Georgia &
Tech

Lecture 18: Gase Studies

CREATING THE NEXT*

1/83

Today's Agenda

Recap

MVCC Protocols
Microsoft Hekaton
Hyper

SAP HANA

Cicada

Conclusion

Georgia
Tech 2/83

MVCC Protocols Microsoft Hekaton Hyper SAP HANA Cicada Conclusion
[Jelele) 000000000000000000000000 000000000000000000000 0000000000000 0000000 000000000 000

Multi-Version Concurrency Control

+ The DBMS maintains multiple physical versions of a single logical object in
the database:
> When a txn writes to an object, the DBMS creates a new version of that object.

> When a txn reads an object, it reads the newest version that existed when the txn
started.

Georgia
Tech 4/83

Multi-Version Concurrency Control

« Writers don’t block readers. Readers don’t block writers.

 Read-only txns can read a consistent snapshot without acquiring locks or txn
ids.

> Use timestamps to determine visibility.

« Easily support time-travel queries.

Georgia
Tech

5/83

Today’s Agenda

MVCC Protocols

« Microsoft Hekaton (SQL Server)
- TUM HyPer

- SAP HANA

CMU Cicada

Georgia
Tech 6/83

Recap Microsoft Hekaton Hyper SAP HANA Cicada Conclusion
0000 ©00000000000000000000000 000000000000000000000 0000000000000 0000000 000000000 000

O®0000000000000000000000

Snapshot Isolation (SI)

« When a txn starts, it sees a consistent snapshot of the database that existed when
that the txn started.

> No torn writes from active txns.
> If two txns update the same object, then first writer wins.

« Sl is susceptible to the Write Skew Anomaly.

Georgia
Tech 8/83

O0@000000000000000000000

Write Skew Anomaly

Txn #1
Change white marbles
to black.

o
, ~ OO

Txn #

Change black marbles O O
to white.

TS
/V

Georgia
Tech 9/83

0O00@00000000000000000000

Write Skew Anomaly

Txn #1
Change white marbles
to black.

e0 . e®_ . (O
OO ®® OO

Change black marbles
to white.

Georgia
Tech 10/ 83

0000800000 00000000000000

Isolation Level Hierarchy

SERIALIZABLE
REPEATABLE READS SNAPSHOT ISOLATION

t]

READ COMMITTED

READ UNCOMMITTED
Georgia

Tech 11/83

0O0000@000000000000000000

Concurrency Control Protocol

« Approach 1: Timestamp Ordering

> Assign txns timestamps that determine serial order.
» Considered to be original MVCC protocol.

« Approach 2: Optimistic Concurrency Control

> Three-phase protocol from last class.
» Use private workspace for new versions.

« Approach 3: Two-Phase Locking

» Txns acquire appropriate lock on physical version before they can read/write a
logical tuple.

Georgia
Tech 12/83

0000008000 00000000000000

Tuple Format

TXN-ID BEGIN-TS END-TS POINTER

Unique Txn Version Next/Prev Additional
Identifier Lifetime Version Meta-data

Georgia
Tech 13/83

0000000 @0000000000000000

Timestamp Ordering (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS
A, 0 7 7 o
B, 0 0 7 (0'e]

*

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

Georgia
Tech 14/ 83

000000000 00000000000000

Timestamp Ordering (MVTO)

Thread #1 S - : '
T..=10 : Ay 9 7 U 00
“ E,i‘ B, 0 0 7 00
WRITE(8)
Use read-ts field in the Txn can read version if the
header to keep track of the latch is unset and its T4 is
timestamp of the last txn between begin-ts and end-ts.

that read it.

Georgia
Tech 15/83

000000000 ®@00000000000000

Timestamp Ordering (MVTO)

Thread #1 OO 2= :

° A 0 7 7 0

T;;=10 !
B, 0 0 7 (e'e}
WRITE(B)

Use read-ts field in the Txn can read version if the
header to keep track of the latch is unset and its T;y is
timestamp of the last txn between begin-ts and end-ts.

that read it.

Georgia
Tech 16/83

0000000000 @0000000000000

Timestamp Ordering (MVTO)

D R) D
Thread #1 o
T. =10 i A, 0 10 7 (0¢]
“ C,i‘ B, 0 0 7 0
WRITE(B)
Use read-ts field in the Txn can read version if the
header to keep track of the latch is unset and its T;q4 is
timestamp of the last txn between begin-ts and end-ts.

that read it.

Georgia
Tech 17/83

0000000000 0eO000000000000

Georgia
Tech

Timestamp Ordering (MVTO)

Thread #1
T,=10

TXN-ID READ-TS BEGIN-TS END-TS
SEADC) A, 0 70 7 oo

B, 0

9 7 00)

Use read-ts field in the Txn can read version if the
header to keep track of the latch is unset and its T;q is
timestamp of the last txn
that read it.

between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
T,q is greater than read-ts.

18/83

000000000000 e00000000000

Timestamp Ordering (MVTO)

TXN-ID READ-TS BEGIN-TS END-TS
Thread #1
READCA) A, 0 70 7 0

T, ;=10
id
E,i‘ ﬂl B, 70 0 7 (00}
WRITE(B)
Use read-ts field in the Txn can read version if the Txn creates a new version if
header to keep track of the latch is unset and its Tjgis no other txn holds latch and
timestamp of the last txn between begin-ts and end-ts. T4 is greater than read-ts.

that read it.

Georgia
Tech 19/83

0000000000000 O000000000

Timestamp Ordering (MVTO)

Thread #1
READ(A)

T,=10

WRITE(B)

Use read-ts field in the
header to keep track of the
timestamp of the last txn
that read it.

Georgia
Tech

TXN-ID READ-TS BEGIN-TS END-TS

A, 0 70 7 0
ﬂ| B, 70 0 7 10
ﬂl B, 70 0 70 (0%¢]

Txn can read version if the
latch is unset and its Tq is

between begin-ts and end-ts.

Txn creates a new version if
no other txn holds latch and
T;q is greater than read-ts.

20/83

0000000000000 0e000000000

Two-Phase Locking (MV2PL)

TXN-ID READ-CNT BEGIN-TS END-TS
Thread #1
READCD A, 0 0 7 (o'e}

T, =10
E,i* B, 0 0 7 00

WRITE(B)

Txns use the tuple's read-
cnt field as SHARED lock.
Use txn-id and read-cnt
together as EXCLUSIVE
lock.

Georgia
Tech 21/83

0000000000000 00e00000000

Two-Phase Locking (MV2PL)

Thread #1 66 2252

=) A 0 7 7 00
T;;=10 !
E’; B, 0 0 7 0
WRLTE (B)
Txns use the tuple's read- If txn-id is zero, then the
cnt field as SHARED lock. txn acquires the SHARED
Use txn-id and read-cnt lock by incrementing the
together as EXCLUSIVE read-cnt field.
lock.

Georgia
Tech 22/83

0000000000000 000e0000000

Two-Phase Locking (MV2PL)

6.6 TXN-ID READ-CNT BEGIN-TS END-TS
Thread #1
O ﬂ A 2 7 7 0

T,,=10
“ B, 0 0 7 00
Txns use the tuple's read- If txn-id is zero, then the If both txn-id and read-cnt
cnt field as SHARED lock. txn acquires the SHARED are zero, then txn acquires
Use txn-id and read-cnt lock by incrementing the the EXCLUSIVE lock by
together as EXCLUSIVE read-cnt field. setting both of them.
lock.

Georgia
Tech 23/83

0000000000000 0000e000000

Georgia
Tech

Two-Phase Locking (MV2PL)

READ-CNT BEGIN-TS END-TS

7

7 00)

7

7 00)

TXN-ID
Thread #1 66
READ(A) A 9
T;;=10 !
E,i* B, 70
WRITE(B)
Txns use the tuple's read- If txn-id is zero, then the

cnt field as SHARED lock. txn acquires the SHARED

Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.

If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

24/83

0000000000 00O00000Oe00000

Two-Phase Locking (MV2PL)

READ-CNT BEGIN-TS END-TS

7

7

9

7 00)
7 10
70 00)

TXN-ID
Thread #1
READ(A) A 9
T;;=10 :
E,i‘ B, 70
WRITE (B) B, 70
Txns use the tuple's read- If txn-id is zero, then the

cnt field as SHARED lock. txn acquires the SHARED

Use txn-id and read-cnt lock by incrementing the

together as EXCLUSIVE read-cnt field.
lock.

Georgia
Tech

If both txn-id and read-cnt
are zero, then txn acquires
the EXCLUSIVE lock by
setting both of them.

25/83

0000000000 00O0000000e0000

Observation
Thread #1
T‘ =231_1 TXN-ID READ-TS BEGIN-TS END-TS
“ A, 21-7 - 99999 | 2°7-1
A, | 21| - | 21| 00

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

Georgia
Tech 26/83

0000000000 00O00000000e000

Observation
Thread #1
Tid=231_1 D D B D

A, 0 - 99999 | 277-1
A, 0 - 27-7 | 0o

If the DBMS reaches the max value for its

timestamps, it will have to wrap around and

restart at one. This will make all previous versions

be in the "future" from new transactions.

Georgia
Tech 27/83

0000000000 00O000000000e00

Observation
Thread #1
T _ 231 1 TXN-ID READ-TS BEGIN-TS END-TS
“ A, 0 - 99999 | 277-1
Thread #2 A, 7 - 297-1 7
T;=1 A, 7 - 7 0o
If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.
Georgia
Tech 28/83

0000000000 00O0000000000e0

Observation
Thread #1
Tid= 231_ 1 TXN-ID READ-TS BEGIN-TS END-TS
A, 0 - 99999 | 27-1
Thread #2 A, 0 - 2317 7
T;~1 A, 0 - 7 00

If the DBMS reaches the max value for its
timestamps, it will have to wrap around and
restart at one. This will make all previous versions
be in the "future" from new transactions.

Georgia
Tech 29/83

0000000000 00O00000000000e

PostgreSQL: Txn Id Wraparound

+ Set a flag in each tuple header that says that it is frozen in the past. Any new txn
id will always be newer than a frozen version.

 Runs the vacuum before the system gets close to this upper limit.

« Otherwise it must stop accepting new commands when the system gets close to
the max txn id.

Georgia
Tech 30/83

Recap MVCC Protocols Hyper SAP HANA Cicada Conclusion
0000 000000000000000000000000 ©00000000000000000000 0000000000000 0000000 000000000 [e]ele]

O®0000000000000000000

Microsoft Hekaton

+ Incubator project started in 2008 to create new OLTP engine for MSFT SQL
Server (MSSQL).

> Reference
- Had to integrate with MSSQL ecosystem.
+ Had to support all possible OLTP workloads with predictable performance.

» Single-threaded partitioning (e.g., H-Store/VoltDB) works well for some
applications but terrible for others.

Georgia
Tech 32/83

https://vldb.org/pvldb/vol5/p298_per-akelarson_vldb2012.pdf

0O0®000000000000000000

Hekaton MVCC

+ Each txn is assigned a timestamp when they begin (BeginTS) and when they
commit (CommitTS§). e
« Each tuple contains two timestamps that represents their visibility and current
state:
> BEGIN-TS: The BeginTS of the active txn or the CommitTS of the committed txn
that created it.

> END-TS: The BeginT'S of the active txn that created the next version or infinity or
the CommitTS of the committed txn that created it.

Georgia
Tech 33/83

0O00@00000000000000000

Hekaton: Operations

Thread #1 66 Main Data Table
Begin @25 READ(A) . : : - :
» A 70 20 $100 o—:]

A, 20 (00} $200)

Georgia
Tech 34/83

0O000@0000000000000000

Hekaton: Operations

Thread #1 S e Main Data Table
Begin @ 25 LY BEGIN-TS END-TS VALUE POINTER

A, 70 20 $100 .—:|

» A, 20 | oo | se0 | o

Georgia
Tech 35/83

00000000000 000000000

Hekaton: Operations

Thread #1 S E Main Data Table
Begin @ 25 READ(A) 5 ; ; -

A, 70 $100 o—:]

@ =
» A, 20 00 | $200)
0

WRITE(A)
A; Txn@25 $300

TXn€23 - 10000000. . .00000000 00011001

Georgia
Tech 36/83

0O00000®00000000000000

Hekaton: Operations

Thread #1 66 Main Data Table
Begin @ 25 READ(A) — T

E’i A, 10 20 $100 o—
R » A, 20 00 $200]
A; | xn@25| 00 $300

Georgia
Tech 37/83

0000000 @0000000000000

Hekaton: Operations

Thread #1 S e Main Data Table
Begin @ 25 READ(A) B D \ PO

3 A 70 20 $100 o—
& ‘ N
WRITE (A) A, 20 Txn@25| $200 o—|

A; Txn@25| QOO $300

Georgia
Tech 38/83

0O0000000eO000000000000

Hekaton: Operations

Thread #1 6_6 Main Data Table
Begin @ 25 READ(A) B — o —

Commit @ 35 E’F A, 70 20 $100 0—:|
ST A, 20 Txn@25| $200 0—:|

Az Txn@25) OO $300

Georgia
Tech 39/83

000000000 e00000000000

Hekaton: Operations

Thread #1) Main Data Table
Begin @ 25 READ(A) —T T

Commit @ 35 E/i A 0 2 5100 °_:]
WRITE (A) Az 20 35 $200 o—:l
A; 35 o0 $300

Georgia
Tech 40/ 83

0000000000800 00000000

Hekaton: Operations

Thread #1 66 Main Data Table
Begin @ 25 READ(A) — T

Commit @ 35 E/i A 0 P 5100 ._:]
WRITE(A) Ay 20 35 $200 o—
A 35 (0l¢] $300

Georgia
Tech 41/83

00000000000 ®000000000

Hekaton: Operations

Thread #1 22 Main Data Table
Begin @ 25 DY BEGIN-TS END-TS VALUE POINTER

E/f A 9 20 | $100 .—:]
WRITE (A) Ay 20 Txn@25 | $200 0—:]

» Ay | xne25| o0 $300

Thread #2 50
Begin @ 30 READ(A)

Georgia
Tech 42/83

000000000000 e00000000

Hekaton: Operations

Main Data Table
Thread #1 60
Begin @ 25 DY BEGIN-TS END-TS VALUE POINTER
N A o—
E" 1 70 20 $100 3
e A, 20| mnezz] s200 | o—ig
» A, | mmezs| oo | s3eo
Thread #2 66 S
Begin @ 30 READ(A
N e

4

3
1
=]
m
2
>
Z

Georgia

Tech 43/ 83

0000000000000 e0000000

Hekaton: Transaction State Map

« Global map of all txns’ states in the system:

» ACTIVE: The txn is executing read/write operations.

> VALIDATING: The txn has invoked commit and the DBMS is checking whether it
is valid.

» COMMITTED: The txn is finished but may have not updated its versions’ TS.

» TERMINATED: The txn has updated the T'S for all of the versions that it created.

Georgia
Tech 44/ 83

0000000000000 0e000000

Hekaton: Transaction Lifecycle

Txn Events Txn Phases
:320¢) 10 S IS— Get BeginTS, set state to ACTIVE
Pr (1:3:2:;1 ; ; Track txn's read set, scan set, and write set.
2428200000, 0.7 1 (SN COSR—— Get CommitTs, set state to VALIDATING

Validation Validate reads and scans
— If validation OK, write new versions to redo log

[S{0 1.7 0171 | RESSN R Set txn state to COMMITTED

Post- Update version timestamps
— BeginTS$ in new versions, CommitTS in old versions

TERMINATE ... Set txn state to TERMINATED

v Remove from txn map

Georgia
Tech 45/ 83

0000000000000 00e00000

Hekaton: Transaction Meta-Data

- Read Set
> Pointers to physical versions returned to access method.
 Write Set

» Pointers to versions updated (old and new), versions deleted (old), and version
inserted (new).

+ Scan Set

» Stores enough information needed to perform each scan operation again to check
result.

« Commit Dependencies

> List of txns that are waiting for this txn to finish.

Georgia
Tech 46/ 83

0000000000000 000e0000

Hekaton: Transaction Validation

+ Read Stability
» Check that each version read is still visible as of the end of the txn.

- Phantom Avoidance
> Repeat each scan to check whether new versions have become visible since the txn
began.
- Extent of validation depends on isolation level:
> SERIALIZABLE: Read Stability + Phantom Avoidance
» REPEATABLE READS: Read Stability

» SNAPSHOT ISOLATION: None
> READ COMMITTED: None

Georgia
Tech 47/ 83

0000000000000 0000e000

Hekaton: Optimistic vs. Pessimistic

« Optimistic Txns:

» Check whether a version read is still visible at the end of the txn.
> Repeat all index scans to check for phantoms.

- Pessimistic Txns:

» Use shared & exclusive locks on records and buckets.
» No validation is needed.
> Separate background thread to detect deadlocks.

Georgia
Tech 48/ 83

000000000000 000000e00

Hekaton: Optimistic vs. Pessimistic

Database: Single table with 1000 tuples
Workload: 80% read-only txns + 20% update txns
Processor: 2 sockets, 12 cores

-@-Optimistic =k=Pessimistic

1.6
“ =
§ g 1.2
= o8
2
=
0.4
g
é 0 T T T 1
0 6 12 18 24
Threads

Georgia
Tech 49/ 83

0000000000000 000000e0

Hekaton: Lessons

+ Use only lock-free data structures

> No latches, spin locks, or critical parts
> Indexes, txn map, memory alloc, garbage collector
> Example: Bw-Trees

« Only one single serialization point in the DBMS to get the txn’s begin and
commit timestamp

> Atomic Addition (CAS)

Georgia
Tech 50/83

0000000000000 0000000e

Observation

- Read/scan set validations are expensive if the txns access a lot of data.

« Appending new versions hurts the performance of OLAP scans due to pointer
chasing & branching.

+ Record-level conflict checks may be too coarse-grained and incur false positives.

Georgia
Tech 51/83

Recap MVCC Protocols Microsoft Hekaton SAP HANA Cicada Conclusion
[elefele] 000000000000000000000000 000000000000000000000 ©000000000000 0000000 000000000 000

Hyper

O®00000000000

Hyper MVCC

+ Column-store with delta record versioning.
« Reference

> In-Place updates for non-indexed attributes
> Delete/Insert updates for indexed attributes.
> Newest-to-Oldest Version Chains

» No Predicate Locks / No Scan Checks

« Avoids write-write conflicts by aborting txns that try to update an uncommitted
object.

Georgia
Tech 53/83

https://dl.acm.org/doi/10.1145/2723372.2749436

000000000000

Hyper: Storage Architecture

Main Data Table Delta Storage (Per Txn)

Txn #1
: [
(ATTR2-8199) | 8 |
Peter $100 o
01 $200 o— Txn #2
g
g

Gaurav|| $150 (ATTR2-$122) n

Alice $139 Txn #3

Georgia
Tech 54/83

000@000000000

Hyper: Storage Architecture

Main Data Table Delta Storage (Per Txn)

. Txn #1
(ATTR2-$199) | 9
» Peter $100

P
0i $200 o—| Txn #2
@
)

Gaurav|| $150 (ATTR2-$122) n

Alice $139 Txn #3

(ATTR2-$100) | ®

Georgia
Tech 55/83

0000800000000

Hyper: Storage Architecture

Main Data T able Delta Storage (Per Txn)
i Txn #1
- TTR1 - TTR2
i (ATTR2-$199) | @
» Peter || $200 o)
/ Txn #2
Q1 $200 o——_

Gaurav|| $150] n

Alice 8739 ['] Txn #3

100 [

Georgia
Tech 56/83

0O0000@0000000

Hyper: Storage Architecture

Main Data Table Delta Storage (Per Txn)
Txn #1
ATTRT ATTR2 "','f’:,"
| | e | Coirrme 575 To]
Peter $200

01 $200 o—_l_ Txn #2
Gaurav|| $150 (ATTR2-$122) n

» Alice || $200 Txn #3

(ATTR2-$100) | ®
(ATTR2-$139) | ¢

o=

Georgia
Tech 57/83

0000008000000

Hyper: Validation

 First-Writer Wins

> If version vector is not null, then it always points to the last committed version.
> Do not need to check whether write-sets overlap.

« Check the redo buffers of txns that committed after the validating txn started.

» Compare the committed txn’s write set for phantoms using Precision Locking.
> Only need to store the txn’s read predicates and not its entire read set.

Georgia
Tech 58/83

https://dl.acm.org/citation.cfm?id=582340

0000000 @00000

Hyper: Precision Locking

Validating Txn Delta Storage (Per Txn)
SELECT * FROM foo 1001
WHERE attr2 > 20 99>20 AND 99<30 (attr2-99)
AND attr2 < 30 |5
= FALSE
SELECT COUNT(attr1) 20 0 S3osp—s| (attr2-33)
FROM foo
WHERE attr2 IN (10,20,30)
Txn #1002
SELECT attr1, AVG(attr2
LECr et (attr2) (attr2.122)
WHERE attr1 LIKE ’'%Ice%’
GROUP BY attri
HAVING AVG(attr2) > 100 Txn #1003
(attri- 'IceCube’,
attr2-199)

Georgia
Tech 59/83

00000000 @0000

Hyper: Precision Locking

Validating Txn Delta Storage (Per Txn)

SELECT * FROM foo Toen #1001
WHERE attr2 > 20 (attr2-99)
AND attr2 < 30 K
Wl

(attr2-33)

SELECT COUNT(attrl)
FROM foo
WHERE attr2 IN (10,20,30)

Txn #1002
SELECT attr1, AVG(attr2)
FROM foo (attr2-122)

WHERE attr1 LIKE '%Ice%’
GROUP BY attri
HAVING AVG(attr2) > 100 Txn #1003

(attri- 'IceCube’,
attr2-199)

Georgia
Tech 60/ 83

000000000 e000

Hyper: Precision Locking

Validating Txn Delta Storage (Per Txn)
SELECT x FROM foo Lo it
WHERE attr2 > 20 (attr2-99)
AND attr2 < 30
SELECT COUNT (attr1) ; (attr2-33)
FROM foo
WHERE attr2 IN (10,20,30)
Txn #1002
SELECT attr1, AVG(attr2
feon 2t (attr2) (attr2.122)
WHERE attr1 LIKE %lce%’ N
GROUP BY attri
HAVING AVG(attr2) > 100 Txn #1003
(attri- 'IceCube’,
attr2-199)

Georgia
Tech 61/83

0000000000800

Hyper: Precision Locking

Validating Txn Delta Storage (Per Txn)

SELECT x FROM foo LR

WHERE attr2 > 20 (attr2-99)
AND attr2 < 30

SELECT COUNT (attr1) (attr2-33)
FROM foo
WHERE attr2 IN (19,20,30)
Txn #1002
SELECT attr1, AVG(attr2
ERCr att (attr2) (attr2.122)
Txn #1003
TRUE (attri- 'IceCube’,
"IceCube’ LIKE '%Ice%’ attr2-199)

Georgia
Tech 62/83

0000000000080

Hyper: Version Synopses

Main Data Table
Store a separate column that
Version Version
SETEE \ector tracks the position of the first
[2,5) | @Qreter || $700 and last versioned tuple in a
¢ 01 $200 block of tuples.

Gaurav|| $150

Offsets € lice |[399
@ rork || 3300

a Rahul $300

@ slex |[50

When scanning tuples, the
DBMS can check for strides of
tuples without older versions
and execute more efficiently.

[-[s]-[+]--H

Georgia
Tech 63/83

000000000000 e

Hyper: Version Synopses

Main Data Table
Store a separate column that
Version Version
SO tracks the position of the first
[2,5) peter || $700 || 9 and last versioned tuple in a
0i $200 || © block of tuples.
Gaurav|| $150 *—>
alice || 99 2 B(ghl\e;[n scannl}lngktlgples, Fge]
ok 500 I o S can check for strides o
tuples without older versions
Rahul $300) :
and execute more efficiently.
Alex $0)

Georgia
Tech 64/ 83

Recap MVCC Protocols Microsoft Hekaton Hyper Cicada Conclusion
0000 000000000000000000000000 000000000000000000000 0000000000000 ©000000 000000000 000

O@00000

SAP HANA

+ In-memory HTAP DBMS with time-travel version storage (N20).
+ Reference

> Supports both optimistic and pessimistic MVCC.
> Latest versions are stored in time-travel space.
> Hybrid storage layout (row + columnar).

« Based on P*TIME, TREX, and MaxDB.
» First released in 2012.

Georgia
Tech 66/ 83

https://dl.acm.org/doi/10.1145/2213836.2213946

00@0000

SAP HANA: Version Storage

« Store the oldest version in the main data table.

+ Each tuple maintains a flag to denote whether there exists newer versions in the
version space.

« Maintain a separate hash table that maps record identifiers to the head of version
chain.

Georgia
Tech 67/83

000@e000

SAP HANA: Version Storage

Main Data Table Version Storage

RID VERS? VERSION DATA
A | True A, -

B | False| B, -
C| True C, -
D

True Dg -

Georgia
Tech 68/ 83

[e]e]e]e] lele]

SAP HANA: Transactions

« Instead of embedding meta-data about the txn that created a version with the
data, store a pointer to a context object.

> Reads are slower because you must follow pointers.
» Large updates are faster because it’s a single write to update the status of all tuples.

« Store meta-data about whether a txn has committed in a separate object as well.

Georgia
Tech 69/83

0O0000e0

SAP HANA: Version Storage

Main Data Table Version Storage

RID VERS? VERSION DATA

A | True A, -
B | False| B, -
C| 7True C, -
D

True Dg -

Thread #1

Group Commit Context

T.-3 HeBEl

Georgia
Tech 70/ 83

O00000e

SAP HANA: Version Storage

Main Data Table Version Storage
A| True A -
B | False| B, -
C| True C, -
D | 7True D, -
- Txn Meta-Data
Thread #1 Group Commit Context
2 S
N (4 | (4
WRITE(C) WRITE(D)

Georgia

Tech 71/ 83

Recap MVCC Protocols Microsoft Hekaton Hyper SAP HANA Conclusion
0000 000000000000000000000000 000000000000000000000 0000000000000 0000000 [Jelelelelelelele} [e]ele]

O®@0000000

MVCC Limitations

- Computation & Storage Overhead

> Most MVCC schemes use indirection to search a tuple’s version chain. This
increases CPU cache misses.

» Also requires frequent garbage collection to minimize the number versions that a
thread must evaluate.

+ Shared Memory Writes

> Most MVCC schemes store versions in “global” memory in the heap without
considering locality.

+ Timestamp Allocation

> All threads access single shared counter.

Georgia
Tech 73/ 83

[e]e] le]ele]ele]e]

OCC Limitations

- Frequent Aborts

> Txns will abort too quickly under high contention, causing high churn.
- Extra Reads & Writes

> Each txn must copy tuples into their private workspace to ensure repeatable reads.
It then has to check whether it read consistent data when it commits.

- Index Contention

> Txns install "virtual” index entries to ensure unique-key invariants.

Georgia
Tech 74/ 83

O000®@00000

CMU Cicada

 In-memory OLTP engine based on optimistic MVCC with append-only storage
(N20).
+ Reference

> Best-effort Inlining

> Loosely Synchronized Clocks
» Contention-Aware Validation
» Index Nodes Stored in Tables

« Designed to be scalable for both low- and high-contention workloads.

Georgia
Tech 75/ 83

https://dl.acm.org/doi/10.1145/3035918.3064015

[e]e]e]e] lelele]e]

Cicada: Best-Effort Inlining

Record Meta-data

POINTER LATEST VERSION

« Record Meta-data

+ Record meta-data is stored
i > in a fixed location.
KEY VALUE POINTER . 1
o | famNIA jIhFeads will attempt to.
inline read-mostly version
’ﬁ__, within this meta-data to

reduce version chain
traversals.

Georgia
Tech 76/ 83

00000@000

Cicada: Fast Validation

- Contention-aware Validation

> Validate access to recently modified records first.

- Early Consistency Check

» Pre-validate access set before making global writes.
» Skip if all recent txns committed successfully.

- Incremental Version Search

» Resume from last search location in version list.

Georgia
Tech 77/ 83

[e]e]e]e]ele] le]e]

Cicada: Index Storage

Index Index Node Table

NODE DATA POINTER

Keys-[100,200]

Aw Pointers-[B,C]
Keys-[50, 70]

B, |pointers’.[o,e7
Keys-[52, 70]

Bw Pointers-[D,E]
Keys-[10,30]

E; |Pointers'.rIn, R107
Keys-[11,30]

E, |pointers’.[rIp, R1D]
Keys-[12,30]

E, |pointers’.[rIp, R107

O -

TT“T&I

tIt]

Georgia
Tech 78/ 83

000000080

Cicada: Low Contention

Workload: YCSB (95% read / 5% write) - 1 op per txn

-e-2PL =+-Silo =4=Silo' ~>«TicToc
=«FOEDUS Hekaton ERMIA -+-Cicada

‘E.-:\ : 50

& ;: 40

E 30

E]

_g. 20

So

§ 10 -

: O T T T 1

0 6 12 18 24
Threads
Georgia
Tech 79/ 83

00000000 e

Cicada: High Contention

Workload: TPC-C (1 W arehouse)

-e-2PL =+=Silo =4=Silo' >TicToc
=<FOEDUS Hekaton ERMIA -+-Cicada
§ .E 0.33 - _ * —
&=
g * 022
=
% 0.11 +
g
-~
E o
0 6 12 18 24
Threads
Gogein

80/83

Recap MVCC Protocols Microsoft Hekaton Hyper SAP HANA Cicada
0000 000000000000000000000000 000000000000000000000 0000000000000 0000000 000000000 [Jele}

Parting Thoughts

« There are several other implementation factors for an MVCC DBMS beyond the
four main design decisions that we discussed last class.

+ Need to balance the trade-offs between indirection and performance.

Georgia
Tech 82/83

Next Class

« Wellness Day
« Midterm Exam

* Query Optimization

Georgia
Tech 83/83

	Multi-Version Concurrency Control
	Recap
	MVCC Protocols
	Microsoft Hekaton
	Hyper
	SAP HANA
	Cicada
	Conclusion

