Georgia &
Tech

Lecture 13: Two Phase Locking

CREATING THE NEXT*

1/72

Today's Agenda

Recap

Lock Types

Two-Phase Locking

Deadlock Detection + Prevention
Hierarchical Locking

Locking in Practice

Conclusion

Georgia
Tech 2/72

Lock Types Two-Phase Locking Deadlock Detection + Prevention Hierarchical Locking Locking in Practice Conclusion
©000000 000000 00000000000000000 0000000000000 00000000000000000000 0000 000

O@00000

Formal Properties of Schedules

« Conflict Serializable

> Verify using either the "swapping” method or dependency graphs.
> Any DBMS that says that they support “serializable” isolation does this.

« View Serializable

> No efficient way to verify.
» No DBMS supports this.

Georgia
Tech 4/72

[e]e] lele]ele)

Example: Entire Schedule

Schedule
T —————— ~\
] T T, '
| | BEGIN 1
1| RCA) d
: BEGIN 1
: R(A) H

1
Tiwea) I
1| ope 1
H @ W(A) 1
i “’/'COMMIT :
IO 1
1 | coMMIT !
H 1
1 1
\ U
L ——— 4

Georgia
Tech 5/72

[e]e]e] le]ele)

Observation

+ We need a way to guarantee that all execution schedules are correct (i.e.,
serializable) without knowing the entire schedule ahead of time.

+ Solution: Use locks to protect database objects.

Georgia
Tech 6/72

O0000e00

Executing with Locks

Schedule fi Lock Manager
P - = - — - - - -~
\ 4 N\
i T T H
| | BEGIN I .
} | Lok g - 2 [Granted (7,]
IR BEGIN H
- Lock(n) — S Err—
1| W(A) :
: R(A) 1
1 | UNLOCK (A) !
]
]
H R(A) 1
1 W(A) H
: COMMIT UNLOCK(A) | 1
H COMMIT 1
! i
| /' |\ J

Georgia
Tech i

0000080

Executing with Locks

Schedule @i Lock Manager

P ~

\ 4)
i T T H
: BEGIN 1 .
1 | LOCK(A) G T = |Granted (T,-A)
bR BEGIN H
| Lock(y —k rr—
1| W(A) n 1
o | i !
: UNLOCK(A) = L P [Released (T,-A)

1
1
: ROV]
1 W(A) H
: COMMIT UNLOCK(A) Lu » [Released (T A)
I COMMIT I e Z
' i
1
N o /' 1\ J

Georgia
Tech 8/72

O00000e

Today’s Agenda

+ Lock Types

« Two-Phase Locking

+ Deadlock Detection + Prevention
« Hierarchical Locking

+ Locking in Practice

Georgia
Tech 9/72

Recap Two-Phase Locking Deadlock Detection + Prevention Hierarchical Locking Locking in Practice Conclusion
0000000 00000 00000000000000000 0000000000000 00000000000000000000 0000 000

Lock Types

O®0000

Locks vs. Latches

Georgia
Tech

Locks Latches
Separate... User transactions Threads
Protect... Database Contents In-Memory Data Structures
During... Entire Transactions Critical Sections
Modes... Shared, Exclusive, Update, Intention Read, Write (a.k.a., Shared, Exclusive)
Deadlock Detection & Resolution Avoidance
...by... Waits-for, Timeout, Aborts Coding Discipline
Keptin... Lock Manager Protected Data Structure
Reference

11/72

https://dl.acm.org/doi/10.1145/1806907.1806908

[e]e] lelele]

Basic Lock Types

« S-LOCK: Shared locks for reads.
« X-LOCK: Exclusive locks for writes.

Georgia
Tech 12/72

[e]o]e] lele]

Executing with Locks

« Transactions request locks (or upgrades).
+ Lock manager grants or blocks requests.
+ Transactions release locks.

+ Lock manager updates its internal lock-table.

> It keeps track of what transactions hold what locks and what transactions are
waiting to acquire any locks.

Georgia
Tech 13/72

O000@0

Executing with Locks: Not Sufficient

Schedule @l Lock Manager
T ~,
\ (N\
: T T, :
: BEGIN I .
1 | X-LOCK(A) > [Granted (T,oA) |
FIR(A) H
Hwe I
1 [UNLOCK(A) T » |[Released (T,—A)
| BEGIN I
1 X-LOCK(A) ' :lGranted (T,—A) |
! W(A) H
1 UNLOCK(A) ; » [Released (T,—A)
1| S-LOCK(A) >
: R(A) : Granted (T,-A)
I | UNLOCK(A) : P |[Released (T,-A)
I | commIT COMMIT H
‘s ______________ /' _ J

Georgia
Tech 14/72

O0000e

Executing with Locks: Not Sufficient

Schedule @i Lock Manager
T 5 e D
BEGIN
X-LOCK(Y)
R(A)
W(A)
UNLOCK(A) eleased (T,~A)
BEGIN

‘o X-LOCK(A) ranted (T,-A)
& i
oWy

UNLOCK (A)
S-LOC
R(A)

UNLOCK (A)
COMMIT COMMIT

______________ ’, . J

eleased (T,-A)
ranted (T,-~A)

Released (T,-A)

e —————————————
- -

4

Georgia
Tech 15/72

Recap Lock Types Deadlock Detection + Prevention Hierarchical Locking Locking in Practice Conclusion
0000000 000000 ©0000000000000000 0000000000000 00000000000000000000 0000 000

Two-Phase Locking

O®@000000000000000

Concurrency Control Protocol

« Two-phase locking (2PL) is a concurrency control protocol that determines
whether a txn can access an object in the database on the fly.

+ The protocol does not need to know all the queries that a txn will execute ahead
of time.

Georgia
Tech 17/72

O0@00000000000000

Two-Phase Locking

+ Phase 1: Growing

> Each txn requests the locks that it needs from the DBMS’s lock manager.
» The lock manager grants/denies lock requests.

- Phase 2: Shrinking

> The txn is allowed to only release locks that it previously acquired. It cannot
acquire new locks.

Georgia
Tech 18/72

O00®0000000000000

Two-Phase Locking

« The txn is not allowed to acquire/upgrade locks after the growing phase finishes.

Transaction Lifetime

of Locks

Growing Phase Shrinking Phase

Georgia
Tech 19/72

O000@000000000000

Two-Phase Locking

+ The txn is not allowed to acquire/upgrade locks after the growing phase finishes.

Transaction Lifetime [ZPL Violation!]

Growing Phase Shrinking Phase

of Locks

Georgia
Tech 20/72

0000080000000 0000

Executing with 2PL
Schedule @l Lock Manager
T e e e e e e -
: T T, ‘l (B
: BEGIN : .
I | X-LOCK(A) |Granted (T,~A)
I R(A) I
W I
1 BEGIN H
| FoLooken N Erem—
1| RA n 1
I | UNLOCK (A) : >
1| commrt v i
: W(A) ¢ : Granted (T,-A)
UNLOCK(A) Lg N
: COMMIT : » |Released (T,-A)
! 1
I\~ ______________ /' _ J

Georgia
Tech 21/72

O00000®0000000000

Two-Phase Locking

+ 2PL on its own is sufficient to guarantee conflict serializability.

> It generates schedules whose precedence graph is acyclic.

« But it is subject to cascading aborts.

Georgia
Tech 22/72

0000000800000 0000

2PL - Cascading Aborts

Schedule

BEGIN BEGIN
X-LOCK (A)
X-LOCK (B)
R(A)

e e ———— — ———

R(A)

This is a permissible schedule in
2PL, but the DBMS has to also
abort T, when T, aborts.

— Any information about T, cannot
be "leaked" to the outside world.

WA)

1 This is all wasted work!]

]

1

1

1

1

1

1

1

1| weA)
1| unLo
D X-LOCK (A)
1

1

1

1

1

1

1

R * i

1

(:W(B) > ¢®§ :
!

Georgia
Tech

23/72

O0000000®00000000

2PL: Observations

« There are potential schedules that are serializable but would not be allowed by
2PL.

> Locking limits concurrency.
+ May still have "dirty reads”.

> Solution: Strong Strict 2PL (aka Rigorous 2PL)
+ May lead to deadlocks.

> Solution: Detection or Prevention

Georgia
Tech 24/72

000000000 e0000000

Strong Strict Two-Phase Locking

+ The txn is not allowed to acquire/upgrade locks after the growing phase finishes.

« Allows only conflict serializable schedules, but it is often stronger than needed

for some apps.
Release all locks at
end of txn.

of Locks

Growing Phase Shrinking Phase

Georgia
Tech 25/72

000000000000 0000

Strong Strict Two-Phase Locking

+ A schedule is strict if a value written by a txn is not read or overwritten by other
txns until that txn finishes.

« Advantages:

> Does not incur cascading aborts.
> Aborted txns can be undone by just restoring original values of modified tuples.

Georgia
Tech 26/72

00000000000 e00000

Examples

« T1-Move $100 from A’s account to B’s account.

+ T2 — Compute the total amount in all accounts and return it to the application.

T, T,
BEGIN BEGIN
A=A-100 (ECHOA+B
B=B+100 COMMIT
COMMIT

Georgia
Tech 27/72

000000000000 0000

Non-2PL Example

Schedule Initial Database State
pmmmEmEmEEEmm—————— ~\ o e e e e 1
I
L T, I A=1000, B=1000 |
1 [BEGIN BEGIN i e -
1 | X-LOCK (A) i
I R(A) 1
: S-LOCK(A) | |

A=A-100 .
| Wea : i oe—__T2Output
1| uNLock () v I I 1
H R(A) 1 1 A+B=1900 !
| UNLOCK(A) | 1 d
i s-Lock) |1 TTETETETEEEEEETT
1 | X-Lock(B) 1
oo R(B) 1
1| v UNLOCK(B) |1
1| RB) ECHO A+B I
I | B=B+100 COMMIT I
1| W) !
1 | UNLOCK (B) !
1 | COMMIT]
\ P
N ————————— - -

Georgia
Tech 28/72

0000000000000 e000

2PL Example

Schedule Initial Database State

p T R L L — L -
\ 1

i
L T, I A=1000, B=1000 !
1 [BEGIN BEGIN 1 ”
1 | X-LOCK(A) i
: R(A) S-LOCK(A) :
| A=A-100 . I T, Output
I wea) : I mmmmnd E Bhely o S
: X-LOCK(B) v 1 1
I | UNLOCKCA) | ReA) I I A+B=2000 !
| SLOK® | 1 lemmmmmomcmmmeem H
1 rR® : E I
1 | B=B+100 . 1
1| W) v 1
1 | UNLOCK(B) | R(B) 1
1 | commIT UNLOCK(A) | 1
1 UNLOCK(B) | I
1 ECHO A+B I
1 COMMIT !
\
S P4

Georgia
Tech 29/72

0000000000000 0e00

Strong Strict 2PL Example

Schedule Initial Database State
p T ———— o —————
\

i
L T, 1 I A=1000, B=1000 !
1 [BEGIN BEGIN N VS ”
I | X-LOCK(A) i
I R(A S-LOCK(A) | |
: Q?ﬁ;mo 5 1
1| x-Lock(8) . g T T Z_O_Litfﬂt_____'

R(B H 1
1| B=B+100 . I 1 A+B=2000 !
1| W) H 1 J
1 | UNLOCK(A) v P TEETETEEEEEEm— T
I | UNLOCK(B) | R(A) 1
1 | comMIT S-LOCK(B) :

R(B

: ECHO A+B I
1 UNLOCK(A) | I
1 UNLOCK(B) | I
I COMMIT :
!]
\

Georgia
Tech 30/72

0000000000000 00e0

Universe of Schedules

(AllSchedules N)
View Serializable
(" Conflict Serializable
No Cascading
Aborts S eri al
_ J
q J
_ J

Georgia
Tech 31/72

0000000000000 000e

2PL: Observations

« There are potential schedules that are serializable but would not be allowed by
2PL.

> Locking limits concurrency.
+ May still have "dirty reads”.

> Solution: Strong Strict 2PL (Rigorous)
+ May lead to deadlocks.

> Solution: Detection or Prevention

Georgia
Tech 32/72

Recap Lock Types Two-Phase Locking Hierarchical Locking Locking in Practice Conclusion
0000000 000000 00000000000000000 000000000000 00000000000000000000 [e]e]ele] [e]ele]

O@00000000000

Deadlocks
Schedule @i Lock Manager
pommmmmm—m—————— 1 4)\

T, T, 1

BEGIN BEGIN i

X-LOCK(A) » |Granted (T,—A)

S-LOCK(B) > =
QQQ R(B) Granted (T,-B)
DA e > o

» |penied!

rnnn
Ed
@rrnnshs
>

Georgia
Tech 34/72

O0@0000000000

2PL Deadlocks

+ A deadlock is a cycle of transactions waiting for locks to be released by each
other.
» Two ways of dealing with deadlocks:

» Approach 1: Deadlock Detection
» Approach 2: Deadlock Prevention

Georgia
Tech 35/72

0O00@000000000

Deadlock Detection

+ The DBMS creates a waits-for graph to keep track of what locks each txn is
waiting to acquire:
> Nodes are transactions
» Edge from T; to T; if T; is waiting for T; to release a lock.
« The system periodically checks for cycles in waits-for graph and then decides
how to break it.

Georgia
Tech 36/72

0O000@00000000

Deadlock Detection
Schedule Waits-For Graph
jrmmmm e e mm e -~ pm e ————— .
— T2 LS B |
i [BEGIN BEGIN BEGIN 1 1 i
I'| s-LOCK(A) ! H '
1 1 1 1
1 1 1]
H S-LOCK(C) | |] G H
1| S-LOCK(B 1 | 1
1 1 (Y ——— 7’
H X—LOCK(C{ i
1 X-LOCKYA) | !
1]
1 [}
1]
1]
| :
e ————)

Georgia
Tech 37/72

0O0000e0000000

Deadlock Handling

« When the DBMS detects a deadlock, it will select a "victim” txn to rollback to
break the cycle.

+ The victim txn will either restart or abort(more common) depending on how it
was invoked.

« There is a trade-off between the frequency of checking for deadlocks and how
long txns have to wait before deadlocks are broken.

Georgia
Tech 38/72

0O00000@000000

Deadlock Handling: Victim Selection

« Selecting the proper victim depends on a lot of different variables....

> By age (lowest timestamp)

» By progress (least/most queries executed)

> By the of items already locked

> By the of txns that we have to rollback with it

« We also should consider the of times a txn has been restarted in the past to
prevent starvation.

Georgia
Tech 39/72

000000000000

Deadlock Handling: Rollback Length

« After selecting a victim txn to abort, the DBMS can also decide on how far to
rollback the txn’s changes.

« Approach 1: Completely
« Approach 2: Minimally (i.e., release a subset of locks)

Georgia
Tech 40/72

0O0000000e0000

Deadlock Prevention

« When a txn tries to acquire a lock that is held by another txn, the DBMS kills one
of them to prevent a deadlock.

« This approach does not require a waits-for graph or detection algorithm.

Georgia
Tech 41/72

0000000008000

Deadlock Prevention

« Assign priorities based on timestamps:
> Older Timestamp = Higher Priority (e.g., T1 > T2)
+ Wait-Die ("Old Waits for Young”)
> If requesting txn has higher priority than holding txn, then requesting txn waits for
holding txn.
> Otherwise requesting txn aborts.
+ Wound-Wait ("Young Waits for Old”)
> If requesting txn has higher priority than holding txn, then holding txn aborts and

releases lock.
> Otherwise requesting txn waits.

Georgia
Tech 42/72

0000000000800

Deadlock Prevention

T Emm—————— A Y

1 T, T, :

: BEGIN : Wait-Die Wound-Wait

! BEGIN |} [TTTmmm== T S

: X-LOCK(A) : » I T,waits 1 1 T,aborts 1

: X-LOCK (A) : _________ L !

I f I

N\ o o o o J

T mm——————— A Y

1 T, T, :

E BEGIN : Wait-Die Wound-Wait
X-LOCK (A) Fommm T S

I I

1 : BEGIN |» 1 T,aborts 1 1 T,waits I

I \“X—LOCK(A) I | S L !

1 : 1

N\ o o o o J

Georgia
Tech 43/72

0000000000080

Deadlock Prevention

« Why do these schemes guarantee no deadlocks?

+ Only one "type” of direction allowed when waiting for a lock.

- When a txn restarts, what is its (new) priority?

« Its original timestamp. Why?

Georgia
Tech 44/72

000000000000 e

Observation

+ All of these examples have a one-to-one mapping from database objects to locks.

- If a txn wants to update one billion tuples, then it has to acquire one billion locks.

Georgia
Tech 45/72

Recap Lock Types Two-Phase Locking Deadlock Detection + Prevention Locking in Practice Conclusion
0000000 000000 00000000000000000 0000000000000 ©0000000000000000000 [e]e]ele] [e]ele]

Hierarchical Locking

O@000000000000000000

Lock Granularities

« When we say that a txn acquires a “lock”, what does that actually mean?
> On an Attribute? Tuple? Page? Table?

« Ideally, each txn should obtain fewest number of locks that is needed...

Georgia
Tech 47/72

O0@00000000000000000

Database Lock Hierarchy

T, Database

a Table 1 Table 2

o~

a Tuple n

Georgia
Tech 48/72

0O00@0000000000000000

Example

+ T1 - Get the balance of A’s account.

+ T2 - Increase B’s bank account balance by 1%.
» What locks should these txns obtain?

« Multiple:

» Exclusive + Shared for leafs of lock tree.
» Special Intention locks for higher levels.

Georgia
Tech 49/72

O000@000000000000000

Intention Locks

+ An intention lock allows a higher level node to be locked in shared or
exclusive mode without having to check all descendent nodes.

« If anode is in an intention mode, then explicit locking is being done at a lower
level in the tree.

Georgia
Tech

50/72

0000000000000 000000

Intention Locks

- Intention-Shared (IS)

> Indicates explicit locking at a lower level with shared locks.

- Intention-Exclusive (IX)

> Indicates locking at lower level with exclusive or shared locks.

Georgia
Tech 51/72

0O00000®0000000000000

Intention Locks

» Shared+Intention-Exclusive (SIX)

> The subtree rooted by that node is locked explicitly in shared mode and explicit
locking is being done at a lower level with exclusive-mode locks.

Georgia
Tech 52/72

[o]
[o]
[o]
[o]
[o]
(o]
[o]
o]
[e]
[o]
[o]
[¢]
[3
[o]
[o]
[o]
[o]
[o]
(o]
[e]

Compatibility Matrix

o iy,

X|x x x x X
x

ﬂdxxxx
2

T 0> x> x x
(O

= x5« x x
-

2’y s> S x

@ x 0 x X

(2]

SPIOH "1

N o e

53/72

Georgia
Tech

0000000 0@00000000000

Hierarchical Locking Protocol

+ Each txn obtains appropriate lock at highest level of the database hierarchy.
 To get S or IS lock on a node, the txn must hold at least IS on parent node.

- To get X, IX, or SIX on a node, must hold at least IX on parent node.

Georgia
Tech 54/72

000000000 e0000000000

Example - Two-Level Hierarchy

Read A’s record in R.

TaTupIe1] [Tuple 2 I [Tuple n I
Read

Georgia
Tech 55/72

0000000000000 000000

Example - Two-Level Hierarchy

Update B's record in R.

Georgia
Tech 56/72

00000000000 e00000000

Example — Three Transactions

« Assume three txns execute at same time:
> T1 - Scan R and update a few tuples.
> T2 - Read a single tuple in R.
> T3 - Scan all tuples in R.

Georgia
Tech 57/72

000000000000 e0000000

Example — Three Transactions

Scan R and update a .
few tuples.

Georgia
Tech 58/72

0000000000000 e000000

Example — Three Transactions

Scan R and update a
few tuples.

[Tuple1 | [Tuple2] -~

Georgia
Tech 59/72

0000000000000 0e00000

Example — Three Transactions

Georgia
Tech 60/72

000000000000 000e0000

Example — Three Transactions

Georgia
Tech 61/72

000000000000 0000e000

Example — Three Transactions

Scan all tuples in R.

Georgia
Tech 62/72

000000000000 00000e00

Example — Three Transactions

Scan all tuples in R.

Georgia
Tech 63/72

000000000000 000000e0

Multiple Lock Granularities

« Hierarchical locks are useful in practice as each txn only needs a few locks.
« Intention locks help improve concurrency:

> Intention-Shared (IS): Intent to get S lock(s) at finer granularity.
> Intention-Exclusive (IX): Intent to get X lock(s) at finer granularity.
> Shared+Intention-Exclusive (SIX): Like S and IX at the same time.

Georgia
Tech 64/72

000000000000 0000000e

Lock Escalation

 Lock escalation dynamically asks for coarser-grained locks when too many low
level locks acquired.

« This reduces the number of requests that the lock manager has to process.

Georgia
Tech 65/72

Recap Lock Types Two-Phase Locking Deadlock Detection + Prevention Hierarchical Locking Conclusion
0000000 000000 00000000000000000 0000000000000 00000000000000000000 [Jolelo} 000

Locking in Practice

Locking in Practice

* You typically don’t set locks manually in txns.

+ Sometimes you will need to provide the DBMS with hints to help it to improve
concurrency.

- Explicit locks are also useful when doing major changes to the database.

Georgia
Tech

67/72

Lock Table

- Explicitly locks a table.
+ Not part of the SQL standard.

» Postgres/DB2/Oracle Modes: SHARE, EXCLUSIVE
> MySQL Modes: READ, WRITE

@) PostgreSQL
ORACLE [LOCK TABLE <table> IN <mode> MODE; |

#SQLServer [SELECT 1 FROM <table> WITH (TABLOCK, <mode>); |

N MySQL. [LoCK TABLE <table> <mode>; |

Georgia
Tech 68/72

Select... For Update

+ Perform a select and then sets an exclusive lock on the matching tuples.

« Can also set shared locks:
> Postgres: FOR SHARE
> MySQL: LOCKIN SHARE MODE

SELECT * FROM <table>
WHERE <qualification> FOR UPDATE;

Georgia
Tech 69/72

Recap Lock Types Two-Phase Locking Deadlock Detection + Prevention Hierarchical Locking Locking in Practice
0000000 000000 00000000000000000 0000000000000 00000000000000000000 [e]e]ele] [Jele}

Parting Thoughts

+ 2PL is used in almost all DBMSs.
- Automatically generates correct interleaving:

» Locks + protocol (2PL, SS2PL ...)
> Deadlock detection + handling
> Deadlock prevention

Georgia
Tech 71/72

Next Class

 Timestamp Ordering Concurrency Control

Georgia
Tech 72/72

	Two Phase Locking
	Recap
	Lock Types
	Two-Phase Locking
	Deadlock Detection + Prevention
	Hierarchical Locking
	Locking in Practice
	Conclusion

