Georgia I&
Tech

Lecture 15: Optimistic
Goncurrency Gontrol

CREATING THE NEXT*

1/57

Today's Agenda

Recap

Optimistic Concurrency Control
Phantoms

Isolation Levels

Conclusion

Georgia
Tech 2/57

Optimistic Concurrency Control Phantoms Isolation Levels Conclusion
[Jelele) 0000000000000000000000000000000 000000000 00000000 000

Basic T/O

« Txns read and write objects without locks.

- Every object X is tagged with timestamp of the last txn that successfully did
read/write:

» W — TS(X) — Write timestamp on X
» R — TS(X) — Read timestamp on X

« Check timestamps for every operation:

» If txn tries to access an object from the future, it aborts and restarts.

Georgia
Tech 4/57

Partition-based T/O

« Split the database up in disjoint subsets called horizontal partitions (aka
shards).

« Use timestamps to order txns for serial execution at each partition.

> Only check for conflicts between txns that are running in the same partition.

Georgia
Tech 5/57

Observation

« If you assume that conflicts between txns are rare and that most txns are
short-lived, then forcing txns to wait to acquire locks adds a lot of overhead.

+ Abetter approach is to optimize for the no-conflict case.

Georgia
Tech 6/57

Recap Phantoms Isolation Levels Conclusion
0000 9000000000000000000000000000000 [e]e]e]e]e]e]e]le]e] [e]e]e]e]e]e]e]e] [e]e]e]

Optimistic Goncurrency Gontrol

O®00000000000000000O0O0O00O00000000

Optimistic Concurrency Control

« The DBMS creates a private workspace for each txn.

> Any object read is copied into workspace.
> Modifications are applied to workspace.

« When a txn commits, the DBMS compares workspace write set to see whether it
conflicts with other txns.

« If there are no conflicts, the write set is installed into the global database.

Georgia
Tech 8/57

0OO0®00000000000000000O0O00O00000000

OCC Phases

- Phase 1 - Read:

» Track the read/write sets of txns and store their writes in a private workspace.
- Phase 2 - Validation:

» When a txn commits, check whether it conflicts with other txns.
+ Phase 3 - Write:

> If validation succeeds, apply private changes to database. Otherwise abort and
restart the txn.

Georgia
Tech 9/57

000®0000000000000000O0O00O00000000

OCC - Example

Schedule Database
pTmmEmmmm——————— ‘\ £ e i - - -
: T, T, 1 1 .

1 [@Object Value
1 | BEGIN BEGIN 1 I [y 55 -
1 |[READ H I -
: R(A) READ 1 |
i R(A) ' B
1 VALIDATE|| y
i WRITE i
1 coMMIT ||
!]
| | [VALIDATE H
: WRITE I
1 1
I | commrT H
{ i

N o

Georgia
Tech 10/57

0000800000000 000000O0O0O00O00000000

OCC - Example

Schedule Database

pmmmmmm———————— e
\ ¢ \

: T1 Tz] 1 N]

i 1 [@Object Value W-TS 1

i | BEGIN___ | BEGIN ! Hn 123 o '

1 ((READ H e - - i

I [LREAD)| | 1 I

I I ————

! I

| I

I WRITE) '

I C H

! 1

1

1 (VALIDATE H

1

I i

! 1

: COMMIT 1

' i

‘\ ______________ 4

Georgia
Tech 11/57

0O0000@00000000000000O0O0O0O00000000

OCC - Example

Schedule Database
P ——————— B iy S ———
\ 4)
: T1 Tz] 1 N 1
1 [@Object Value W-TS 1
| | BEGIN BEGIN I 1y % o 1
1 |[READ H 'K - - H
*R(A) READ i i i
i R(A) [=g -
1
1 VALIDATE | | |
H WRITE i T, Workspace
i coMMIT || ' P——— H
: WA : : Object Value W-TS :
1 | [VALIDATE H ! Lzl !
| | WRITE 1 J S 1
I ———— - -
1
1| commIT H
']
‘\ ______________ 7’

Georgia
Tech 12/57

0O00000@0000000000000O0O00O00000000

OCC - Example

Schedule Database
'I -------------- ~\
T T

: ! 2 : Object Value W-TS
| (o Teean bz o |
] .‘_
HRW [READ i
1 R(A) !

ivEve =i
! VALIDATE| |
i WRITE 1
I coMMIT ||
v 1
| |[VALIDATE H
| | [WRITE 1

1

]
1| commrt H
! ;
‘s ______________ 7’

Georgia
Tech 13/57

0O000000@000000000000O0O0O0O00000000

OCC - Example

Schedule Database
R e \
1 T, 1 . 1
i [@Object Value W-TS 1
i |BEGIN 1A 123 o '
1 ||READ H I_ I_ l‘ :
TIRM 1 1
) e ——————————
T
I
= 1
: WRITE : T, Workspace T, Workspace
fEmmm———————— Y fEEmm——————— A
: o COMMIT : : : : Object Value W-TS :
[y —
| |[VALIDATE : :A 123 o I : A 123 |o i
| | [#RITE I ||’ [E |I ||’ E |l
1 S ——— 2 i —— -
I
1| coMmrT H
1
']

N o e

Georgia
Tech 14/57

00000000 @00000000000O0O00O00000000

OCC - Example

Schedule Database

T - N e —————— ——————— -
\ s)

: LE T, 1 1 . 1
1 [@Object Value W-TS 1

1| BEGIN BEGIN I 1 [a 123 0 I

I READ ! H B - ~ | H

R(A) READ TS(T,)=1 1

H R(A) (| 2) e

1 [VALIDATET] y

H WRITE i T, Workspace

I COMMIT H { premam——

L TEN) i i e oy I

| |[VALIDATE ! WA 456 '

1| RITE 1 ||‘ R i
l ——— i ————— -

1

I | commrT H

' ;

‘\ ______________ 4

Georgia
Tech 15/57

000000000 ®0000000000O0O00O00000000

OCC - Example

Schedule Database
T N e e o o
\ s)
: T1 Tz 1 1 1
1 [@Object Value W-TS 1
1| BEGIN BEGIN I 1 [y 456 2 1
1 |[READ H H - - H
FHRCA) READ [TS(T,)=1 1 1
: R(A) (,_]I 2) ~—f--——————————- -
I VALIDATET] |
: WRITE 1 T, Workspace
1 fom————————— \
Dy USTD=2) 1| e |
1
1 | [VALIDATI H R '
W) [/RITE i S
I ——— - -
1
1| commMIT H
! ;
‘\ ______________ 4

Georgia
Tech 16/57

0000000000 @000000000O0O00O00000000

OCC - Validation Phase

« The DBMS needs to guarantee only serializable schedules are permitted.

« T; checks other txns for RW and WW conflicts and makes sure that all conflicts
go one way (from older txns to younger txns).

Georgia
Tech 17/57

0000000000000 0000000O00O00000000

OCC - Serial Validation

+ Maintain global view of all active txns.

+ Record read set and write set while txns are running and write into private
workspace.

- Execute Validation and Write phase inside a protected critical part.

Georgia
Tech 18/57

000000000000 e0000000000O00000000

OCC - Read Phase

+ Track the read/write sets of txns and store their writes in a private workspace.

« The DBMS copies every tuple that the txn accesses from the shared database to its
workspace ensure repeatable reads.

Georgia
Tech 19/57

0000000000000 eO00000000000000000

OCC - Validation Phase

« Each txn’s timestamp is assigned at the beginning of the validation phase
(different from 2PL).

+ Check the timestamp ordering of the committing txn with all other running txns.

« If TS(T;) < TS(T;), then one of the following three scenarios must hold...

Georgia
Tech 20/ 57

0000000000000 0®000000O0000000000

OCC - Validation Phase

« When the txn invokes COMMIT, the DBMS checks if it conflicts with other txns.

 Two methods for this phase:

» Backward Validation
» Forward Validation

Georgia
Tech 21/57

0000000000000 00e000000000000000

OCC - Backward Validation

+ Check whether the committing txn intersects its read/write sets with those of
any txns that have already committed.

Ten st |G

Txn #2

Txn #3

v

TIME

Georgia
Tech 22/57

0000000000000 000@00000000000000

OCC - Backward Validation

+ Check whether the committing txn intersects its read/write sets with those of
any txns that have already committed.

Validation Scope

Txn #1

Txn #2

Txn #3

l

\ 4

Georgia
Tech 23/57

0000000000000 0000e0000000000000

OCC - Forward Validation

+ Check whether the committing txn intersects its read/write sets with any active
txns that have not yet committed.

Tenst |G

Txn #2

Txn #3

v

TIME

Georgia
Tech 24/57

0000000000000 00000@000000000000

OCC - Forward Validation

+ Check whether the committing txn intersects its read/write sets with any active
txns that have not yet committed.

Txn# “ | Validgtion Scoge

Txn #2 I

Txn #3

TIME

Georgia
Tech 25/57

0000000000000 000000eO00000000000

OCC - Validation Step 1

- Scenario 1:

+ T; completes all three phases before T; begins.

Georgia
Tech 26/57

0000000000000 0000000®O000000000

OCC - Validation Step 1

Schedule
T mmEmEEEEEEmEm—_—— ‘\
: T, T, 1
! | BEGIN i
1 | [READ :
: VALIDATE 1
1 | [WRITE !
1| COMMIT I
H BEGIN i
] READ i
| VALIDATE]| |
1 WRITE |
: COMMIT I
' i
! I
! I
{ !
- — P4

Georgia
Tech 27/57

0000000000000 0000000Oe000000000

OCC - Validation Step 2

« Scenario 2:

+ T; completes before Tj starts its Write phase, and T; does not write to any object
read by T;.
> WriteSet(T;) N ReadSet(T;) = 0

Georgia
Tech 28/57

0000000000000 000000000eO00000000

OCC - Validation Step 2

Schedule Database

P ———— ~ e e o e \

T T, 1 I

[@Object Value W-TS 1

BEGIN BEGIN R T 0 I

READ :|_ L F |:

R(A) 1 1
W(A) READ

R(A)

VALIDATE
WRITE

MMTT A
T, has to abort even though |~
T, will never write to the
database.

R ——
t
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
\

o

Georgia
Tech 29/57

0000000000000 0000000O000e0000000

OCC - Validation Step 2

Schedule Database

oTTTmEEEEEE T Y e ———— \
H T T,] [I

1 [@Object Value W-TS 1
| | BEGIN BEGIN I N 123 o I
|| ReD]) S ——
HRM] I]
U READ : S ——————— -
! R(A) 1
H VALIDATE] | |

' 4

H I i I I
1 1 1 1 1
il 1 1 : 1
1 . ‘ 1
I Safeto commit T, becausewe| ——————— 1 | _.———t—————1
H know that T, will not write. J
! i
. | ,
\\ _____________ -

Georgia
Tech

30/57

0000000000000 0000000O0000e000000

OCC - Validation Step 3

« Scenario 3:

+ Ti completes its Read phase before Tj completes its Read phase
« And Ti does not read or write any object that is written by Tj:

> WriteSet(Tj) N ReadSet(T4i) = 0
> WriteSet(Tj) N WriteSet(T1i) = 0

Georgia
Tech 31/57

0000000000000 0000000O0O0000e00000

OCC - Validation Step 3

Schedule Database
pTmTEEEEEEE—_——— N e ————— —————
Co T, {)
i 1 [@Object Value W-TS 1
1 BRE—'%N BEGIN H 1A 456 1 H
1
| Reh) : : B vz o | i
1| wea)y READ : S ——————————— -
! R(B) I
| | vALIDATE :
| | [WRITE -

H COMMITlR(A) I
I VALIDATE| | |
H WRITE I
1 COMMIT :
H 1
' i
\\ ______________ 7’

Georgia
Tech 32/57

0000000000000 0000000O0O00000e0000

OCC - Validation Step 3

Schedule Database

1| commrT R(A)

1 VALIDATE
: WRITE

H COMMIT
]

]

1

\

(TR L ——

Georgia
Tech 33/57

0000000000000 0000000O0O000000e000

OCC - Validation Step 3

Schedule Database

/

\ gmmmmmmmmmmmmmmm- \
1
1 [@Object Value W-TS :
I 1 1
H D 123 o H
1 1B [xvz lo | 1
1 [1
i o e e e -
i
1 T, Workspace T, Workspace
1 fom————————— A fom————————— \
: : Object Value W-Ts : : Object Value W-TS :
1A e fo |1 vz Jo |y
. . a _ [B B 1
Safe to commit T, because a1 1
T, sees the DB after T, has
executed.
: —
______________ ’

Georgia
Tech 34/57

0000000000 00O00000000O0O00O00000e00

OCC - Observation

+ OCC works well when the number of conflicts is low:
> All txns are read-only (ideal).
> Txns access disjoint subsets of data.
- If the database is large and the workload is not skewed, then there is a low
probability of conflict, so again locking is wasteful.

Georgia
Tech 35/57

0000000000 0000000000O0O00O000000e0

OCC - Performance Issues

« High overhead for copying data locally.
- Validation/Write phase bottlenecks.
« Aborts are more wasteful than in 2PL because they only occur after a txn has

already executed.

Georgia
Tech 36/57

0000000000000 0000000O0O00O0000000e

Observation

« Recall that so far we have only dealing with transactions that read and update
data.

« But now if we have insertions, updates, and deletions, we have new problems...

Georgia
Tech 37/57

Recap Optimistic Concurrency Control Isolation Levels Conclusion
0000 0000000000000C00000000000000000 [Jelelelelelelele} 00000000 [e]ele]

O@0000000

The Phantom Problem

N Schedule ______ - |CREATE TABLE people (
T, T, id SERIAL,
name VARCHAR
BEGIN BEGIN 2
age INT,
SELECT MAX(age) - status VARCHAR
1
wffégg giziu;'lit‘ 72)8

INSERT INTO people
(age=96, statu:)

COMMIT

SELECT MAX(age)
FROM people
WHERE status='lit’

COMMIT

e ———————————
\—————————————————-——’

Georgia
Tech 39/57

0O0@000000

The Phantom Problem

e Schedule_ - |CREATE TABLE people (
4 T, T, % | id SERIAL,
1 I
1 [BEGIN BEGIN i | name VARCHAR,
1 1 age INT,
- | Status varome
: WHERE status='lit’ :)’
1 I
1 INSEBIJINTO people 1
: (agd status='lit") :
: COMMIT :
SELECT MAX(.)
1 FROM peopfege - 96 ‘o 1
I | WHERE status='1it’ 1
1 oY :
1| commzt i
1 1
\ I}
N e o o -

Georgia
Tech 40/57

[e]e]e] le]elelele]

The Phantom Problem

- How did this happen?
> Because T locked only existing records and not ones under way!

« Conlflict serializability on reads and writes of individual items guarantees
serializability only if the set of objects is fixed.

Georgia
Tech 41/57

[e]e]e]e] lelelele]

Predicate Locking

+ Lock records that satisfy a logical predicate:

» Example: status =’ lit’
« In general, predicate locking has a lot of locking overhead.

- Index locking is a special case of predicate locking that is potentially more
efficient.

Georgia
Tech 42/57

[e]e]e]e]e] lelele]

Index Locking

« If there is a dense index on the status field then the txn can lock index page
containing the data with status =’ lit’.

« If there are no records with status =" lit’, the txn must lock the index page where
such a data entry would be, if it existed.

Georgia
Tech 43/57

0OO00000e00

Locking without an Index

« [If there is no suitable index, then the txn must obtain:

» Alock on every page in the table to prevent a record’s status =’ lit’ from being
changed to lit.

> The lock for the table itself to prevent records with status =’ lit’ from being added
or deleted.

Georgia
Tech

44 /57

0000000 @0

Repeating Scans

« An alternative is to just re-execute every scan again when the txn commits and
check whether it gets the same result.

» Have to retain the scan set for every range query in a txn.

Georgia
Tech 45/57

0O0000000e

Weaker Levels of Isolation

« Serializability is useful because it allows programmers to ignore concurrency
issues.

+ But enforcing it may allow too little concurrency and limit performance.

« We may want to use a weaker level of consistency to improve scalability.

Georgia
Tech 46/ 57

Recap Optimistic Concurrency Control Phantoms Conclusion
0000 0000000000000000000000000000000 000000000 90000000 [e]ele]

Isolation Levels

[¢] le]ele]ele]e)

Isolation Levels

- Controls the extent that a txn is exposed to the actions of other concurrent txns.
« Provides for greater concurrency at the cost of exposing txns to uncommitted
changes:
> Dirty Reads
> Unrepeatable Reads
> Phantom Reads

Georgia
Tech 48/57

[e]e] lele]elele)

Isolation Levels

« Isolation (High—Low)

« SERIALIZABLE: No phantoms, all reads repeatable, no dirty reads.

« REPEATABLE READS: Phantoms may happen.

« READ COMMITTED: Phantoms and unrepeatable reads may happen.
« READ UNCOMMITTED: All of them may happen.

Georgia
Tech 49/57

[e]e]e] le]elele)

Isolation Levels

Level ‘ Dirty Read Unrepeatable Read Phantom
SERIALIZABLE No No No
REPEATABLE READ No No Maybe
READ COMMITTED No Maybe Maybe
READ UNCOMMITTED | Maybe Maybe Maybe

Georgia
Tech 50/57

[e]e]e]e] lelele)

Isolation Levels

SERIALIZABLE: Obtain all locks first; plus index locks, plus strict 2PL.
REPEATABLE READS: Same as above, but no index locks.

READ COMMITTED: Same as above, but S locks are released immediately.
READ UNCOMMITTED: Same as above, but allows dirty reads (no S locks).

Georgia
Tech 51/57

[e]e]e]e]e] lele)

SQL-92 Isolation Levels

 You set a txn’s isolation level before you execute any queries in that txn.
+ Not all DBMSs support all isolation levels in all execution scenarios
> Replicated Environments
« The default depends on implementation...
SET TRANSACTION Isolation LEVEL <isolation-level >;
BEGIN TRANSACTION ISOLATION LEVEL <isolation-level>;

Georgia
Tech 52/57

[e]e]e]ele]e] o)

Isolation Levels (2013)

Georgia
Tech

DBMS ‘ Default Maximum
Actian Ingres 10.0/10S | SERIALIZABLE SERIALIZABLE
Aerospike READ COMMITTED READ COMMITTED
Greenplum 4.1 READ COMMITTED SERIALIZABLE
MySQL 5.6 REPEATABLE READS SERIALIZABLE
MemSQL 1b READ COMMITTED READ COMMITTED
MS SQL Server 2012 | READ COMMITTED SERIALIZABLE
Oracle 11g READ COMMITTED SNAPSHOT ISOLATION
Postgres 9.2.2 READ COMMITTED SERIALIZABLE
SAP HANA READ COMMITTED SERIALIZABLE
ScaleDB 1.02 READ COMMITTED READ COMMITTED
VoltDB SERIALIZABLE SERIALIZABLE

+ Source

53/57

http://www.bailis.org/blog/when-is-acid-acid-rarely/

0O000000e

SQL-92 Access Modes

* You can provide hints to the DBMS about whether a txn will modify the database
during its lifetime.

+ Only two possible modes:

» READ WRITE (Default)
» READ ONLY

 Not all DBMSs will optimize execution if you set a txn to in READ ONLY mode.

SET TRANSACTION <access-mode>;
BEGIN TRANSACTION <access-mode>;

Georgia
Tech 54/57

Recap Optimistic Concurrency Control Phantoms Isolation Levels
0000 0000000000000000000000000000000 000000000 00000000 [Jele}

Parting Thoughts

« Every concurrency control can be broken down into the basic concepts that I
have described in the last two lectures.

> Two-Phase Locking (2PL): Assumption that collisions are commonplace
» Timestamp Ordering (T/O): Assumption that collisions are rare.

« Optimistic protocols defer the validation phase to the end of the txn

Georgia
Tech 56/57

Next Class

 Multi-Version Concurrency Control

Georgia
Tech 57/57

	Optimistic Concurrency Control
	Recap
	Optimistic Concurrency Control
	Phantoms
	Isolation Levels
	Conclusion

