
PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Terrain Synthesis from Digital Elevation Models
Howard Zhou, Jie Sun, Greg Turk, IEEE Member and James M. Rehg, IEEE Member

Abstract— In this paper we present an example-based system
for terrain synthesis. In our approach, patches from sample
terrain (represented by a height field) are used to generate
new terrain. The synthesis is guided by a user-sketched feature
map that specifies where terrain features occur in the resulting
synthetic terrain. Our system emphasizes large-scale curvilinear
features (ridges and valleys) because such features are the
dominant visual elements in most terrain. Both the example
height field and user’s sketch map are analyzed using a technique
from the field of geomorphology. The system finds patches from
the example data that match the features found in the user’s
sketch. Patches are joined together using graph cuts and Poisson
editing. The order in which patches are placed in the synthesized
terrain is determined by breadth-first traversal of a feature
tree and this generates improved results over standard raster-
scan placement orders. Our technique supports user-controlled
terrain synthesis in a wide variety of styles, based upon the visual
richness of real-world terrain data.

Index Terms— Terrain synthesis, Digital Elevation Models,
terrain analysis, texture synthesis.

I. INTRODUCTION

THERE are numerous applications that make use of syn-
thetic terrain, and very often the terrain is the dominant

visual element in the scene. Such applications include land-
scape design, flight simulators, emergency response training,
battleground simulations, feature film special effects and com-
puter games. Over the years, graphics researchers have made
considerable progress towards developing efficient methods for
generating synthetic terrain. Previous terrain synthesis work
has focused on using fractal models and physical erosion
models to create realistic-appearing terrain.

With the rapid growth of computing power and develop-
ment in terrain visualization techniques, the demand for more
realistic terrain has increased considerably. In addition, users
of terrain modelling applications want more control over the
creation of new terrain. However, current terrain synthesis
methods have several limitations. First, these methods provide
users with little or no control over the placement of desired
terrain features. Second, using the control parameters in these
methods, it is difficult to generate terrain with a desired style,
such as a terrain with the geological features of the Grand
Canyon.

Fig. 2(a) and 2(b) show examples of fractal and ero-
sion terrain produced by some popular commercial software,
displayed as intensity-coded elevation maps. The styles of
these terrains are quite unlike the natural terrain illustrated
in Fig. 2(c) and 2(d).

We present a novel example-based terrain synthesis method
which addresses the need for intuitive user control over both

All authors are with the GVU Center, Georgia Institute of Technol-
ogy, 85 5th Street NW, Atlanta, GA 30308. E-mail: {howardz, sun, turk,
rehg}@cc.gatech.edu

Fig. 1. Synthesized terrain using DEM of Flathead National Forest Mountain
Range (top image) and DEM of the Grand Canyon (bottom image).

terrain feature placement and terrain style. Our method draws
upon the techniques of patch matching and patch placement
from example-based texture synthesis. In our approach, the
user supplies a sketched terrain feature map (called the sketch
map) and real terrain data (called the example height field)
which contain desired terrain styles. Example height fields
are in the form of Digital Elevation Models (DEMs), which
are available online from the U.S. Geological Survey. Our
system then automatically generates a new height field that
preserves the visual style of the real terrain data and meets
the feature constraints of the sketch map. Synthetic results
from our approach are shown in Fig. 1.

The sketch map provides the user with an easy and intuitive
way to control the synthesis process. Each map specifies the
locations of important terrain features, such as the bifurcation
point at the center of Fig. 10(a). Notice that these sketches
are quite coarse. In fact, the width of the brush and the pixel
intensities are of little importance, as long as they follow
the simple principle that darker indicates lower elevation and
brighter indicates higher elevation. Our goal in this work
is the generation of visually-compelling terrain. We do not
address the separate issue of whether a synthesized terrain is
geologically accurate.

The starting point for our algorithm is the identification
of important terrain features in both the sketch map and
the example height field. Our system concentrates on large
curvilinear features such as rivers, valleys and mountain ridges,
since these are usually the most important visual elements in
large-scale terrain (as illustrated in Fig. 2(c) and 2(d)). Because
the underlying terrain structures in the sketch map and the ones

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

(a) (b)

(c) (d)

Fig. 2. Examples of terrain generated by current methods. (a) Fractal Terrain
(Ridged Multi Perlin) generated by Terragen at 1025× 1025 resolution. (b)
Erosion Terrain generated by Bryce 5 at 1024×1024 resolution. In contrast are
two real elevation maps: (c) 1/3 arc second(10m) DEM of Flathead national
forest mountain range, MT and (d) 1/3 arc second(10m) DEM of Mount
Vernon, KY. (DEM courtesy of the U.S. Geological Survey)

in the example height field are often very different, matches
over large spatial scales are unlikely to be correct. However,
we observe that at small scales, common terrain features such
as a bifurcation or a straight section of valley can be found in
both maps. Hence, our algorithm breaks the sketch map into
small patch regions and searches through the example height
field for structural feature matches.

Extraction of structural information from the sketch map is
straightforward due to its simplicity. On the other hand, the
extraction of high-level structural information such as ridges
and valleys from a real terrain height field can be difficult.
Here we draw upon work in the field of geomorphology.
Specifically, we use the Profile recognition and Polygon break-
ing Algorithm (PPA) developed by Chang et al. [1] to extract
structural information such as ridge and valley axes from a
height field.

Once the important structural terrain features have been
extracted, our algorithm proceeds in the following stages.
First, curvilinear terrain features are used as constraints for
the matching and alignment of patch regions in the sketch
map and the example height field. Second, these features
are used as constraints for matching along the overlapping
boundary between neighboring patch regions. A patch is
selected based on a weighted combination of scores which
assess the goodness-of-fit between a patch and its neighbors
and the amount of deformation of the patch that is required.
The order of patch placement is determined by a breadth-
first traversal of a feature tree which is constructed from the
user sketch. Each patch is placed into the output map using
a combination of graph cut seam finding and Poisson seam
removal to minimize visual discontinuities.

This paper makes the following contributions:

• Feature-based approach to matching and placement of
large curvilinear terrain features, which makes it possible
to efficiently search large terrain databases and preserve
important visual elements in the synthesis process.

• Tree-ordered patch placement algorithm, as an alternative
to standard raster-scan ordering, which results in a more
faithful reproduction of terrain structure in matching the
user input.

• Method for sketch-based specification of synthesized ter-
rain features, giving the user intuitive control over the
synthesis result.

• The ability to synthesize transitions between different
terrain types and incorporate multiple DEMs into a single
synthesized output.

We have drawn significant inspiration for our work from
previous texture synthesis methods, which we review in the
following section.

II. RELATED WORK

There are two main approaches to generating synthetic
terrain: fractal landscape modelling and physical erosion
simulation. Fractal landscape modelling dates back to the
pioneering work of Mandelbrot [2]. Since then, a variety
of stochastic subdivision techniques have been introduced.
Fournier et al. [3] introduced the random midpoint displace-
ment technique to create fractal surfaces. Voss [4] added suc-
cessive random displacement to fractional Brownian surfaces.
Miller [5] proposed a square-square subdivision scheme for
generating fractal terrain and a parallel processing algorithm
for rendering height fields. Lewis [6] proposed generalized
stochastic subdivision. Szeliski and Terzopoulos [7] addressed
the problem of user control by combining deterministic splines
and stochastic fractals into constrained fractals. Recent fractal-
based approaches are reviewed in [8] and [9].

Physical erosion simulation is an alternative approach to
synthesizing terrain details based on models of landscape for-
mulation and stream erosion from the geomorphology commu-
nity. It is often used as a refinement step after a rough height
field is generated. Kelley et al. [10] first introduced a method to
approximate natural terrain by simulating the erosion of stream
networks. Later, Musgrave et al. [11] then combined the fractal
modelling and erosion simulation approaches into a single
framework. Recent physical erosion techniques, exemplified
by [12], [13], [14], [15], and [16], have focused on improving
both the physical modelling aspect and computational effi-
ciency. With appropriately-tuned parameters, these techniques
can generate realistic-appearing terrain.

Both fractal and physical erosion techniques add terrain
details through procedural refinement, which often involves
non-intuitive parameter tuning. Recently, Brosz et al. [17]
attempt to extract high resolution terrain details from existing
DEM data and apply it to lower resolution terrain through
multi-resolution analysis. In practice, their method requires
both the source and target terrain to be fairly detailed and
does not grant the user freedom to create arbitrary terrain.

To provide the user with more intuitive control over the
synthesized terrain, image-based alternatives were proposed by

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

Lewis [18] and Perlin and Velho [19]. In these works, terrain
was viewed as a type of texture and user control was provided
through direct manipulation of the texture. The result was then
interpreted as a height field to create a variety of terrain types.
However, because it is difficult for a user to draw a realistic
natural height field by hand, these methods typically suffer
from a lack of realistic detail.

Commercial Software We are not aware of any existing
commercial software for terrain synthesis that employs an
approach that is similar to ours. We briefly review four major
commercial systems, Mojoworld, Terragen, World Machine,
and Bryce, which are representative of the current state-of-
the-art. Mojoworld and Terragen both have fractal synthesis
engines which generate terrain procedurally. The resulting
models are very compact because they are generated on-
the-fly. World Machine, on the other hand, offers geological
erosion on top of its procedural shape and noise generator
to synthesize realistic-appealing terrain. In all these systems,
control over the synthesis result is obtained by changing global
parameters in the generation process. It is, however, difficult
to set these parameters so as to generate distinctive, realistic
terrain types. Moreover, these systems do not support the
user-specified placement of major terrain features. Bryce, in
addition to having both fractal and erosion synthesis engine,
also accepts as input a direct specification of the height field
by the user using a painting approach (essentially the method
of [18] with the addition of fractal noise). Fig. 2(c) and 2(d) are
example terrains generated by such commercial systems. None
of these products, however, make it possible to synthesize
terrain in a specific style, such as style of the Grand Canyon.

Texture Synthesis Image-based texture synthesis is the
process of creating an arbitrarily large patch of texture by
drawing pixels from a given example image. During the past
few decades, a steady improvement in the quality of synthe-
sized textures, both 2D and volumetric, has been achieved
through an evolution from pixel-based methods [20] to non-
parametric neighborhood-based methods [21], [22], [23]. The
most recent patch-based techniques, exemplified by [24], [25],
[26], [27], [28], [29], [30], and [31], have two common stages:
1) search in a sample texture for neighborhoods most similar to
a context region; 2) merge a patch or a pixel with the (partially)
synthesized output texture. Dynamic programming [24] and
graph cuts [26] have been used to optimize the patch merging
stage. We employ a related search-and-merge strategy that
addresses the unique characteristics of terrain data.

Recently, Zhang et al. [32] introduced feature-based warping
and blending techniques to synthesize progressively-variant
texture on arbitrary surfaces. In their work the feature texton
masks were manually extracted. Wu and Yu [27] use edges
extracted from the input texture as high-level features to
guide patch-based texture synthesis. We build on this earlier
work in two ways. First, we employ curvilinear features to
support user-sketching of desired terrain features and efficient
search for matching patches in large terrain datasets. Second,
we introduce a feature analysis technique which can reliably
extract global terrain characteristics such as ridges and valleys
from large DEMs in a wide range of styles. We demonstrate
that standard edge-finding methods are inappropriate for this

task.
The image analogies framework introduced by Hertzmann

et al. [25] can be used to synthesize terrain images through
a texture-by-numbers approach. This work does not directly
synthesize novel terrain height fields. Its application to height
field synthesis is hampered by the difficulty of guarantee-
ing that the local neighborhood matching approach would
preserve extended structures such as ridges and valleys that
characterize terrain style. The GPU-based texture synthesis
method presented in [30] includes drag-and-drop features
and synthesis magnification. These techniques were used to
relocate mountains on a terrain height map. In contrast to
this work, our focus is to automatically generate a complete
terrain image in a particular style by matching extended terrain
features with a desired user sketch. We therefore support fully-
automatic feature extraction and matching.

While our example-based approach to terrain synthesis is
inspired by the recent success of patch-based methods, terrain
synthesis is not simply texture synthesis on height fields.
The terrain generation problem can be distinguished from
conventional texture synthesis in three main ways: First, a wide
variety of terrain types can be characterized by a combination
of global features (such as ridges and valleys) which can
be reliably extracted from input terrain maps. In contrast,
no such easily identifiable global features exist for general
image textures. Second, terrain synthesis must be globally
controllable in order to be useful for a wide range of appli-
cations, and large terrain data sets (often a gigapixel or more)
must be searched in order to meet the users’ constraints. This
stands in contrast to the canonical texture synthesis problem
of “growing” a small input patch of texture into a larger output
image with the same local intensity structure. We demonstrate
that feature-based terrain matching can address both of these
concerns. Third, many recent cut-and-merge techniques for
texture synthesis exploit the fact that image textures contain
many natural boundaries that provide good seams along which
to merge texture elements. In contrast, there are no natural
seams in terrain data. Moreover, any mismatch between the
height fields in two adjacent patches is immediately visible.
To remove height differences by blurring results in highly-
visible artifacts. We show how to combine recent graph-cut
and Poisson seam removal techniques to address the problem
of merging terrain patches.

III. FEATURE EXTRACTION

In this section, we describe our method for extracting terrain
features from the example height field and from the user’s
sketch map. We use the term terrain features to mean large-
scale long curvilinear features such as a river, a valley or a
mountain ridge. Such terrain features characterize the overall
layout of the terrain. Fig. 3(a) shows an example height field,
consisting of a portion of the Grand Canyon, which is depicted
as a shaded relief map. This example illustrates both the
existence of large scale curvilinear structures (the main river
bed) as well as a rich array of secondary structures (the side
canyons and other features). Our goal is to match the primary
structures to a desired sketch shape while preserving the rich
detail that is present in this data.

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

(a) (b) (c)

Fig. 3. Comparison of feature extraction methods. (a) Grand Canyon height
field displayed as a shaded relief map. (b) Features extracted by the Canny
edge detector. (c) Features extracted by PPA.

It may seem that terrain features could be identified through
edge detection. Closer scrutiny, however, reveals several prob-
lems in applying edge detection to complex terrain data. First,
terrain features are characterized by the local extrema of
the height field, while edge detection methods are based on
locally-maximal derivatives of the image. As a consequence,
the application of edge detection to terrain data results in
spurious features due to local height variations, as shown in
the upper right corner of Fig. 3(b).1 In addition, terrain data
has characteristic branching structures which are not always
handled correctly by standard edge detection algorithms (e.g.
lower right corner of Fig. 3(b)).

We draw upon work in the geomorphology literature to
identify large-scale terrain features. In particular, we have
adapted the Profile recognition and Polygon breaking Algo-
rithm (PPA), developed by Chang et al. [1], to our task. We
briefly summarize the method in this section, and refer the
reader to their paper for additional details.

PPA can extract either ridges or valleys. Here we will
only describe ridge finding, with the necessary modification
to finding valleys being understood. First, each grid point
(pixel in the height field) is visited to determine if it is
a candidate for being on a ridge. The grid points in eight
outward paths are examined (the yellow points in Fig. 4(a)),
and the current point is marked as a candidate if the height
dips below the central point by more than a threshold2 along
any of these paths. All such candidates are then connected
by a segment to all other adjacent candidates (the red circles
in Fig. 4(b)). When one segment crosses another, the lower
elevation segment is cancelled (shown as dotted segments in
Fig. 4(b)). The polygons are then broken into dendritic line
patterns by repeatedly eliminating the least important segment
(the remaining segment with the lowest height, shown as
dotted segments in Fig. 4(c)) for each closed polygon. This
process terminates when there are no more closed polygons.
After the polygon breaking process, shorter branches are
eliminated (dotted segments in the Fig. 4(d)).

The output of PPA for a sample terrain is shown in Fig. 3(c).
Notice that the valley axes coincide with human perception
of the important curvilinear features in the height field. Our

1Searching for edges at multiple scales cannot easily solve this problem,
as perceptually important terrain structures are not guaranteed to persist over
scale.

2We typically set the threshold to one half of the elevation range of the
input height field.

(a) (b) (c) (d)

Fig. 4. Chang’s Profile recognition and Polygon breaking Algorithm (PPA)
(a) Profile recognition (b) Target Connection (c) Polygon breaking (d) Branch
reduction

system uses PPA to identify features both in the example
height field and in the user’s sketch map. The gray-scale values
in the sketch map are treated as elevation values. The output
of PPA is a collection of line segments that are connected and
that form long chains along ridges or valleys. These chains of
segments are the basis for feature matching between the user’s
sketch and regions in the given height field. Once the chains
of segments have been identified, they are analyzed to form
two classes of features: isolated features and curvilinear (path)
features. Isolated features are branch points and end points.
Curvilinear features are long chains of segments that connect
isolated features. The feature matching process described next
make use of these two feature categories.

A key property of the PPA algorithm is that the extracted
features form a tree (a forest in general) since all closed
polygons are broken in the analysis process. This property
allows us to use tree traversal to order the placement of patches
during synthesis, as described next.

IV. FEATURE-BASED PATCH MATCHING AND PLACEMENT

Our synthesis process creates a new height field by extract-
ing patches from the example height field and placing them
in an output height field in a manner that is dictated by the
user’s sketch. Typical patch sizes are 80× 80 pixels (this is
determined by the spatial scale of the example terrain data and
the detail of the result desired by the user). Patch selection and
placement is performed in two stages: feature patch matching
and placement and non-feature patch placement.

The first stage, feature matching and placement, locates
both isolated features: branch points and end points, and non-
isolated features: curvilinear features (paths) in the sketch
map. See Fig. 5 for examples of each of these feature types.
Patches are found that match these features, and these patches
are placed in the output height field.

If we treat the isolated features extracted by the PPA
algorithm as nodes and curvilinear features (paths) as edges
of a graph, then this graph is guaranteed to be acyclic.
Our algorithm follows a breath-first-search order to match
and align the patch regions. It first picks an isolated feature
(usually a branch if it is present) as the root, it then traverses
down through the graph one edge at a time until every edge
reachable from the root is covered. This process is illustrated
in Figs. 6(c)–6(e). Note that this is a departure from traditional
texture synthesis methods that follow a rigid patch placement
order (e.g. left-to-right and top-down).

Finally, all the as-yet unfilled regions in the output height
field are filled using regions from the input that do not contain
any strong features. The final result is depicted in Fig. 6(f).

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

(a) (b) (c)

(d) (e) (f)

Fig. 5. Examples of terrain patches for each feature type: (a),(b),(c) branch
point, end point, and path patch respectively. (d),(e),(f) corresponding patches
after feature extraction.

(a) (b) (c)

(d) (e) (f)

Fig. 6. Illustration of patch placement order. (a) Sample sketch map. (b)
Tree structure returned by PPA analysis. Branch point features and end point
features are connected by curvilinear path features. (c) The root patch is placed
first. (d) Breadth-first traversal guides the placement of additional patches. (e)
Once tree traversal is complete, begin placing non-feature patches. (f) Final
result.

In both stages, several candidate patches are considered for
placement, and the patch that is selected for use is the one that
gives the least cost in terms of its match with the user’s sketch
and its overlap with already placed patches. (Patch placement
invokes a graph cut algorithm to select which pixels should be
deposited in the output height field, and this will be described
in Sec. V-A). In the following sections, we describe these
matching and placement operations in more detail.

A. Feature Patch Matching and Placement

As described above, isolated features in the user’s sketch
are either branch points or end points in the segment graph.
Fig. 6(b) contains three branch points and five end points.
The system analyzes the user’s sketch map and identifies all
such isolated features. One by one, each such isolated feature
is examined and a list of candidate matches is formed from
isolated features in the example height field. We will consider
branch points and end points in turn.

Branch Points For branch point matching, the degree (or
valence) of the branch points must match and the angles of the
outgoing segment chains must be similar. For determining the
quality of angle matching, only d possible alignments have
to be considered for a degree d branch point. For instance,

as shown in Fig 5(d), the degree 3 branch patch would have
3 alignments (1,2,3)→ (1,2,3),(2,3,1),(3,1,2) (The mirror
image of this patch is treated as a new patch and its alignment
is a separate process.) Because there are typically not many
such branch points in a given example height field, testing
against all candidate matches is extremely fast.

To perform warping of a candidate patch to fit the user’s
sketch, first a set of control points {Pi} must be identified for
the patch. These control points consist of the location of the
branch point itself, plus those places where each outgoing path
intersects a circle that is inscribed in the patch (see Fig. 5(d)).
For instance, a patch with a three-way branch will have a
total of four control points. Corresponding control points {P′

i }
are also defined for the patch from the sketch map. Now we
desire a continuous coordinate transformation that maps the
control points {Pi} to {P′

i } and that gives the minimal amount
of distortion. We use a thin-plate spline (TPS) interpolant [33]
for this purpose because it works well with few constraints and
it introduces minimal distortion as measured by the integral
bending norm. We use two separate TPS functions to form
a coordinate transformation that maps any position in the
original height field to its interpolated location in the warped
height field. The best k branch point patches with the lowest
deformation energy are the candidates for further matching.

End Points Endpoint matching is straightforward because
all end points have similar curvilinear features: a relatively
short segment chain going out of the end point, which can be
aligned easily. Thus we select all end point patches (Fig. 5(e))
as candidates for further matching without applying a warping
in this case.

Path Features All of our curvilinear features are chains of
line segments (from PPA) that stretch between two isolated
features. Our system finds matching patches along such a
curvilinear feature while traversing these chains of line seg-
ments in the user’s sketch. The system travels along these
chains in steps that are one-half a patch in size, laying down a
patch with each step. As with branching patches, the candidate
patches along a curvilinear feature are deformed to better
fit the user’s sketch. There are always three control points
P0,P1,P2 in the candidate patch (Fig. 5(f)), and three corre-
sponding points P′

0,P
′
1,P

′
2 in the user’s sketch that determine

the warp. The outer control points P1 and P2 are located where
the path crosses the inscribed circle of the patch. The central
point P0 is the midpoint in the chain within a patch, which is
analogous to the central control point in a branch patch.

All of the candidate patches are ranked according to a
combination of matching criteria. The best candidate patch
is merged in the output height field. In our current implemen-
tation, we use the following matching criteria:

• cd : Deformation energy from the TPS warping (We refer
the readers to [33]) the candidate patch terrain structure
matches the sketch map constraints. Although TPS warp-
ing can warp the patch into desired configuration in most
cases (Except for degenerate cases such as when three
control points are collinear), large deformation results in
noticeable distortion and is penalized here.

• cg: Graph cut score (See Appendix A). The graph cut
seam cost is an indication of how well the candidate patch

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

(a) (b)

Fig. 7. (a) Height profiles perpendicular to the path are stored at uniformly
sampled points along the path. The height profile at the point P which joins
two paths is linearly interpolated from the profiles stored at P2 and P3. (b)
An example of the 5-point height profile that is stored at P3.

(a) (b)

Fig. 8. (a) Synthesis result using raster-scan patch placement order (b)
Synthesis result using tree traversal

matches the already merged patches in the overlap regions
(Graph cut automatically handles the case where one
patch overlaps with multiple patches and the overlapping
can be disjoint). A higher graph cut score means the
seam is more noticeable and harder to remove by Poisson
editing.

• c f : Feature dissimilarity cost. The dissimilarity cost mea-
sures how closely features along the joining paths are
matched3. We uniformly sample the curvilinear path and
store a coarse height profile perpendicular to the path
(our current implementation uses 7-point profile) at each
sampled point (Fig. 7). When the path is joining the
other path at point P, the height profile at P is linearly
interpolated from the profiles stored at its two nearest
neighbors, P2 and P3. Height profiles from joining paths
are compared using sum of squared differences.

• ci’s : Other user specified constraint(s) such as height
constraint or path smoothness constraint.

The total cost is then a linear combination of all of the
matching costs c = αdcd +αgcg +α f c f +∑

n
i=1 αici. Note that

the α’s serve not only as weights but also as normalization
coefficients for the costs. In our current system, we set αd =
1000, αg = 1, and α f = 3 for most test cases. Changing these
coefficients changes the emphasis on the matching criteria and
results in different synthesis results. After curvilinear feature
matching and breadth-first-search order placement, the output
height field looks like Fig. 6(e).

3The graph cut cost gives an overall measure of the overlap quality, but it
weights every pixel in the overlap region equally. It is difficult to integrate
the feature dissimilarity measure into the graph cut algorithm; therefore, a
separate feature dissimilarity cost term is introduced into our system to place
emphasis on features.

Fig. 8 shows a comparison between raster-scan and tree-
ordered patch placement using the sketch map of Fig. 10(a)
and the example height map of Fig. 10(b). The inner structure
of the λ symbol is garbled in the raster scan result (Fig. 8(a)).
This is because the row based scan locks onto the boundary of
the circle immediately, creating constraints on future matching
that prevent good matches in the interior. As Fig. 8(b) shows,
both the λ and the circle can be reproduced if the most difficult
element (the center branch point) is matched first.

B. Non-Feature Patch Placement

Once the isolated features and curvilinear features have
been placed, the empty areas in the output height field are
those places without strong features. A feasible way to fill
these areas is to copy patches that match the pixels that have
already been placed. To do this, our system “grows out”
from the already filled-in areas. Specifically, Square patch
positions in coarsely-spaced increments (e.g. every 100 pixels
horizontally and vertically) are placed down in descending
order according to the area of the overlapping region with
the already synthesized height field.

The system looks for a high-quality match between such
a patch and the already synthesized height field based on
the sum of squared difference on the overlapping region and
selects k candidates. It then finds the best match according to
the combination of the SSD score and the graph cut cost in
merging. The best patch is placed, and the system continues
traversing the output height field looking for overlaps. The
process terminates when all pixels in the output map have
been filled.

The SSD-based search to find the patch that best matches
the already synthesized output height field can be accelerated
using Fast Fourier Transforms [34], [35]. Using the FFT-based
approach, the matching cost can be computed in O(n log(n))
time, where n is the number of pixels in the source height
field. This is in comparison to O(n2) time for a naive SSD
implementation.

V. PATCH MERGING

Our system combines two techniques to assure smooth
transitions between patches that are placed in the output height
field. The first of these is the graph cut technique [26], [36],
which finds good seams between already-placed pixels and
the pixels from a region that is in the process of being placed.
The second procedure solves a discrete Poisson equation [37]
to create more gentle transitions between the existing pixel
elevations and the pixels from a newly placed patch.

A. Graphcut Optimal Seam Finder

The graph cut algorithm finds a seam in the overlapping
region between patches that determines which pixels will be
kept in the final image. This is accomplished by solving a
max-flow/min-cut graph problem that minimizes the cost of
mismatched elevations across the cut. Edges in the graph rep-
resent connections between adjacent pixels, and they are given
weights based on elevation differences. For some patches, we

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

(a) (b) (c)

Fig. 9. Illustration of patch placement and seam removal. (a) Matching patches are identified via graphcut. (b) Patch placement results in a seam. (c) Poisson
seam remover yields final output.

TABLE I
INPUT DEM LOCATIONS, RESOLUTION AND SIZES.

Origin Resolution Size
Mount Jackson, CO 10m 1620×1620
The Grand Canyon 30m 4080×2760
Mount Vernon, KY 10m 1200×1200
Flathead Range,MT 10m 4097×4097
Puget Sound, WA 10m 4097×4097

want to insist that particular groups of pixels from a given
patch should be included, such as the central pixels in a branch
feature patch. This is accomplished by setting some of the edge
weights infinitely high.

As mentioned earlier, the cost of the final seam from the
graph cut algorithm is used by the system to select among
candidate patches for representing a given feature. Details on
the use of the graph cut algorithm for seam finding can be
found in [26].

B. Poisson Seam Remover

After the system has placed a new patch into the output
map using graph cut, a discontinuity may still be visible along
the seam (Fig. 9(b)). We further improve elevation matching
across a seam by adjusting the heights according to artificially
set gradient values at the seams. We do this by solving a
Poisson equation, similar to the manner in which Pérez et al.
perform pixel matching across seams in a color image [37].

Our elevation adjustment stage first translates the elevation
values in the overlap region (typically one third of the patch
size) into gradient values. Then the gradient values across the
seam are artificially set to zero. Finally, a Poisson equation is
solved to find the best-fit set of elevations to these adjusted
gradient values. The result of this process is a new set of ele-
vations that is much more smooth at the seam (Fig. 9(c)). Our
system performs such elevation adjustments locally, invoking
the method one time per placed patch. Performing elevation
adjustment locally avoids the challenge of solving huge matrix
equations. For more details, we refer the reader to Appendix B.

VI. TERRAIN SYNTHESIS RESULTS

We used DEMs from U.S. Geological Survey terrain data
for the results shown in Figures 1, 10, 11, 12, 13, and 15. The
origin, resolution, and size of the data are listed in Table I.

Our example height fields range from 1200×1200 to 4097×
4097 samples at a height resolution of 16 bits. These large
terrain maps pose significant search problems for a traditional
texture synthesis approach. At our patch size of 80×80 pixels,

there are approximately 16 million possible matches in a given
4000× 4000 map. However, as a result of our feature-based
analysis, we can filter this total set down to approximately
600 match evaluations for a given candidate position to be
filled, which dramatically reduces the computational cost. Our
method can synthesize a representative terrain in approxi-
mately 5 to 6 minutes on an Intel P4 2.0 Ghz processor with
2GB memory. All of the results are rendered using Planetside’s
Terragen terrain rendering system with procedural textures
(determined by height and slope) overlayed on top of the
terrain geometry.

Fig. 10 and Fig. 11 illustrate the variation in output of
that can be obtained from the same sketch using our terrain
synthesis approach. Fig. 10(d) shows the synthesis result
(1000× 1000) for the Mount Jackson terrain, and the sketch
map for this example is shown in Fig. 10(a). Although this
result was created from many patches, both the interior λ

and the outer circle are formed by unbroken mountain ridges.
Also note the characteristic curtain-like folds in the sides
of the mountains. Fig. 10(h) shows the synthesis results
(2000×2000) using the Grand Canyon terrain. The sketch map
in Fig. 10(e) used for this example is the inverse of Fig. 10(a)
so that valleys are selected instead of mountains. Here the λ

and the circle are formed from joined pieces of the Colorado
River, yet the seam locations cannot be detected. Although
guided by the user’s sketch, this terrain retains the rich water-
carved features of the original data. Fig. 11(d) shows the
synthesis result (1000× 1000) for the Mount Vernon terrain
and Fig. 11(h) shows the synthesis results (2000×2000) using
the DEM from Flathead National Forest mountain region.
Fig. 12(d) shows the synthesis result (1000× 800) for the
Mount Vernon terrain with a user sketched Chinese character
for “water”. These results illustrate the ability of our system to
work with a wide variety of terrain types with very different
characteristics, while maintaining the salient features of the
input sketch map. Fig. 15 provides close-up views of the Grand
Canyon and Flathead range synthesis results. Fig. 13(a) shows
a rendering of the Grand Canyon height map. We extract the
canyon feature from this map using PPA to obtain a sketch
map. By synthesizing the sketch in the style of Puget Sound
DEM, we obtain a “mountain” version (4000× 2000) of the
Grand Canyon, illustrated in Fig. 13(b).

Synthesis with Multiple Terrain Styles A larger example,
illustrated in Fig. 14, shows the generation of a 3D map of
Middle Earth using several different terrain styles. A simple
sketch map (Fig. 14(b)) was created by the user from an artist
rendering of the map of Middle Earth (Fig. 14(a)). The user

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

assigned different terrain styles to each part of the sketch
map (Table II). In this example, the user first placed down
Mount St.Helen at the location of Mount Doom in Mordor (a
localized feature). Our system then synthesized the rest of the
terrain (3470× 2996) automatically and merge it seamlessly
with Mount Doom. Note that the user sketch includes both
a variety of mountain ranges and a river valley (the Dead
Marshes, near the North-West corner of Mordor). The coast,
lakes, and rivers were created using a simple mask, which was
extracted from the original map. The synthesized height map
(Fig. 14(c)) was rendered using Planetside’s Terragen terrain
rendering system with both procedural and masked textures to
give it an artistic feel. This example illustrates the ability of our
system to combine multiple terrain styles into one synthesized
terrain and to blend seamlessly among them.

Please view the movie (DivX encoded) from the TVCG
web site that accompanies this paper. Additional results may
be found at http://www.cc.gatech.edu/˜howardz/
terrain.

VII. CONCLUSION

We have demonstrated that example-based texture synthesis
methods can be successfully adapted to the domain of terrain
synthesis. The result is a new level of visual realism in user-
controllable synthesized terrain. Our approach leverages the
fact that useful terrain features can be extracted from height
fields using analysis techniques from the geomorphology com-
munity.

We have introduced a tree-ordered patch placement algo-
rithm which is based on a breadth-first traversal of a feature
tree. Our results demonstrate that this placement method is
superior to standard raster-scan placement orders.

We have demonstrated the ability to synthesize terrain
in widely-differing styles while retaining control over the
positioning of major terrain features. Our system is based
on an intuitive sketch-based interface for specifying desired
terrain characteristics. We believe ours is the first system to
make full use of an example-based approach in the domain of
terrain synthesis.

Our method suffers from the same limitations as all
example-based methods. In particular, the quality of the final
synthesis depends upon the richness of the available terrain
data. If the terrain features desired by the user cannot be
found in the example height field, then it will not be possible
to produce the desired result. For instance, our method will
perform poorly if the terrain data is from a desert region
where few significant curvilinear features are present. The
method can also perform poorly when the curvilinear feature
pattern is extremely complicated. An additional issue is the
need to specify the patch size, which depends in turn upon
the resolution and scale of the example terrain.

We plan to extend our current method in several ways. First
it would be interesting to give the user greater control over
the synthesized terrain by incorporating additional constraints
into the sketch map. For example, we plan to provide the
ability to specify a desired elevation at a specific position.
This could be accomplished by constraining the Poisson solver

TABLE II
MIDDLE EARTH REGIONS

Middle Earth region Elevation map
Mordor Puget Sound, WA

Gondor, Rhun, Ered Rocky Mountain, CO
Moria Mount Jackson, CO

Dead Marshes Mount Vernon, KY
Jron Flathead Range, MT

in conjunction with the matcher. We are also investigating
the enforcement of C1 continuity in addition to our current
enforcement of C0 continuity. We intend to explore the joint
synthesis of elevation and texture maps for rendering and the
interactive control of terrain synthesis.

ACKNOWLEDGMENT

The authors would like to thank the many people at the
GVU Center of Georgia Tech who have helped and encour-
aged them. This work was supported by National Science
Foundation grant ITR-0205507 and NSF Graduate Research
Fellowship (to Howard Zhou). The authors would also like
to thank the reviewers whose excellent comments lead to the
current paper.

REFERENCES

[1] Y.-C. Chang, G.-S. Song, and S.-K. Hsu, “Automatic extraction of
ridge and valley axes using the profile recognition and polygon-breaking
algorithm,” in Computer & Geosciences, vol. 24, no. 1, 1998, pp. 83–93.

[2] B. B. Mandelbrot, The Fractal Geometry of Nature. New York: WH
Freeman and Co., 1982.

[3] A. Fournier, D. Fussel, and L. Carpenter, “Computer rendering of
stochastic models,” in Communications of the ACM, vol. 25, no. 6, 1982,
pp. 371–384.

[4] R. F. Voss, “Random fractal forgeries,” in Fundamental Algorithems for
Computer Graphics, R. A. Earnshaw, Ed., Berlin, 1985.

[5] G. S. P. Miller, “The definition and rendering of terrain maps,” SIG-
GRAPH 1986, vol. 20, no. 4, pp. 39–48, 1986.

[6] J. P. Lewis, “Generalized stochastic subdivision,” ACM Trans. Graphics,
vol. 6, no. 3, pp. 167–190, 1987.

[7] R. Szeliski and D. Terzopoulos, “From splines to fractals,” in SIG-
GRAPH 1989, 1989, pp. 51–60.

[8] D. S. Ebert, F. K. Musgrave, D. Peachy, K. Perlin, and S. Worley,
Texturing and modeling: a procedural approach. Morgan Kaufmann,
2002.

[9] C. Dachsbacher, “Interactive terrain rendering: Towards realism with
procedural models and graphics hardware,” http://www.opus.ub.uni-
erlangen.de/opus/volltexte/2006/354/, 2006.

[10] A. D. Kelley, M. C. Malin, and G. M. Nielson, “Terrain simulation using
a model of stream erosion,” in SIGGRAPH 1988, 1988, pp. 263–268.

[11] F. K. Musgrave, C. E. Kolb, and R. S. Mace, “The synthesis and
rendering of eroded fractal terrains,” SIGGRAPH 1989, vol. 23, no. 3,
pp. 41–50, 1989.

[12] P. Roudier and B. P. M. Perrin, “Landscapes synthesis achieved through
erosion and deposition process simulation,” Computer Graphics Forum,
vol. 12, no. 3, p. 375, August 1993.

[13] N. Chiba, K. Muraoka, and K. Fujita, “An erosion model based on
velocity fields for the visual simulation of mountain scenery.” Journal
of Visualization and Computer Animation, vol. 9, no. 4, pp. 185–194,
1998.

[14] K. Nagashima, “Computer generation of eroded valley and mountain
terrains,” The Visual Computer, vol. 13, no. 9-10, pp. 456–464, 1997.

[15] B. Benes and R. Forsbach, “Layered data representation for visual
simulation of terrain erosion,” in SCCG ’01: Proceedings of the 17th
Spring conference on Computer graphics. Washington, DC, USA: IEEE
Computer Society, 2001, p. 80.

[16] B. Neidhold, M. Wacker, and O. Deussen, “Interactive physically
based fluid and erosion simulation,” Eurographics Workshop on Natural
Phenomena, 2005.

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

(a) User sketch

(b) Mount Jackson

(c) Synthesis Result (d) Rendered terrain synthesized from an elevation map of Mount Jackson, CO.

(e) User sketch

(f) Grand Canyon

(g) Synthesis Result (h) Rendered terrain synthesized from an elevation map of the Grand Canyon.

Fig. 10. Multiple terrain synthesis results with sketched half-life symbol.

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

(a) User sketch

(b) Mount Vernon

(c) Synthesis Result (d) Rendered terrain synthesized from an elevation map of Mount Vernon, KY.

(e) User sketch

(f) Flathead Range

(g) Synthesis Result (h) Rendered terrain synthesized from an elevation map of Flathead National Forest mountain range, MT.

Fig. 11. Multiple terrain synthesis results with sketched half-life symbol.

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

(a) User sketch

(b) Mount Vernon

(c) Synthesis Result (d) Rendered terrain synthesized from an elevation map of Mount Vernon, KY.

Fig. 12. Terrain synthesis result with sketched Chinese character for “water”.

(a)

(b)

Fig. 13. The Grand Canyon turned into a mountain range. Features extracted from the Grand Canyon DEM are used as the user sketch to synthesize a
mountain range following the structure of the Grand Canyon from an elevation map of the Puget Sound style mountain range.

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

(a) Map of Middle Earth (b) User sketch with masked water system (c) Synthesis result

(d) Rendered terrain, synthesized from multiple elevation maps.

Fig. 14. A 3D map of Middle Earth synthesized from multiple elevation maps.

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

Fig. 15. Close-up views of synthesized terrain from the Grand Canyon (top images) and Flathead National Forest mountain range. (bottom images).

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

[17] J. Brosz, F. F. Samavati, and M. C. Sousa, “Terrain synthesis by-
example,” in GRAPP: 1st International Conference on Computer Graph-
ics Theory and Applications, 2006.

[18] J.-P. Lewis, “Texture synthesis for digital painting,” in SIGGRAPH 1984,
1984, pp. 245–252.

[19] K. Perlin and L. Velho, “Live paint: painting with procedural multiscale
textures,” in SIGGRAPH 1995, 1995, pp. 153–160.

[20] D. J. Heeger and J. R. Bergen, “Pyramid-based texture analy-
sis/synthesis,” in SIGGRAPH 1995, 1995, pp. 229–238.

[21] A. A. Efros and T. K. Leung, “Texture synthesis by non-parametric
sampling,” in Int. Conf. Computer Vision, Corfu, Greece, 1999, pp.
1033–1038.

[22] L.-Y. Wei and M. Levoy, “Fast texture synthesis using tree-structured
vector quantization,” in SIGGRAPH 2000, 2000, pp. 479–488.

[23] M. Ashikhmin, “Synthesizing natural textures,” in 2001 symposium on
Interactive 3D graphics, 2001, pp. 217–226.

[24] A. A. Efros and W. T. Freeman, “Image quilting for texture synthesis
and transfer,” in SIGGRAPH 2001, 2001, pp. 341–346.

[25] A. Hertzmann, C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin,
“Image analogies,” in SIGGRAPH 2001, 2001, pp. 327–340.

[26] V. Kwatra, A. Schödl, I. Essa, G. Turk, and A. Bobick, “Graphcut
textures: Image and video synthesis using graph cuts,” ACM Trans.
Graphics, SIGGRAPH 2003, vol. 22, no. 3, pp. 277–286, 2003.

[27] Q. Wu and Y. Yu, “Feature matching and deformation for texture
synthesis,” ACM Trans. Graphics, SIGGRAPH 2004, vol. 23, no. 3, pp.
364–367, 2004.

[28] P. Bhat, S. Ingram, and G. Turk, “Geometric texture synthesis,” in
eurographics symposium on Geometry Processing, 2004.

[29] A. Lagae, O. Dumont, and P. Dutré, “Geometry synthesis by example,”
in Shape Modeling International, 2005.

[30] S. Lefebvre and H. Hoppe, “Parallel controllable texture synthesis,” ACM
Transactions on Graphics, SIGGRAPH 2005, pp. 777–786, August 2005.

[31] ——, “Appearance-space texture synthesis,” ACM Transactions on
Graphics, SIGGRAPH 2006, vol. 25, no. 3, pp. 541–548, 2006.

[32] J. Zhang, K. Zhou, L. Velho, B. Guo, and H.-Y. Shum, “Synthesis
of progressively-variant textures on arbitrary surfaces,” ACM Trans.
Graph., vol. 22, no. 3, pp. 295–302, 2003.

[33] F. L. Bookstein, “Principal warps: Thin-plate splines and the decompo-
sition of deformations,” IEEE Trans. PAMI, vol. 11, no. 6, pp. 567–585,
1989.

[34] C. Soler, M.-P. Cani, and A. Angelidis, “Hierarchical pattern mapping,”
ACM Transactions on Graphics, vol. 21, no. 3, pp. 673–680, July 2002.

[35] S. L. Kilthau, M. S. Drew, and T. Möller, “Full search content indepen-
dent block matching based on the fast fourier transform,” in International
Conference on Image Processing 2002, 2002, pp. 669–672.

[36] Y. Boykov, O. Veksler, and R. Zabih, “Fast approximate energy mini-
mization via graph cuts,” IEEE Trans. PAMI, vol. 23, no. 11, pp. 1222–
1239, 2001.

[37] P. Pérez, M. Gangnet, and A. Blake, “Poisson image editing,” ACM
Trans. Graphics, SIGGRAPH 2003, vol. 22, no. 3, pp. 313–318, 2003.

APPENDIX A
GRAPHCUT SEAM FINDING

The graph cut algorithm finds the minimum cost seam
(according to some matching quality measure) in the over-
lapping region between patches that determines which pixels
will be kept in the final image. We choose the matching quality
measure defined in [26], which is a measure of intensity
(elevation) difference between the pairs of pixels. For example,
in Fig.16, let s and t be two adjacent pixel positions in the
overlap region Ω between patch A and B. Let a(s) and b(s) be
the elevation at the position of the patches respectively. Then
the matching quality measure M between the two adjacent
pixels at position s and t from patches A and B is defined to
be:

M(s, t,A,B) = |a(s)−b(s)|+ |a(t)−b(t)| (1)

The graph shown in Fig.16 has one node per pixel in the
overlap region between patches. The weight of the edge
connecting the adjacent pixel nodes s and t is set to equal

Fig. 16. Finding optimal seam in the overlapping region with Graph cut.

the matching quality cost M(s, t,A,B). We use two additional
nodes A and B to represent the old and new patches. The
edges that connect pixels in Ω and nodes A and B are set
to have infinitely high weight indicating that these pixels are
constrained to come from one particular patch. In Figure 16,
pixels 1, 2, and 3 have to come from the patch A, and pixels
7, 8, and 9 from B. To determine which patch each of the
pixels 4, 5, and 6 will come from, we solve a max-flow/min-
cut graph problem that minimizes the cost of mismatched
elevations across the cut. The red line shows the minimum
cut (the elevation difference between the two patches along
the cut is minimum). In the overlap region, pixels 5 and 6 will
be copied from the old patch B since they are still connected
to node B. Likewise, pixel 4 will be copied from A. The cost
cg of the minimum cut C is defined in terms of the matching
quality measure as:

cg = ∑
<s,t>∈C
s,t∈Ω

M(s, t,A,B) (2)

For some patches, we want to insist that particular groups
of pixels from a given patch should be included, such as the
central area surrounding a branch point feature or along a path.
This is accomplished by setting the edge weights connecting
those areas to the non-overlapping region infinitely high.

APPENDIX B
POISSON SEAM REMOVAL

Even using the graphcut approach to choose where to join
two patches, elevation differences may still be visible. For
example, in Fig. 9(a), the overlap region Ω is the new height
field from our graphcut seam finder. Though optimum, seam
C is still visible in the new height field (Fig. 9(b)). We
will describe how we remove this seam through our Poisson
elevation adjustment method.

Let Ω be a closed subset of R2 with boundary ∂Ω. Let
f be the elevation value in the overlap region, hence, f is a
scaler function defined over Ω. Our elevation adjustment stage
first translates the elevation values in Ω into gradient vector
fields v = (u,v) with u = ∂ f

∂x and v = ∂ f
∂y . To remove the height

difference between pixels across the seam C , the gradient
values along the seam are artificially set to zero. However,
the resulting gradient vector field v′ is most likely no longer
conservative (curl(v′) 6= 0), in other words, it is no longer the
gradient of any scaler function. Here, the Poisson methodology
comes into play because it allows non-conservative vector
fields to be used to reconstruct a plausible elevation field. As
shown in [37], we can find the best-fit set of elevations f ′ to

PREPARING ARTICLES FOR THE IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

the adjusted vector field v′ by solving the Poisson equation
with Dirichilet boundary conditions.

The result of this process is a new set of elevations that
change very little at the seam, as shown in Fig.9(c).

Howard Zhou graduated from the California Insti-
tute of Technology in 2002 with the BS degree in
Electrical Engineering and Applied Mathematics. He
received the MS degree in Computer Science from
the Georgia Institute of Technology in 2005, and
is currently working towards the PhD degree under
the supervision of Dr. James M. Rehg and Dr. Greg
Turk. His research interests include computer vision
and computer graphics and machine learning.

Jie Sun received the BE degree in Computer Science
and Engineering from the Zhejiang University, China
in 2002 and the MS degree in Computer Science
from the Georgia Institute of Technology in 2005,
where he is currently working towards the PhD
degree under the supervision of Dr. James M. Rehg
and Dr. Aaron Bobick. His research interests include
computer vision, machine learning and computer
graphics.

Greg Turk received the PhD degree in Computer
Science in 1992 from the University of North
Carolina (UNC) at Chapel Hill. He is currently
an associate professor at the Georgia Institute of
Technology, where he is a member of the Col-
lege of Computing and the Graphics, Visualization,
and Usability Center. His research interests include
computer graphics, computer vision, and scientific
visualization. He is a member of the IEEE.

James M. Rehg received his PhD degree in Elec-
trical and Computer Engineering from the Carnegie
Mellon University. He is an Associate Professor in
the College of Computing at the Georgia Institute
of Technology. He is a member of the Graphics, Vi-
sualization, and Usability Center and co-directs the
Computational Perception Lab. His research interests
are computer vision, computer graphics, machine
learning, and robotics. He is a member of the IEEE.

