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Multi-Version Concurrency Control

+ The DBMS maintains multiple physical versions of a single logical object in
the database:
> When a txn writes to an object, the DBMS creates a new version of that object.

> When a txn reads an object, it reads the newest version that existed when the txn
started.
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Multi-Version Concurrency Control

« Writers don’t block readers. Readers don’t block writers.

 Read-only txns can read a consistent snapshot without acquiring locks or txn
ids.

> Use timestamps to determine visibility.

« Easily support time-travel queries.
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Snapshot Isolation (SI)

« When a txn starts, it sees a consistent snapshot of the database that existed when
that the txn started.

> No torn writes from active txns.
> If two txns update the same object, then first writer wins.

« Sl is susceptible to the Write Skew Anomaly.
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Write Skew Anomaly

Txn #1
Change white marbles
to black.

o
, ~ OO

Txn #

Change black marbles O O
to white.
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Write Skew Anomaly

Txn #1
Change white marbles
to black.

e0 . e®_ . (O
OO ®® OO

Change black marbles
to white.
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Isolation Level Hierarchy

SERIALIZABLE
REPEATABLE READS SNAPSHOT ISOLATION

t ]

READ COMMITTED

READ UNCOMMITTED
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Concurrency Control Protocol

« Approach 1: Timestamp Ordering

> Assign txns timestamps that determine serial order.
» Considered to be original MVCC protocol.

« Approach 2: Optimistic Concurrency Control

> Three-phase protocol from last class.
» Use private workspace for new versions.

« Approach 3: Two-Phase Locking

» Txns acquire appropriate lock on physical version before they can read/write a
logical tuple.
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Tuple Format

TXN-ID BEGIN-TS END-TS POINTER

Unique Txn Version Next/Prev Additional
Identifier Lifetime Version Meta-data
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Timestamp Ordering (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS
A, 0 7 7 o
B, 0 0 7 (0'e]

*

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.
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Timestamp Ordering (MVTO)

Thread #1 S - : '
T..=10 : Ay 9 7 U 00
“ E,i‘ B, 0 0 7 00
WRITE(8)
Use read-ts field in the Txn can read version if the
header to keep track of the  latch is unset and its T4 is
timestamp of the last txn between begin-ts and end-ts.

that read it.
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Timestamp Ordering (MVTO)

Thread #1 OO 2= :

° A 0 7 7 0

T;;=10 !
B, 0 0 7 (e'e}
WRITE(B)

Use read-ts field in the Txn can read version if the
header to keep track of the  latch is unset and its T;y is
timestamp of the last txn between begin-ts and end-ts.

that read it.
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Timestamp Ordering (MVTO)

D R ) D
Thread #1 o
T. =10 i A, 0 10 7 (0¢]
“ C,i‘ B, 0 0 7 0
WRITE(B)
Use read-ts field in the Txn can read version if the
header to keep track of the  latch is unset and its T;q4 is
timestamp of the last txn between begin-ts and end-ts.

that read it.
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Timestamp Ordering (MVTO)

Thread #1
T,=10

TXN-ID READ-TS BEGIN-TS  END-TS
SEADC) A, 0 70 7 oo

B, 0

9 7 00)

Use read-ts field in the Txn can read version if the
header to keep track of the  latch is unset and its T;q is
timestamp of the last txn
that read it.

between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
T,q is greater than read-ts.
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Timestamp Ordering (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS
Thread #1
READCA) A, 0 70 7 0

T, ;=10
id
E,i‘ ﬂl B, 70 0 7 (00}
WRITE(B)
Use read-ts field in the Txn can read version if the  Txn creates a new version if
header to keep track of the  latch is unset and its Tjgis  no other txn holds latch and
timestamp of the last txn between begin-ts and end-ts. T4 is greater than read-ts.

that read it.
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Timestamp Ordering (MVTO)

Thread #1
READ(A)

T,=10

WRITE(B)

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

Georgia
Tech

TXN-ID READ-TS BEGIN-TS  END-TS

A, 0 70 7 0
ﬂ| B, 70 0 7 10
ﬂl B, 70 0 70 (0%¢]

Txn can read version if the
latch is unset and its Tq is

between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
T;q is greater than read-ts.
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Two-Phase Locking (MV2PL)

TXN-ID READ-CNT BEGIN-TS END-TS
Thread #1
READCD A, 0 0 7 (o'e}

T, =10
E,i* B, 0 0 7 00

WRITE(B)

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.
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Two-Phase Locking (MV2PL)

Thread #1 66 2252

=) A 0 7 7 00
T;;=10 !
E’; B, 0 0 7 0
WRLTE (B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock.  txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the
together as EXCLUSIVE read-cnt field.
lock.
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Two-Phase Locking (MV2PL)

6.6 TXN-ID READ-CNT BEGIN-TS END-TS
Thread #1
O ﬂ A 2 7 7 0

T,,=10
“ B, 0 0 7 00
Txns use the tuple's read- If txn-id is zero, then the If both txn-id and read-cnt
cnt field as SHARED lock.  txn acquires the SHARED  are zero, then txn acquires
Use txn-id and read-cnt lock by incrementing the the EXCLUSIVE lock by
together as EXCLUSIVE read-cnt field. setting both of them.
lock.
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Two-Phase Locking (MV2PL)

READ-CNT BEGIN-TS  END-TS

7

7 00)

7

7 00)

TXN-ID
Thread #1 66
READ(A) A 9
T;;=10 !
E,i* B, 70
WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the

cnt field as SHARED lock.  txn acquires the SHARED

Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.

If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

24/83



0000000000 00O00000Oe00000

Two-Phase Locking (MV2PL)

READ-CNT BEGIN-TS  END-TS

7

7

9

7 00)
7 10
70 00)

TXN-ID
Thread #1
READ(A) A 9
T;;=10 :
E,i‘ B, 70
WRITE (B) B, 70
Txns use the tuple's read- If txn-id is zero, then the

cnt field as SHARED lock.  txn acquires the SHARED

Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.

Georgia
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If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

25/83



0000000000 00O0000000e0000

Observation
Thread #1
T‘ =231_1 TXN-ID READ-TS BEGIN-TS END-TS
“ A, 21-7 - 99999 | 2°7-1
A, | 21| - | 21| 00

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
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Observation
Thread #1
Tid=231_1 D D B D

A, 0 - 99999 | 277-1
A, 0 - 27-7 | 0o

If the DBMS reaches the max value for its

timestamps, it will have to wrap around and

restart at one. This will make all previous versions

be in the "future" from new transactions.
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Observation
Thread #1
T _ 231 1 TXN-ID READ-TS BEGIN-TS  END-TS
“ A, 0 - 99999 | 277-1
Thread #2 A, 7 - 297-1 7
T;=1 A, 7 - 7 0o
If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
Georgia
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Observation
Thread #1
Tid= 231_ 1 TXN-ID READ-TS BEGIN-TS  END-TS
A, 0 - 99999 | 27-1
Thread #2 A, 0 - 2317 7
T;~1 A, 0 - 7 00

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
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PostgreSQL: Txn Id Wraparound

+ Set a flag in each tuple header that says that it is frozen in the past. Any new txn
id will always be newer than a frozen version.

 Runs the vacuum before the system gets close to this upper limit.

« Otherwise it must stop accepting new commands when the system gets close to
the max txn id.

Georgia
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Microsoft Hekaton

+ Incubator project started in 2008 to create new OLTP engine for MSFT SQL
Server (MSSQL).

> Reference
- Had to integrate with MSSQL ecosystem.
+ Had to support all possible OLTP workloads with predictable performance.

» Single-threaded partitioning (e.g., H-Store/VoltDB) works well for some
applications but terrible for others.

Georgia
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Hekaton MVCC

+ Each txn is assigned a timestamp when they begin (BeginTS) and when they
commit (CommitTS§). e
« Each tuple contains two timestamps that represents their visibility and current
state:
> BEGIN-TS: The BeginTS of the active txn or the CommitTS of the committed txn
that created it.

> END-TS: The BeginT'S of the active txn that created the next version or infinity or
the CommitTS of the committed txn that created it.

Georgia
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Hekaton: Operations

Thread #1 66 Main Data Table
Begin @25 READ(A) . : : - :
» A 70 20 $100 o—:]

A, 20 (00} $200 )
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Hekaton: Operations

Thread #1 S e Main Data Table
Begin @ 25 LY BEGIN-TS END-TS  VALUE  POINTER

A, 70 20 $100 .—:|

» A, 20 | oo | se0 | o

Georgia
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Hekaton: Operations

Thread #1 S E Main Data Table
Begin @ 25 READ(A) 5 ; ; -

A, 70 $100 o—:]

@ =
» A, 20 00 | $200 )
0

WRITE(A)
A; Txn@25 $300

TXn€23 - 10000000. . .00000000 00011001

Georgia
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Hekaton: Operations

Thread #1 66 Main Data Table
Begin @ 25 READ(A) — T

E’i A, 10 20 $100 o—
R » A, 20 00 $200 ]
A; | xn@25| 00 $300

Georgia
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Hekaton: Operations

Thread #1 S e Main Data Table
Begin @ 25 READ(A) B D \ PO

3 A 70 20 $100 o—
& ‘ N
WRITE (A) A, 20 Txn@25| $200 o—|

A; Txn@25| QOO $300
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Hekaton: Operations

Thread #1 6_6 Main Data Table
Begin @ 25 READ(A) B — o —

Commit @ 35 E’F A, 70 20 $100 0—:|
ST A, 20 Txn@25| $200 0—:|

Az Txn@25) OO $300

Georgia
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Hekaton: Operations

Thread #1 ) Main Data Table
Begin @ 25 READ(A) —T T

Commit @ 35 E/i A 0 2 5100 °_:]
WRITE (A) Az 20 35 $200 o—:l
A; 35 o0 $300
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Hekaton: Operations

Thread #1 66 Main Data Table
Begin @ 25 READ(A) — T

Commit @ 35 E/i A 0 P 5100 ._:]
WRITE(A) Ay 20 35 $200 o—
A 35 (0l¢] $300

Georgia
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Hekaton: Operations

Thread #1 22 Main Data Table
Begin @ 25 DY BEGIN-TS END-TS  VALUE  POINTER

E/f A 9 20 | $100 .—:]
WRITE (A) Ay 20 Txn@25 | $200 0—:]

» Ay | xne25| o0 $300

Thread #2 50
Begin @ 30 READ(A)

Georgia
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Hekaton: Operations

Main Data Table
Thread #1 60
Begin @ 25 DY BEGIN-TS END-TS  VALUE  POINTER
N A o—
E" 1 70 20 $100 3
e A, 20| mnezz] s200 | o—ig
» A, | mmezs| oo | s3eo
Thread #2 66 S
Begin @ 30 READ(A
N e

4

3
1
=]
m
2
>
Z
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Hekaton: Transaction State Map

« Global map of all txns’ states in the system:

» ACTIVE: The txn is executing read/write operations.

> VALIDATING: The txn has invoked commit and the DBMS is checking whether it
is valid.

» COMMITTED: The txn is finished but may have not updated its versions’ TS.

» TERMINATED: The txn has updated the T'S for all of the versions that it created.

Georgia
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Hekaton: Transaction Lifecycle

Txn Events Txn Phases
:320¢) 10 S IS— Get BeginTS, set state to ACTIVE
Pr (1:3:2:;1 ; ; Track txn's read set, scan set, and write set.
2428200000, 0.7 1 (SN COSR—— Get CommitTs, set state to VALIDATING

Validation Validate reads and scans
— If validation OK, write new versions to redo log

[S{0 1.7 0171 | RESSN R Set txn state to COMMITTED

Post-  Update version timestamps
— BeginTS$ in new versions, CommitTS in old versions

TERMINATE ... Set txn state to TERMINATED

v Remove from txn map

Georgia
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Hekaton: Transaction Meta-Data

- Read Set
> Pointers to physical versions returned to access method.
 Write Set

» Pointers to versions updated (old and new), versions deleted (old), and version
inserted (new).

+ Scan Set

» Stores enough information needed to perform each scan operation again to check
result.

« Commit Dependencies

> List of txns that are waiting for this txn to finish.

Georgia
Tech 46/ 83



0000000000000 000e0000

Hekaton: Transaction Validation

+ Read Stability
» Check that each version read is still visible as of the end of the txn.

- Phantom Avoidance
> Repeat each scan to check whether new versions have become visible since the txn
began.
- Extent of validation depends on isolation level:
> SERIALIZABLE: Read Stability + Phantom Avoidance
» REPEATABLE READS: Read Stability

» SNAPSHOT ISOLATION: None
> READ COMMITTED: None

Georgia
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Hekaton: Optimistic vs. Pessimistic

« Optimistic Txns:

» Check whether a version read is still visible at the end of the txn.
> Repeat all index scans to check for phantoms.

- Pessimistic Txns:

» Use shared & exclusive locks on records and buckets.
» No validation is needed.
> Separate background thread to detect deadlocks.

Georgia
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Hekaton: Optimistic vs. Pessimistic

Database: Single table with 1000 tuples
Workload: 80% read-only txns + 20% update txns
Processor: 2 sockets, 12 cores

-@-Optimistic =k=Pessimistic

1.6
“ =
§ g 1.2
= o8
2
=
0.4
g
é 0 T T T 1
0 6 12 18 24
# Threads
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Hekaton: Lessons

+ Use only lock-free data structures

> No latches, spin locks, or critical parts
> Indexes, txn map, memory alloc, garbage collector
> Example: Bw-Trees

« Only one single serialization point in the DBMS to get the txn’s begin and
commit timestamp

> Atomic Addition (CAS)

Georgia
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Observation

- Read/scan set validations are expensive if the txns access a lot of data.

« Appending new versions hurts the performance of OLAP scans due to pointer
chasing & branching.

+ Record-level conflict checks may be too coarse-grained and incur false positives.

Georgia
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Hyper MVCC

+ Column-store with delta record versioning.
« Reference

> In-Place updates for non-indexed attributes
> Delete/Insert updates for indexed attributes.
> Newest-to-Oldest Version Chains

» No Predicate Locks / No Scan Checks

« Avoids write-write conflicts by aborting txns that try to update an uncommitted
object.

Georgia
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https://dl.acm.org/doi/10.1145/2723372.2749436

000000000000

Hyper: Storage Architecture

Main Data Table Delta Storage (Per Txn)

Txn #1
: [
(ATTR2-8199) | 8 |
Peter $100 o
01 $200 o— Txn #2
g
g

Gaurav|| $150 (ATTR2-$122) n

Alice $139 Txn #3

Georgia
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Hyper: Storage Architecture

Main Data Table Delta Storage (Per Txn)

. Txn #1
(ATTR2-$199) | 9
» Peter $100

P
0i $200 o—| Txn #2
@
)

Gaurav|| $150 (ATTR2-$122) n

Alice $139 Txn #3

(ATTR2-$100) | ®

Georgia
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Hyper: Storage Architecture

Main Data T able Delta Storage (Per Txn)
i Txn #1
- TTR1 - TTR2
i (ATTR2-$199) | @
» Peter || $200 o)
/ Txn #2
Q1 $200 o——\_

Gaurav|| $150 ] n

Alice 8739 ['] Txn #3

100 [
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Hyper: Storage Architecture

Main Data Table Delta Storage (Per Txn)
Txn #1
ATTRT ATTR2 "','f’:,"
| | e | Coirrme 575 To]
Peter $200

01 $200 o—_l_ Txn #2
Gaurav|| $150 (ATTR2-$122) n

» Alice || $200 Txn #3

(ATTR2-$100) | ®
(ATTR2-$139) | ¢

o=
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Hyper: Validation

 First-Writer Wins

> If version vector is not null, then it always points to the last committed version.
> Do not need to check whether write-sets overlap.

« Check the redo buffers of txns that committed after the validating txn started.

» Compare the committed txn’s write set for phantoms using Precision Locking.
> Only need to store the txn’s read predicates and not its entire read set.

Georgia
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https://dl.acm.org/citation.cfm?id=582340
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Hyper: Precision Locking

Validating Txn Delta Storage (Per Txn)
SELECT * FROM foo 1001
WHERE attr2 > 20 99>20 AND 99<30 (attr2-99)
AND attr2 < 30 |5
= FALSE
SELECT COUNT(attr1) 20 0 S3osp—s| (attr2-33)
FROM foo
WHERE attr2 IN (10,20,30)
Txn #1002
SELECT attr1, AVG(attr2
LECr et (attr2) (attr2.122)
WHERE attr1 LIKE ’'%Ice%’
GROUP BY attri
HAVING AVG(attr2) > 100 Txn #1003
(attri- 'IceCube’,
attr2-199)

Georgia
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Hyper: Precision Locking

Validating Txn Delta Storage (Per Txn)

SELECT * FROM foo Toen #1001
WHERE attr2 > 20 (attr2-99)
AND attr2 < 30 K
Wl

(attr2-33)

SELECT COUNT(attrl)
FROM foo
WHERE attr2 IN (10,20,30)

Txn #1002
SELECT attr1, AVG(attr2)
FROM foo (attr2-122)

WHERE attr1 LIKE '%Ice%’
GROUP BY attri
HAVING AVG(attr2) > 100 Txn #1003

(attri- 'IceCube’,
attr2-199)

Georgia
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Hyper: Precision Locking

Validating Txn Delta Storage (Per Txn)
SELECT x FROM foo Lo it
WHERE attr2 > 20 (attr2-99)
AND attr2 < 30
SELECT COUNT (attr1) ; (attr2-33)
FROM foo
WHERE attr2 IN (10,20,30)
Txn #1002
SELECT attr1, AVG(attr2
feon 2t (attr2) (attr2.122)
WHERE attr1 LIKE %lce%’ N
GROUP BY attri
HAVING AVG(attr2) > 100 Txn #1003
(attri- 'IceCube’,
attr2-199)

Georgia
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Hyper: Precision Locking

Validating Txn Delta Storage (Per Txn)

SELECT x FROM foo LR

WHERE attr2 > 20 (attr2-99)
AND attr2 < 30

SELECT COUNT (attr1) (attr2-33)
FROM foo
WHERE attr2 IN (19,20,30)
Txn #1002
SELECT attr1, AVG(attr2
ERCr att (attr2) (attr2.122)
Txn #1003
TRUE (attri- 'IceCube’,
"IceCube’ LIKE '%Ice%’ attr2-199)

Georgia
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Hyper: Version Synopses

Main Data Table
Store a separate column that
Version Version
SETEE \ector tracks the position of the first
[2,5) | @Qreter || $700 and last versioned tuple in a
¢ 01 $200 block of tuples.

Gaurav|| $150

Offsets € lice |[ 399
@ rork || 3300

a Rahul $300

@ slex |[ 50

When scanning tuples, the
DBMS can check for strides of
tuples without older versions
and execute more efficiently.

[-[s]-[+]--H

Georgia
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Hyper: Version Synopses

Main Data Table
Store a separate column that
Version Version
SO tracks the position of the first
[2,5) peter || $700 || 9 and last versioned tuple in a
0i $200 || © block of tuples.
Gaurav|| $150 *—>
alice || 99 2 B(ghl\e;[n scannl}lngktlgples, Fge ]
ok 500 I o S can check for strides o
tuples without older versions
Rahul $300 ) :
and execute more efficiently.
Alex $0 )

Georgia
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SAP HANA

+ In-memory HTAP DBMS with time-travel version storage (N20).
+ Reference

> Supports both optimistic and pessimistic MVCC.
> Latest versions are stored in time-travel space.
> Hybrid storage layout (row + columnar).

« Based on P*TIME, TREX, and MaxDB.
» First released in 2012.

Georgia
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https://dl.acm.org/doi/10.1145/2213836.2213946
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SAP HANA: Version Storage

« Store the oldest version in the main data table.

+ Each tuple maintains a flag to denote whether there exists newer versions in the
version space.

« Maintain a separate hash table that maps record identifiers to the head of version
chain.

Georgia
Tech 67/83



000@e000

SAP HANA: Version Storage

Main Data Table Version Storage

RID VERS? VERSION  DATA
A | True A, -

B | False| B, -
C| True C, -
D

True Dg -

Georgia
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SAP HANA: Transactions

« Instead of embedding meta-data about the txn that created a version with the
data, store a pointer to a context object.

> Reads are slower because you must follow pointers.
» Large updates are faster because it’s a single write to update the status of all tuples.

« Store meta-data about whether a txn has committed in a separate object as well.

Georgia
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SAP HANA: Version Storage

Main Data Table Version Storage

RID VERS? VERSION  DATA

A | True A, -
B | False| B, -
C| 7True C, -
D

True Dg -

Thread #1

Group Commit Context

T.-3 HeBEl

Georgia
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SAP HANA: Version Storage

Main Data Table Version Storage
A| True A -
B | False| B, -
C| True C, -
D | 7True D, -
- Txn Meta-Data
Thread #1 Group Commit Context
2 S
N (4 | (4
WRITE(C) WRITE(D)

Georgia
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MVCC Limitations

- Computation & Storage Overhead

> Most MVCC schemes use indirection to search a tuple’s version chain. This
increases CPU cache misses.

» Also requires frequent garbage collection to minimize the number versions that a
thread must evaluate.

+ Shared Memory Writes

> Most MVCC schemes store versions in “global” memory in the heap without
considering locality.

+ Timestamp Allocation

> All threads access single shared counter.

Georgia
Tech 73/ 83



[e]e] le]ele]ele]e]

OCC Limitations

- Frequent Aborts

> Txns will abort too quickly under high contention, causing high churn.
- Extra Reads & Writes

> Each txn must copy tuples into their private workspace to ensure repeatable reads.
It then has to check whether it read consistent data when it commits.

- Index Contention

> Txns install "virtual” index entries to ensure unique-key invariants.
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CMU Cicada

 In-memory OLTP engine based on optimistic MVCC with append-only storage
(N20).
+ Reference

> Best-effort Inlining

> Loosely Synchronized Clocks
» Contention-Aware Validation
» Index Nodes Stored in Tables

« Designed to be scalable for both low- and high-contention workloads.
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Cicada: Best-Effort Inlining

Record Meta-data

POINTER LATEST VERSION

« Record Meta-data

+ Record meta-data is stored
i > in a fixed location.
KEY VALUE  POINTER . 1
o | famNIA jIhFeads will attempt to.
inline read-mostly version
’ﬁ__, within this meta-data to

reduce version chain
traversals.
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Cicada: Fast Validation

- Contention-aware Validation

> Validate access to recently modified records first.

- Early Consistency Check

» Pre-validate access set before making global writes.
» Skip if all recent txns committed successfully.

- Incremental Version Search

» Resume from last search location in version list.
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Cicada: Index Storage

Index Index Node Table

NODE DATA POINTER

Keys-[100,200]

Aw Pointers-[B,C]
Keys-[50, 70]

B, |pointers’.[o,e7
Keys-[52, 70]

Bw Pointers-[D,E]
Keys-[10,30]

E; |Pointers'.rIn, R107
Keys-[11,30]

E, |pointers’.[rIp, R1D]
Keys-[12,30]

E, |pointers’.[rIp, R107

O -

TT“T&I

tIt]
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Cicada: Low Contention

Workload: YCSB (95% read / 5% write) - 1 op per txn

-e-2PL =+-Silo =4=Silo' ~>«TicToc
=«FOEDUS Hekaton ERMIA -+-Cicada

‘E.-:\ : 50

& ;: 40

E 30

E]

_g. 20

So

§ 10 -

: O T T T 1

0 6 12 18 24
# Threads
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Cicada: High Contention

Workload: TPC-C (1 W arehouse)

-e-2PL =+=Silo =4=Silo' >TicToc
=<FOEDUS Hekaton ERMIA -+-Cicada
§ .E 0.33 - _ * —
&=
g * 022
=
% 0.11 +
g
-~
E o
0 6 12 18 24
# Threads
Gogein
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Parting Thoughts

« There are several other implementation factors for an MVCC DBMS beyond the
four main design decisions that we discussed last class.

+ Need to balance the trade-offs between indirection and performance.
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Next Class

« Wellness Day
« Midterm Exam

* Query Optimization
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