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Administrivia

+ Mid-term Exam on Mar 07 (topics covered until Feb 23)
« Project Proposal on Mar 02
« Project (extra credit: 10%)
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Deliverables

« Proposal: 1-page report
 Checkpoint: 2-page report

- Final Presentation: 2-page report + 5 min presentation (subset of teams)

Georgia
Tech 3/51



Project - Proposal

« Each proposal must discuss:
> What is the problem being addressed by the project?
> Why is this problem important?
> How will the team solve this problem?
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Project - Presentations

- Five minute presentation on the final status of your project.

+ You'll want to include any performance measurements or benchmarking
numbers for your implementation.

« Demos are always hot too.

« Prizes for top teams picked by the class.
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Today's Agenda

Recap

Basic Timestamp Ordering

Partition-based Timestamp Ordering

Conclusion
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Basic Timestamp Ordering Partition-based Timestamp Ordering Conclusion
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Strong Strict Two-Phase Locking

+ The txn is not allowed to acquire/upgrade locks after the growing phase finishes.

« Allows only conflict serializable schedules, but it is often stronger than needed

Release all locks at
end of txn.

for some apps.

# of Locks

Growing Phase Shrinking Phase
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Deadlocks
Schedule @i Lock Manager
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2PL Deadlocks

+ A deadlock is a cycle of transactions waiting for locks to be released by each
other.
» Two ways of dealing with deadlocks:

» Approach 1: Deadlock Detection
» Approach 2: Deadlock Prevention
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2PL: Summary

« 2PL is used in almost all DBMSs.
- Automatically generates correct interleaving:

» Locks + protocol (2PL, SS2PL ...)
> Deadlock detection + handling
> Deadlock prevention
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Concurrency Control Approaches

« Two-Phase Locking (2PL)

> Pessimistic approach

> Assumption that collisions are commonplace.

> Determine serializability order of conflicting operations at runtime while txns
execute.

« Timestamp Ordering (T/O)
» Optimistic approach
> Assumption that collisions between transactions will rarely occur.
> Determine serializability order of txns before they execute.
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Today’s Agenda

+ Basic Timestamp Ordering

« Partition-based Timestamp Ordering
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Recap Partition-based Timestamp Ordering Conclusion
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Basic Timestamp Ordering
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T/O Concurrency Control

« Use timestamps to determine the serializability order of txns.

« If TS(T;) < TS(T;), then the DBMS must ensure that the execution schedule is
equivalent to a serial schedule where T; appears before T;.
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Timestamp Allocation

« Each txn Tj is assigned a unique fixed timestamp that is monotonically increasing.

> Let TS(T;) be the timestamp allocated to txn T;.
> Different schemes assign timestamps at different times during the txn.
+ Multiple implementation strategies:

> Physical system clock (e.g., timezones)
> Logical counter (e.g., overflow)
> Hybrid
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Basic T/O

« Txns read and write objects without locks.

- Every object X is tagged with timestamp of the last txn that successfully did
read/write:

» W — TS(X) — Write timestamp on X
» R — TS(X) — Read timestamp on X

« Check timestamps for every operation:

» If txn tries to access an object from the future, it aborts and restarts.
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Basic T/O - Reads

 If TS(T;) < W — TS(X), this violates timestamp order of T; with regard to the

writer of X.
> Abort T; and restart it with a newer TS (so that is later than the writer of X).

« Else:
> Allow T; to read X.
» Update R — TS(X) to max(R — TS(X), TS(T3))
> Have to make a local copy of X to ensure repeatable reads for T;.
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Basic T/O - Writes

« If TS(T;) < R — TS(X) or TS(T;) < W — TS(X)
» Abort and restart T;.
» Else:

» Allow T; to write X and update W — TS(X)
> Also have to make a local copy of X to ensure repeatable reads for T;.
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Basic T/O - Example 1

COMMIT COMMIT

Schedule Database
it Fmmmmmmmmmmmmmme- -
i 1 2 : [Wobject R-Ts  W-TS !
: BEGIN : : A 0 0 1
1| R(B) I 1
: BEGIN H I B 0 0 :
1 R(B) : 1 1
I W(B) : VRS . ’
HES I
i R(A) H
H W(A) I
1 i
! 1
! 1
! 1
! 1
! 1
! I
\ P4
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Basic T/O - Example 1

(7s(r)-1 JouIe(1s(r,)-2 ) ____Database
T T

L 2 Object R-TS  W-TS
BEGIN

| i
1 1
R(B) |l ; ; |
BEGIN 1 B £ £ H
R(B) H I
W(B) N e e e ’
R(A)
R(A)
W(A)

COMMIT COMMIT

A
o
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Basic T/O - Example 1

(7s)-1 J9u1s(r,)-2 ) ____Database
T T

1
: 1 2 : :.. :
"} I s ]
: BEGIN 1 1 B o '
I R(B) H | 1
1 W(B) 1 A L L T 4
HEO) I
1 R(A) |
H W(A) i
1| COMMIT COMMIT H
H I
1 ]
1 1
1 1
' ;
‘\ ______________ 7’
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Basic T/O - Example 1

(7sa)=1 J9u1s(r,)-2 ) ____Database
T1 T

2 Object R-TS W-TS

i 1
' i
BEGIN !
1A ) 0 I
R(B i
© BEGIN | B 2 ¢ H
mpR(B) H i
W(B) AL e e e e !
R(A)
R(A)
W(A)

COMMIT COMMIT

A -
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Basic T/O - Example 1

(7sry-1 Je(Tsr)-2] ____| Database
T, T

2 1 ! :

1 [l Object R-TS W-TS I

BEGIN : : A 1 ) 1

R(B) 1 I

BEGIN i P E 2 2 !

R(B) : 1 1

W(B) i AECEE L L L e e et !
R () !
1 R(A) H
i W(A) ]
I | COMMIT COMMIT H

]

I i
I I
I I
I 1
N !
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Basic T/O - Example 1

(7sa)-1 pue(1s(r,)-2 ) ____Database
T1 T2

Object R-TS W-TS

BEGIN

1
| |
R(B) I : 2 i
I
BEGIN I B LN I
R(B) 1 )I
W(B) — -
R(A) No violations so both txns
R(A) are safe to commit.
(A

COMMIT COMMIT

- -
- -
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Basic T/O - Example 2

Schedule Database
;T A oo TT T =i
[ ! 2 H [Wobject R-TS  W-TS |
| | BEGIN I R - 2 i
1| RCA) I I
! BEGIN i ' 8 0 0 H
1 (A i I 1
: COMMIT i A el il 4
1w :
1| R(A) i
| | coMMIT I
I i
! 1
! 1
! I
! 1
! I
! )

‘5 ______________ 4
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Basic T/O - Example 2

Schedule Database

I \ FEmEEEEEmEmEmmmm——— -.‘
! T2 | i Object R-TS  W-TS !
I H R 1 2, :
1 I
: BEGIN i 12 4 o !
! WeA) H L Violation:

COMMIT 11 ===\ TS(T,) <W-TS(A)
H I
! i
i T, cannot overwrite update
H by T,, so the DBMS has to
I abort it!
I ] .
L — ¥
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Thomas Write Rule

« If TS(Ti) < R — TS(X):
» Abort and restart T;.
« If TS(T;) < W — TS(X):
> Thomas Write Rule: Ignore the write, make a local copy, and allow the txn to

continue.
> This violates timestamp order of T;.

- Else:
> Allow T; to write X and update W — TS(X)
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Basic T/O - Example 2

Schedule Database

J

Ignore the write and allow
T, to comm

T, i |
I : Object R-TS W-TS :
H 1A 1 2 :
I
BEGIN : : B 0 0| H
WA | Y We do not update
COMMIT : ----- W—TS(A)
I
I
it I

Georgia
Tech 29/51



0000000000000 000eO0000

Basic T/O

+ Generates a schedule that is conflict serializable if you do not use the Thomas
Write Rule.

> No deadlocks because no txn ever waits.
> Possibility of starvation for long txns if short txns keep causing conflicts.

« Permits schedules that are not recoverable.
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Recoverable Schedules

« A schedule is recoverable if txns commit only after all txns whose changes they
read, commit.

+ Otherwise, the DBMS cannot guarantee that txns read data that will be restored
after recovering from a crash.

Georgia
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Recoverable Schedules

Schedule

o ——————— ~

: T T, 1

1| BEGIN i

1| W(A) H

Ho BEGIN L 1r -

I R(A) = T, is allowed to read the

1 W(B) Tl writes of T,.

H commIT | 1 ;

! This is not recoverable

E< ABORT | |because we cannot restart T,
1

: |

! T, aborts after T, has

I committed.

I‘\ - _I _______ I/'
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Basic T/O - Performance Issues

« High overhead from copying data to txn’s local workspace and from updating
timestamps.

« Long running txns can get starved.
> The likelihood that a txn will read something from a newer txn increases.

Georgia
Tech 33/51



0000000000000 0000000e

Observation

+ When a txn commits, the T/O protocol checks to see whether there is a conflict
with concurrent txns.

> This requires latches.

« If you have a lot of concurrent txns, then this is slow even if the conflict rate is
low.
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Partition-based T/O

« Split the database up in disjoint subsets called horizontal partitions (aka
shards).

« Use timestamps to order txns for serial execution at each partition.

> Only check for conflicts between txns that are running in the same partition.
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Database Partitioning

CREATE TABLE customer (

c_id INT PRIMARY KEY,

¢_email VARCHAR UNIQUE,

);
CREATE TABLE orders (

o_id INT PRIMARY KEY,

o_c_id INT REFERENCES customer (c_id) --- Foreign key
);
CREATE TABLE oitems (

oi_id INT PRIMARY KEY,

oi_o_id INT REFERENCES orders (o_id),

o_c_id INT REFERENCES orders (o_c_id) --- Foreign key
);
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Horizontal Partitioning

Georgia
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Horizontal Partitioning
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Partition-based T/O

+ Txns are assigned timestamps based on when they arrive at the DBMS.
« Partitions are protected by a single lock:

> Each txn is queued at the partitions it needs.

> The txn acquires a partition’s lock if it has the lowest timestamp in that partition’s
queue.

» The txn starts when it has all of the locks for all the partitions that it will read/write.

- Examples: VoltDB, FaunaDB
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Partition-based T/O - Reads

+ Txns can read anything that they want at the partitions that they have locked.

« If a txn tries to access a partition that it does not have the lock, it is
aborted + restarted.
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Partition-based T/O - Writes

+ All updates occur in place (i.e., no private workspace).
> Maintain a separate in-memory buffer to undo changes if the txn aborts.

- If a txn tries to write to a partition that it does not have the lock, it is aborted +
restarted.
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Partition-based T/O

Partitions
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Partition-based T/O
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Partition-based T/O
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Partition-based T/O
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Partition-based T/O

Partitions
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Partition-based T/O - Performance Issues

+ Partition-based T/O protocol is fast if:

> The DBMS knows what partitions the txn needs before it starts.
> Most (if not all) txns only need to access a single partition.

+ Multi-partition txns causes partitions to be idle while txn executes.

> Stored procedures
» Reconnaissance mode
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Parting Thoughts

 Every concurrency control can be broken down into the basic concepts that I
have described in the last two lectures.

» Two-Phase Locking (2PL): Assumption that collisions are commonplace
» Timestamp Ordering (T/O): Assumption that collisions are rare.
+ I 'am not showing benchmark results because I don’t want you to get the wrong
idea.
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Next Class

+ Optimistic Concurrency Control

« Isolation Levels
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