all the pointers for
in-memory data point to the same data.
Index Table Heap

Tuple #00 (v2)

Georgia
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PM-Aware Memory Allocator

+ Feature 1: Synchronization

> The allocator writes back CPU cache lines to PM using the CLFLUSH instruction.
> It then issues a SFENCE instruction to wait for the data to become durable on PM.

+ Feature 2: Naming

> The allocator ensures that virtual memory addresses assigned to a memory-mapped
region never change even after the OS or DBMS restarts.

Georgia
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Storage Engine Architectures

+ Choice 1: In-place Updates

> Table heap with a write-ahead log + snapshots.
> Example: VoltDB

+ Choice 2: Copy-on-Write

> Create a shadow copy of the table when updated.
> No write-ahead log.
> Example: LMDB

- Choice 3: Log-structured

> All writes are appended to log. No table heap.
> Example: RocksDB

Georgia
Tech 46/ 85



OO0®0000000000000O000O00000

In-place Updates Engine

In-Memory In-Memory Durable
Index Table Heap Storage
— T Tuple #00 Write-Ahead Log
=2 %,\/
Tuple #02
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In-place Updates Engine

In-Memory In-Memory Durable
Index Table Heap

— T Tuple #00 Write-Ahead Log
9 e Dl
P T »
Tuple #02

Snapshots
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In-place Updates Engine

In-Memory In-Memory Durable
Index Table Heap
+—I—+ T 2 ¢00 Write-Ahead Log
1
Tuple #02
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In-place Updates Engine

In-Memory In-Memory Durable
Index Table Heap Storage

+—l—+ T 2 ¢00 Write-Ahead Log
Tuple %01 (1) §8) Tuple Delta
e S »
Tuple #02

Snapshots

RY) Tuple#01 ()
r
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In-place Updates Engine

- Limitations

> Duplicate Data
> Recovery Latency

Georgia
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PM-Aware Architectures

« Leverage the allocator’s non-volatile pointers to only record what changed
rather than how it changed.

+ The DBMS only must maintain a transient UNDO log for a txn until it commits.

> Dirty cache lines from an uncommitted txn can be flushed by hardware to the
memory controller.
> No REDO log because we flush all the changes to PM at the time of commit.

Georgia
Tech 52/85



00000000 ®0000000000O00000

PM-Aware In-place Updates Engine

PM PM PM
Index Table Heap Storage
— T Tuple #00 Write-Ahead Log
2] %‘\/ »
Tuple #02
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PM-Aware In-place Updates Engine

PM PM PM
Index Table Heap Storage
T Tuple #00 Wirite-Ahead Log
1 TP
= \/ p
Tuple #02
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PM-Aware In-place Updates Engine

PM PM PM
Index Table Heap Storage
— i) Write—Ahe Log
. . 9 1 i |
\f Tuple #02
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Copy-On-Write Engine

Current Directory
Leaf'1 Leaf 2
e ——
Page #00 Page #01
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Copy-On-Write Engine

Current Directory
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Copy-On-Write Engine

CurremDirecory | @ IS
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Copy-On-Write Engine

\e

Current Directory o

Leaf 1 Leaf 2 o Updated Leaf 1
o —— o
Page #00 Page #01 Page #00
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Copy-On-Write Engine

» Limitations

> Expensive Copies
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PM-Aware Copy-On-Write Engine

Current Directory
Leaf'1 Leaf 2 Updated Leaf 1
l Only Copy
Pointers

Tuple #00 Tuple #01

Tuple #00())
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PM-Aware Copy-On-Write Engine

\‘e

Current Directory e Dirty Directory

Leaf'1 Leaf 2 Updated Leaf 1

l Pointers

Tuple #00 Tuple #01 Tuple #00(!)
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Log-Structured Engine

MemTable SST able
— ? Bloom Filter
s T

Write-Ahead Log ¥ ¢ ¥ ¥
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Log-Structured Engine

MemTable SSTable
— T ? Bloom Filter
v

Write-Ahead Log ¥ t ; ¥

‘ Tuple Delta (@
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Log-Structured Engine

MemTable SSTable
P E—— ? Bloom Filter
‘ Write-Ahead Log { : ; ¥
1
Tuple Delta
Tuple Data
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Log-Structured Engine

+ Limitations
> Duplicate Data
> Compactions

Georgia
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PM-Aware Log-Structured Engine

MemTable SSTable

i—l—i
—

Bloom Filter

»

Write-Ahead Log

‘ Tuple Delta (@

Tuple Delta

Tuple Data
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PM-Aware Log-Structured Engine

MemTable
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=

Write-Ahead Log

‘ Tuple Delta (@
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Observation

« WAL serves two purposes

> Transform random writes into sequential log writes.

> Support transaction rollback.

> Design makes sense for disks with slow random writes.
 But PM supports fast random writes

> Directly write data to the multi-versioned database.
> Only record meta-data about committed txns in log.

Georgia
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Write-Behind Logging

« PM-centric logging protocol that provides instant recovery and minimal
duplication overhead.
> Directly propagate changes to the database.
> Only record meta-data in log.
> Reference
« Recover the database almost instantaneously.

> Need to record meta-data about in-flight transactions.
> In case of failure, ignore their effects.
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https://www.vldb.org/pvldb/vol10/p337-arulraj.pdf
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Write-Behind Logging

................................................................

. Table Heap Log
| === wasans
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Write-Behind Logging

Table Heap

Updated Tuple 0

‘ ‘ OMeta-data

Table Heap Log
UpdatedTuple @ === mB-E-E-E-H
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Write-Behind Logging

- DBMS assigns timestamps to transactions
> Get timestamps within same group commit timestamp range to identify and ignore
effects of in-flight txns.
« Use failed group commit timestamp range:
> DBMS uses range during tuple visibility checks.
» Ignores tuples created or updated within this range.
> UNDO is implicitly done via visibility checks.

Georgia
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Write-Behind Logging

+ Recovery consists of only analysis phase
> The DBMS can immediately start processing transactions after restart with explicit
UNDO/REDO phases.
« Garbage collection eventually kicks in to remove the physical versions of
uncommitted transactions.
» Using timestamp range information in write-behind log.
> After this finishes, no need to do extra visibility checks.

Georgia
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Metadata for Instant Recovery

« Use group commit timestamp range to ignore effects of transactions in failed
group commit.

> Maintain list of failed timestamp ranges.

Georgia
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Metadata for Instant Recovery
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Metadata for Instant Recovery
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Metadata for Instant Recovery
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Write-Behind Logging — Recovery

+ Replay Log with 1m TPC-C Transactions
« PM 2x Latency Relative to DRAM

Replay Log with Im TPC-C Transactions
PM 2x Latency Relative to DRAM

B Write-Ahead M Write-Behind

Recovery Time (sec)

Hard Disk Drive Solid State Drive Persistent Memory
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Write-Behind Logging — Runtime

+ TPC-C Transactions (Eight Warehouses)
« PM 2x Latency Relative to DRAM

TPC-C Transactions (Eight W arehouses)
PM 2x Latency Relative to DRAM

B Write-Ahead B Write-Behind

100,000
B M.2x
< 10,000
g 1,000
-
§ 100
)
g 10
g
Hard Disk Drive Solid State Drive Persistent Memory
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PM Summary

+ Optimization of Storage Engine Architectures

> Leverage byte-addressability to avoid unnecessary data duplication.

+ Optimization of Logging and Recovery Protocol

> PM-optimized recovery protocols avoid the overhead of processing a log.
> Non-volatile data structures ensure consistency.

Georgia
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Parting Thoughts

+ The design of a in-memory DBMS is significantly different than a disk-oriented
system.

« The world has finally become comfortable with in-memory data storage and
processing.

+ Byte-addressable PM is going to be a game changer.

+ We are likely to see many new computational components that DBMSs can use in
the next decade.

» The core ideas / algorithms will still be the same.
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Next Class

+ Concurrency Control
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