Georgia &
Tech

Lecture 14: Timestamp Ordering

CREATING THE NEXT*

1/51

Administrivia

+ Mid-term Exam on Mar 07 (topics covered until Feb 23)
« Project Proposal on Mar 02
« Project (extra credit: 10%)

Georgia
Tech 2/51

Deliverables

« Proposal: 1-page report
 Checkpoint: 2-page report

- Final Presentation: 2-page report + 5 min presentation (subset of teams)

Georgia
Tech 3/51

Project - Proposal

« Each proposal must discuss:
> What is the problem being addressed by the project?
> Why is this problem important?
> How will the team solve this problem?

Georgia
Tech 4/51

Project - Presentations

- Five minute presentation on the final status of your project.

+ You'll want to include any performance measurements or benchmarking
numbers for your implementation.

« Demos are always hot too.

« Prizes for top teams picked by the class.

Georgia
Tech 5/51

Today's Agenda

Recap

Basic Timestamp Ordering

Partition-based Timestamp Ordering

Conclusion

Georgia
Tech 6/51

Basic Timestamp Ordering Partition-based Timestamp Ordering Conclusion
[Jelelelelele] 000000000000000000000 00000000000000 000

O@00000

Strong Strict Two-Phase Locking

+ The txn is not allowed to acquire/upgrade locks after the growing phase finishes.

« Allows only conflict serializable schedules, but it is often stronger than needed

Release all locks at
end of txn.

for some apps.

of Locks

Growing Phase Shrinking Phase

Georgia
Tech 8/51

[e]e] lele]ele)

Deadlocks
Schedule @i Lock Manager
pommmmmm—m—————— 1 4)\

T, T, 1

BEGIN BEGIN i

X-LOCK (A) P |Granted (T,—A)

S-LOCK(B) > =
QQQ R(B) Granted (T,-B)
DA e > o

» |penied!

rnnn
Ed
@rrnnshs
>

Georgia
Tech 9/51

[e]e]e] le]ele)

2PL Deadlocks

+ A deadlock is a cycle of transactions waiting for locks to be released by each
other.
» Two ways of dealing with deadlocks:

» Approach 1: Deadlock Detection
» Approach 2: Deadlock Prevention

Georgia
Tech 10/51

O0000e00

2PL: Summary

« 2PL is used in almost all DBMSs.
- Automatically generates correct interleaving:

» Locks + protocol (2PL, SS2PL ...)
> Deadlock detection + handling
> Deadlock prevention

Georgia
Tech 11/51

0000080

Concurrency Control Approaches

« Two-Phase Locking (2PL)

> Pessimistic approach

> Assumption that collisions are commonplace.

> Determine serializability order of conflicting operations at runtime while txns
execute.

« Timestamp Ordering (T/O)
» Optimistic approach
> Assumption that collisions between transactions will rarely occur.
> Determine serializability order of txns before they execute.

Georgia
Tech 12/51

O00000e

Today’s Agenda

+ Basic Timestamp Ordering

« Partition-based Timestamp Ordering

Georgia
Tech 13/51

Recap Partition-based Timestamp Ordering Conclusion
0000000 ©00000000000000000000 00000000000000 000

Basic Timestamp Ordering

O®@0000000000000000000

T/O Concurrency Control

« Use timestamps to determine the serializability order of txns.

« If TS(T;) < TS(T;), then the DBMS must ensure that the execution schedule is
equivalent to a serial schedule where T; appears before T;.

Georgia
Tech 15/51

OO0®000000000000000000

Timestamp Allocation

« Each txn Tj is assigned a unique fixed timestamp that is monotonically increasing.

> Let TS(T;) be the timestamp allocated to txn T;.
> Different schemes assign timestamps at different times during the txn.
+ Multiple implementation strategies:

> Physical system clock (e.g., timezones)
> Logical counter (e.g., overflow)
> Hybrid

Georgia
Tech 16/51

0008000000000 00000000

Basic T/O

« Txns read and write objects without locks.

- Every object X is tagged with timestamp of the last txn that successfully did
read/write:

» W — TS(X) — Write timestamp on X
» R — TS(X) — Read timestamp on X

« Check timestamps for every operation:

» If txn tries to access an object from the future, it aborts and restarts.

Georgia
Tech 17/51

O000@0000000000000000

Basic T/O - Reads

 If TS(T;) < W — TS(X), this violates timestamp order of T; with regard to the

writer of X.
> Abort T; and restart it with a newer TS (so that is later than the writer of X).

« Else:
> Allow T; to read X.
» Update R — TS(X) to max(R — TS(X), TS(T3))
> Have to make a local copy of X to ensure repeatable reads for T;.

Georgia
Tech 18/51

0000080000000 00000000

Basic T/O - Writes

« If TS(T;) < R — TS(X) or TS(T;) < W — TS(X)
» Abort and restart T;.
» Else:

» Allow T; to write X and update W — TS(X)
> Also have to make a local copy of X to ensure repeatable reads for T;.

Georgia
Tech 19/51

O00000®00000000000000

Basic T/O - Example 1

COMMIT COMMIT

Schedule Database
it Fmmmmmmmmmmmmmme- -
i 1 2 : [Wobject R-Ts W-TS !
: BEGIN : : A 0 0 1
1| R(B) I 1
: BEGIN H I B 0 0 :
1 R(B) : 1 1
I W(B) : VRS . ’
HES I
i R(A) H
H W(A) I
1 i
! 1
! 1
! 1
! 1
! 1
! I
\ P4

Georgia
Tech 20/ 51

0000000800000 00000000

Basic T/O - Example 1

(7s(r)-1 JouIe(1s(r,)-2) ____Database
T T

L 2 Object R-TS W-TS
BEGIN

| i
1 1
R(B) |l ; ; |
BEGIN 1 B £ £ H
R(B) H I
W(B) N e e e ’
R(A)
R(A)
W(A)

COMMIT COMMIT

A
o

Georgia
Tech 21/51

0O0000000@000000000000

Basic T/O - Example 1

(7s)-1 J9u1s(r,)-2) ____Database
T T

1
: 1 2 : :.. :
"} I s]
: BEGIN 1 1 B o '
I R(B) H | 1
1 W(B) 1 A L L T 4
HEO) I
1 R(A) |
H W(A) i
1| COMMIT COMMIT H
H I
1]
1 1
1 1
' ;
‘\ ______________ 7’

Georgia
Tech 22/51

000000000 @00000000000

Basic T/O - Example 1

(7sa)=1 J9u1s(r,)-2) ____Database
T1 T

2 Object R-TS W-TS

i 1
' i
BEGIN !
1A) 0 I
R(B i
© BEGIN | B 2 ¢ H
mpR(B) H i
W(B) AL e e e e !
R(A)
R(A)
W(A)

COMMIT COMMIT

A -

Georgia
Tech 23/51

0000000000000 0000000

Basic T/O - Example 1

(7sry-1 Je(Tsr)-2] ____| Database
T, T

2 1 ! :

1 [l Object R-TS W-TS I

BEGIN : : A 1) 1

R(B) 1 I

BEGIN i P E 2 2 !

R(B) : 1 1

W(B) i AECEE L L L e e et !
R () !
1 R(A) H
i W(A)]
I | COMMIT COMMIT H

]

I i
I I
I I
I 1
N !

Georgia
Tech 24/ 51

00000000000 e000000000

Basic T/O - Example 1

(7sa)-1 pue(1s(r,)-2) ____Database
T1 T2

Object R-TS W-TS

BEGIN

1
| |
R(B) I : 2 i
I
BEGIN I B LN I
R(B) 1)I
W(B) — -
R(A) No violations so both txns
R(A) are safe to commit.
(A

COMMIT COMMIT

- -
- -

Georgia
Tech 25/51

000000000000 e00000000

Basic T/O - Example 2

Schedule Database
;T A oo TT T =i
[! 2 H [Wobject R-TS W-TS |
| | BEGIN I R - 2 i
1| RCA) I I
! BEGIN i ' 8 0 0 H
1 (A i I 1
: COMMIT i A el il 4
1w :
1| R(A) i
| | coMMIT I
I i
! 1
! 1
! I
! 1
! I
!)

‘5 ______________ 4

Georgia
Tech 26/ 51

0000000000000 e0000000

Basic T/O - Example 2

Schedule Database

I \ FEmEEEEEmEmEmmmm——— -.‘
! T2 | i Object R-TS W-TS !
I H R 1 2, :
1 I
: BEGIN i 12 4 o !
! WeA) H L Violation:

COMMIT 11 ===\ TS(T,) <W-TS(A)
H I
! i
i T, cannot overwrite update
H by T,, so the DBMS has to
I abort it!
I] .
L — ¥

Georgia
Tech 27/ 51

0000000000000 0e000000

Thomas Write Rule

« If TS(Ti) < R — TS(X):
» Abort and restart T;.
« If TS(T;) < W — TS(X):
> Thomas Write Rule: Ignore the write, make a local copy, and allow the txn to

continue.
> This violates timestamp order of T;.

- Else:
> Allow T; to write X and update W — TS(X)

Georgia
Tech 28/51

0000000000000 00e00000

Basic T/O - Example 2

Schedule Database

J

Ignore the write and allow
T, to comm

T, i |
I : Object R-TS W-TS :
H 1A 1 2 :
I
BEGIN : : B 0 0| H
WA | Y We do not update
COMMIT : ----- W—TS(A)
I
I
it I

Georgia
Tech 29/51

0000000000000 000eO0000

Basic T/O

+ Generates a schedule that is conflict serializable if you do not use the Thomas
Write Rule.

> No deadlocks because no txn ever waits.
> Possibility of starvation for long txns if short txns keep causing conflicts.

« Permits schedules that are not recoverable.

Georgia
Tech 30/51

0000000000000 0000e000

Recoverable Schedules

« A schedule is recoverable if txns commit only after all txns whose changes they
read, commit.

+ Otherwise, the DBMS cannot guarantee that txns read data that will be restored
after recovering from a crash.

Georgia
Tech

31/51

0000000000000 00000e00

Recoverable Schedules

Schedule

o ——————— ~

: T T, 1

1| BEGIN i

1| W(A) H

Ho BEGIN L 1r -

I R(A) = T, is allowed to read the

1 W(B) Tl writes of T,.

H commIT | 1 ;

! This is not recoverable

E< ABORT | |because we cannot restart T,
1

: |

! T, aborts after T, has

I committed.

I‘\ - _I _______ I/'

Georgia
Tech 32/51

0000000000000 000000e0

Basic T/O - Performance Issues

« High overhead from copying data to txn’s local workspace and from updating
timestamps.

« Long running txns can get starved.
> The likelihood that a txn will read something from a newer txn increases.

Georgia
Tech 33/51

0000000000000 0000000e

Observation

+ When a txn commits, the T/O protocol checks to see whether there is a conflict
with concurrent txns.

> This requires latches.

« If you have a lot of concurrent txns, then this is slow even if the conflict rate is
low.

Georgia
Tech 34/51

Recap Basic Timestamp Ordering Conclusion
0000000 0000000000000 00000000 ©0000000000000 000

Partition-based Timestamp
Ordering

O®000000000000

Partition-based T/O

« Split the database up in disjoint subsets called horizontal partitions (aka
shards).

« Use timestamps to order txns for serial execution at each partition.

> Only check for conflicts between txns that are running in the same partition.

Georgia
Tech 36/51

O0@00000000000

Database Partitioning

CREATE TABLE customer (

c_id INT PRIMARY KEY,

¢_email VARCHAR UNIQUE,

);
CREATE TABLE orders (

o_id INT PRIMARY KEY,

o_c_id INT REFERENCES customer (c_id) --- Foreign key
);
CREATE TABLE oitems (

oi_id INT PRIMARY KEY,

oi_o_id INT REFERENCES orders (o_id),

o_c_id INT REFERENCES orders (o_c_id) --- Foreign key
);

Georgia
Tech 37/51

0O00@0000000000

Horizontal Partitioning

Georgia
Tech

Partitions

.&MERSJ Customers
y N ' ORDERS ' 1-1000
7 OITEMS
= ~_
ZZaa
Herer " C 3
Server
CUSTOMERS Customers
1001-2000

. ORDERS '
. OITEMS '

38/51

0O000@000000000

Horizontal Partitioning

Partitions

@,

.M-' Customers
y~ N ' ORDERS ' 1-1000
ZZa OITEMS
= ~_
Iz
orver C
Server
CUSTOMERS Customers
1001-2000

. ORDERS '
. OITEMS '

39/51

Georgia
Tech

0O0000@00000000

Partition-based T/O

+ Txns are assigned timestamps based on when they arrive at the DBMS.
« Partitions are protected by a single lock:

> Each txn is queued at the partitions it needs.

> The txn acquires a partition’s lock if it has the lowest timestamp in that partition’s
queue.

» The txn starts when it has all of the locks for all the partitions that it will read/write.

- Examples: VoltDB, FaunaDB

Georgia
Tech 40/ 51

0O00000@0000000

Partition-based T/O - Reads

+ Txns can read anything that they want at the partitions that they have locked.

« If a txn tries to access a partition that it does not have the lock, it is
aborted + restarted.

Georgia
Tech 41/51

0000000 @000000

Partition-based T/O - Writes

+ All updates occur in place (i.e., no private workspace).
> Maintain a separate in-memory buffer to undo changes if the txn aborts.

- If a txn tries to write to a partition that it does not have the lock, it is aborted +
restarted.

Georgia
Tech 42/51

0000000080000 0

Partition-based T/O

Partitions
— Txn Queue
ZZaa
m\ cusromsns’ Customers
7 ORDERS 1-1000
Server #1 m orrEMS
AR
e <D
CUSTOMERS Customers
Server #2 . ORDERS ' 1001-2000

. OITEMS ’

Georgia
Tech 43/ 51

000000000 e0000

Partition-based T/O

7
Server #1 m
AR
Iz
ZZam
Server #2

Georgia
Tech

Txn Queue

Serverl:

100

Server2:

101

Partitions

f Txn #100

CUSTOMERS
ORDERS

Customers
H 1-1000
l OITEMS '
cusromens Customers
1001-2000

. ORDERS '
. OITEMS '

44/ 51

0000000000000

Partition-based T/O

T Partitions
PN xn Queue
iz) fTxn#o00
g Serverl: 100 ETONERS
Server2: 101 .— Customers
ZZ ORDERS 1-1000
Server #1 m 0|TEM5
AR
=)
oz CUSTOMERS Customers
ol s 1001-2000
Server #2 . RDER '

. OITEMS '

Georgia
Tech 45/ 51

00000000000 e00

Partition-based T/O

S%I m

Server #2

Georgia
Tech

Txn Queue
Serverl: 100
Server2: 101

Partitions

@ Txn #100

CUSTOMERS
ORDERS

Customers
. 7l 11000
l OITEMS '
cusromsns Customers

1001-2000

. ORDERS '
. OITEMS '

46/ 51

0000000000000

Partition-based T/O

Partitions

Txn Queue

Server2: 101

- f Txn #101
.Ms’ Customers

ORDERS 1-1000
l“’ '

g
:

AR

s >

(s 4 | CUSTOMERS Customers
Server #2 . ORDERS ' 1001-2000

. OITEMS '

Georgia
Tech 47 /51

0000000000000

Partition-based T/O - Performance Issues

+ Partition-based T/O protocol is fast if:

> The DBMS knows what partitions the txn needs before it starts.
> Most (if not all) txns only need to access a single partition.

+ Multi-partition txns causes partitions to be idle while txn executes.

> Stored procedures
» Reconnaissance mode

Georgia
Tech 48/ 51

Recap Basic Timestamp Ordering Partition-based Timestamp Ordering
0000000 000000000000000000000 00000000000000 00

Parting Thoughts

 Every concurrency control can be broken down into the basic concepts that I
have described in the last two lectures.

» Two-Phase Locking (2PL): Assumption that collisions are commonplace
» Timestamp Ordering (T/O): Assumption that collisions are rare.
+ I 'am not showing benchmark results because I don’t want you to get the wrong
idea.

Georgia
Tech 50/51

Next Class

+ Optimistic Concurrency Control

« Isolation Levels

Georgia
Tech 51/51

	Timestamp Ordering
	Recap
	Basic Timestamp Ordering
	Partition-based Timestamp Ordering
	Conclusion

