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1. Problem Description and History
The permanent of an x n nonnegative matriXA = (a(i, j)) is defined as

per(d) = > [ Jal. o ().

where the sum is over all permutation®f {1, 2, ..., n}. WhenAis a 0,1 matrix,
we can view it as the adjacency matrix of a bipartite gr@ah= (V1, Vs, E). It

is clear that the permanent éfis then equal to the number of perfect matchings
in Ga.

The evaluation of the permanent has attracted the attention of researchers for
almost two centuries, beginning with the memoirs of Binet and Cauchy in 1812
(see Minc [1982] for a comprehensive history). Despite many attempts, an efficient
algorithm for general matrices has proved elusive. Indeed, Ryser’s algorithm [Ryser
1963] remains the most efficient for computing the permanent exactly, eventhoughiit
uses as many &(n2") arithmetic operations. A notable breakthrough was achieved
about 40 years ago with the publication of Kasteleyn’s algorithm for counting
perfect matchings in planar graphs [Kasteleyn 1961], which use©j@rs} arith-
metic operations.

This lack of progress was explained by Valiant [1979], who proved that ex-
act computation of the permanent is #P-complete, and hence (under standard
complexity-theoretic assumptions) not possible in polynomial time. Since then the
focus has shifted to efficient approximation algorithms with precise performance
guarantees. Essentially the best one can wish fofu#lyapolynomial randomized
approximation schem@PRAS), which provides an arbitrarily close approxima-
tion in time that depends only polynomially on the input size and the desired error.
(For precise definitions of this and other notions, see the next section.)

Of the several approaches to designing an fpras that have been proposed, perhaps
the most promising has been the “Markov chain Monte Carlo” approach. This
takes as its starting point the observation that the existence of an FPRAS for the
0,1 permanent is computationally equivalent to the existence of a polynomial time
algorithm for sampling perfect matchings from a bipartite graph (almost) uniformly
at random [Jerrum et al. 1986].

Broder [1986] proposed a Markov chain Monte Carlo method for sampling per-
fect matchings. This was based on simulation of a Markov chain whose state space
consists of all perfect and “near-perfect” matchings (i.e., matchings with two uncov-
ered vertices, or “holes”) in the graph, and whose stationary distribution is uniform.
This approach can be effective only when the near-perfect matchings do not out-
number the perfect matchings by more than a polynomial factor. By analyzing the
convergence rate of Broder’'s Markov chain, Jerrum and Sinclair [1989] showed
that the method works in polynomial timéhenevethis condition is satisfied. This
led to an fpras for the permanent of several interesting classes of 0,1 matrices,
including all dense matrices and a.e. (almost eYergndom matrix.

For the past decade, an FPRAS for the permanent of arbitrary 0,1 matrices
has resisted the efforts of researchers. There has been similarly little progress on
proving the converse conjecture, that the permanent is hard to approximate in the

That is, the proportion of matrices that are covered by the FPRAS tends to Z-aso.
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worst case. Attention has switched to two complementary questions: how quickly
can the permanent be approximated within an arbitrarily close multiplicative factor;
and what is the best approximation factor achievable in polynomial time? Jerrum
and Vazirani [1996], building upon the work of Jerrum and Sinclair, presented
an approximation algorithm whose running time is ep(/n)), which though
substantially better than Ryser's exact algorithm is still exponential time. In the
complementary direction, there are several polynomial time algorithms that achieve
an approximation factor af", for various constants(see, e.g., Linial et al. [2000]

and Barvinok [1999]). To date the best of these is due to Barvinok [1999], and gives
c ~ 1.31 (see also Chien et al. [2002]).

In this article, we resolve the question of the existence of an FPRAS for the
permanent of a general 0,1-matrix (and indeed, of a general matrix with non-
negative entri€d in the affirmative. Our algorithm is based on a refinement of
the Markov chain Monte Carlo method mentioned above. The key ingredient is
the weighting of near-perfect matchings in the stationary distribution so as to
take account of the positions of the holes. With this device, it is possible to
arrange that each hole pattern has equal aggregated weight, and hence that the
perfect matchings are not dominated too much. The resulting Markov chain is a
variant of Broder’s earlier one, with a Metropolis rule that handles the weights.
The analysis of the mixing time follows the earlier argument of Jerrum and
Sinclair [1989], except that the presence of the weights necessitates a combi-
natorially more delicate application of the path-counting technology introduced
in Jerrum and Sinclair [1989]. The computation of the required hole weights
presents an additional challenge which is handled by starting with the complete
graph (in which everything is trivial) and slowly reducing the presence of match-
ings containing nonedges &f, computing the required hole weights as this pro-
cess evolves.

We conclude this introductory section with a statement of the main result of the
article.

THEOREM 1.1. There exists a fully polynomial randomized approximation
scheme for the permanent of an arbitrarikm matrix A with nonnegative entries.

The remainder of the article is organized as follows. In Section 2, we summarize
the necessary background concerning the connection between random sampling
and counting, and the Markov chain Monte Carlo method. In Section 3, we define
the Markov chain we will use and present the overall structure of the algorithm,
including the computation of hole weights. In Section 4, we analyze the Markov
chain and show that it is rapidly mixing; this is the most technical section of the
paper. Section 5 completes the proof of Theorem 1.1 by detailing the procedure
by which the random matchings produced by Markov chain simulation are used to
estimate the number of perfect matching<Gg and hence the permanent of the
associated 0,1-matrik; this material is routine, butis included for completeness. At
this point, the running time of our FPRAS as a functioma$ O(n''); in Section 6,
the dependence amis reduced taO(n'%) by using “warm starts” of the Markov

2As explained later (see Section 7), we cannot hope to handle matrices with negative entries as an
efficient approximation algorithm for this case would allow one to compute the permanent of a 0,1
matrix exactly in polynomial time.
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chain2Finally, in Section 7, we show how to extend the algorithm to handle matrices
with arbitrary nonnegative entries, and in Section 8, we observe some applications
to constructing an FPRAS for various other combinatorial enumeration problems.

2. Random Sampling and Markov Chains

This section provides basic information on the use of rapidly mixing Markov chains
to sample combinatorial structures, in this instance, perfect matchings.

2.1. RANDOM SAMPLING. As stated in the Introduction, our goal is a fully
polynomial randomized approximation scheme (FPRAS) for the permanent. This is
a randomized algorithm which, when given as inpubann nonnegative matrid
together with an accuracy parametee (0O, 1], outputs a numbeZ (a random
variable of the coins tossed by the algorithm) such’that

3

Prlexpt-¢)Z < per(A) < expe)Z] > 7.

and which runs in time polynomial in and ¢~. The probability 34 can be
increased to 1§ for any desired > 0 by outputting the median dd(logs—2)
independent trials [Jerrum et al. 1986].

To construct an FPRAS, we will follow a well-trodden path via random sampling.
We focus on the 0,1 case; see Section 7 for an extension to the case of matrices
with general nonnegative entries. Recall that wheis a 0,1 matrix, perd) is
equal to the number of perfect matchings in the bipartite gaptiNow it is well
known—see for example [Jerrum and Sinclair 1996]—that for this and most other
natural combinatorial counting problems, an FPRAS can be built quite easily from
an algorithm that generates the same combinatorial objects, in this case perfect
matchings, (almost) uniformly at random. It will therefore be sufficient for us to
construct dully-polynomial almost uniform samplésr perfect matchings, namely
a randomized algorithm which, given as inputsrar n 0,1 matrix A and abias
parametes € (0, 1], outputs arandom perfect matchingdnfrom a distributiord/’
that satisfies

dtV(u/’ Z/{) = 6?

wherel/ is the uniform distribution on perfect matchings®f andd, denotes
(total) variation distance The algorithm is required to run in time polynomialrin
and logs—. For completeness, we will flesh out the details of the reduction to
random sampling in Section 5.

The bulk of this article will be devoted to the construction of a fully polynomial
almost uniform sampler for perfect matchings in an arbitrary bipartite graph. The
sampler will be based on simulation of a suitable Markov chain, whose state space
includes all perfect matchings in the graphand which converges to a stationary
distribution that is uniform over these matchings.

3The notationd(-) ignores logarithmic factors, and not merely constants.

4The relative error is usually specified ask. We usee™ (which differs only slightly from 1 &)
for algebraic convenience.

SThetotal variation distancéetween two distributions, 7# on a finite sef is defined asy (7, #) =
7 Xxeq [T(X) = F(X)| = Maxscq |7 () — 7 ().



A Polynomial-Time Approximation Algorithm 675

Sets < §/(12n? + 3).
Repeafl = [(6n? + 2)In(3/5)] times:
Simulate the Markov chain far(3) steps;
output the final state if it belongs t&1 and halt.
Output an arbitrary perfect matching if all trials fail.

Fic. 1. Obtaining an almost uniform sampler from the Markov chain.

2.2. MarRkOV CHAINS. Consider a Markov chain with finite state spazand
transition probabilitiesP. In our application, states are matching€Gr and we
useM, M’ to denote generic elements @f The Markov chain isrreducible if
for every pair of state, M’ € Q, there exists & > 0 such thatP'(M, M’) > 0
(that is, all states communicate); itaperiodicif gcd{t : P{(M, M) > 0} = 1
forall M, M’ € Q. It is well known from the classical theory that an irreducible,
aperiodic Markov chain converges to a unicgiationary distributiont over €2,
that is, P'(M, M) — = (M’) ast — oo for all M’ € , regardless of the initial
stateM. If there exists a probability distribution on €2 which satisfies thdetailed
balanceconditions for allM, M’ € €, that s,

7(M)P(M, M) = n(M)P(M’, M) =: Q(M, M),

then the chain is said to barGe)jreversibleandr is a stationary distribution.
We are interested in the rate at which a Markov chain converges to its stationary
distribution. To this end, we define theixing time(from stateM) to be

7(8) = v (6) = min {t : dyy(PY(M, -), 7) < 5}.

When the Markov chain is used as a random sampler, the mixing time determines
the number of simulation steps needed before a sample is produced.

In this article, the state spaéeof the Markov chain will consist of the perfect
and “near-perfect” matchings (i.e., those that leave only two uncovered vertices, or
“holes”) in the bipartite grapf, with n 4 n vertices. The stationary distribution
will be uniform over the set of perfect matchingd, and will assign probability
m(M) > 1/(4n? + 1) to M. Thus we get an almost uniform sampler for perfect
matchings by iterating the following trial: simulate the chaindiq(s) steps (where
§ is a sufficiently small positive number), starting from some appropriate st&te
and output the final state if it belongs.Ad. The details are given in Figure 1.

LEMMA 2.1. The algorithm presented in Figulds an almost uniform sampler
for perfect matchings with bias parameter

PROOF.  Let7 be the distribution of the final state of a single simulation of the
Markov chain; note that the length of simulation is chosen sodfdfr, =) < 6.
Let S ¢ M be an arbitrary set of perfect matchings, andNete M be the
perfect matching that is eventually outpu¥ (s a random variable depending on
the random choices made by the algorithm.) The result follows from the chain

5As we shall see, a state is “appropriate” unless it has exceptionally low probability in the stationary
distribution. Except on a few occasions when we need to call attention to the particular initial state,
we may safely drop the subscriptto



676 M. JERRUM ET AL

of inequalities:
7(S5)

PrM € S) > 2O 1—aWM)T
W
> % — expA(M)T)
s O~ v — PP~ BT)
- (S 25 §
~ M) 3 3

A matching bound PNl € S) < 7(S)/7 (M) + § follows immediately by con-
sidering the complementary sgtl \ S. (Recall that the total variation distance
diy (T, 7) between distributiong andz may be interpreted as the maximum of
| (S) — 7(S)| over all eventsS.) O

The running time of the random sampler is determined by the mixing time of
the Markov chain. We will derive an upper boundfd) as a function ofi ands.

To satisfy the requirements of a fully polynomial sampler, this bound must be
polynomial inn. (The logarithmic dependence én' is an automatic consequence
of the geometric convergence of the chain.) Accordingly, we shall call the Markov
chainrapidly mixing(from initial statex) if, for any fixedé > 0, 7(8) is bounded
above by a polynomial function af. Note that in general the size &f will be
exponential inn, so rapid mixing requires that the chain be close to stationarity
after visiting only a tiny (random) fraction of its state space.

In order to bound the mixing time, we define a multicommodity flow in the
underlying graph of the Markov chain and bound its associated congestion. The
graph of interest is5p = (2, Ep), whereEp = {(M, M’) : P(M, M’) > 0}
denotes the set of possible transitidior all ordered pairsi( F) € © of “initial”
and “final” states, leP, ¢ denote a collection of simple directed path&5ip from
| to F. In this article, we callf; r : P, r — R* aflowfrom | to F if the follow-
ing holds:

> fie(p) = 7 (1) (F).

pePi F

A flow for the entire Markov chain is a collectioh = {fj ¢ : I,F € Q} of
individual flows, one for each palr, F € 2. Our aim is to design a flowW which
has smaltongestiorp, defined as

= Q(f) - t=(Mml\7’3(eEp e (l)
where
1
a=so Y > fE®IpL @)
Q( ) I,FeQ p:tepePi

"AlthoughGp is formally a directed graph, its edges occur in anti-parallel pairs, by time-reversibility.



A Polynomial-Time Approximation Algorithm 677

(k hexagons)

Fic. 2. A graph withlM(u, v)|/| M| exponentially large.

and|p| denotes the length of (i.e., number of edges contained within) thepath
HereQ(t) = Q(M, M") = =r(M)P(M, M’), as defined earlier.

The following bound relating congestion and mixing time is standard; the version
presented here is due to Sinclair [1992], building on work of Diaconis and Stroock
[1991].

THEOREM 2.2. For an ergodic, reversible Markov chain with self-loop proba-
bilities P(M, M) > 1/2 for all states M, and any initial state pe <,

™ (8) < Q( In(Mo)t+1In 5_1).

Thus, to prove rapid mixing, it suffices to demonstrate a flow with an upper
bound of the form polyf) on its congestion for our Markov chain on matchings.
(The term Int(Mg)~* will not cause a problem, since the total number of states
will be at most o + 1)!, and we will start in a stat®ly that maximizesr (Mpy).)

3. The Sampling Algorithm

As explained in the previous section, our goal now is to design an efficient (almost)
uniform sampling algorithm for perfect matchings in a bipartite gr&hb= Ga.
This will, through standard considerations spelled out in Section 5, yield an FPRAS
for the permanent of an arbitrary 0,1 matrix, and hence Theorem 1.1. The (easy)
extension to matrices with arbitrary nonnegative entries is described in Section 7.
Let G = (V1, Vo, E) be a bipartite graph on + n vertices. The basis of our
algorithm is a Markov chaini/C' defined on the collection of perfect and near-
perfect matchings o&. Let M denote the set of perfect matchingsGn and let
M(u, v) denote the set of near-perfect matchings with holes only at the vertices
u e Vi andv e V,. The state space df/C' is Q := M U, , M(u, v). Previous
work [Broder 1986; Jerrum and Sinclair 1989] considered a Markov chain with
the same state spaée and transition probabilities designed so that the station-
ary distribution was uniform ove®2, or assigned slightly higher weight to each
perfect matching than to each near-perfect matching. Rapid mixing of this chain
immediately yields an efficient sampling algorithm provided perfect matchings
have sufficiently large weight; specificallyM|/|2| must be bounded below by
a inverse polynomial im. In Jerrum and Sinclair [1989], it was proved that this
condition—rather surprisingly—is also sufficient to imply that the Markov chain
is rapidly mixing. This led to an FPRAS for the permanent of any 0,1 matrix satis-
fying the above condition, including all dense matrices (having at leési’s in
each row and column), and a.e. random matrix [Jerrum and Sinclair 1989], as well
as matrices corresponding to vertex transitive graphs (including regular lattices, an
important case for applications in statistical physics) [Kenyon et al. 1996].
On the other hand, it is not hard to construct graphs in which, for some pair
of holesu, v, the ratio| M(u, v)|/| M| is exponentially large. The graph depicted
in Figure 2, for example, has one perfect matching, bunatchings with holes
atu andv. For such graphs, the above approach breaks down because the perfect
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matchings have insufficient weight in the stationary distribution. To overcome this
problem, we will introduce an additional weight factor that takes account of the
holes in near-perfect matchings. We will define these weights in such a way that
any hole pattern(including that with no holes, i.e., perfect matchings) is equally
likely in the stationary distribution. Since there are omfy- 1 such patternsg will
assign probability2(1/n?) in total to perfect matchings.

It will actually prove technically convenient to introduce edge weights also.
Thus for each edgeu(v) € E, we introduce a positive weighit(u, v), which
we call its activity. We extend the notion of activities to matchinlyk (of any
cardinality) byA(M) = ]_[(U,V)GM A(u, v). Similarly, for a set of matchings we
definer(S) = X yes A+(M).B For our purposes, the advantage of edge weights is
that they allow us to work with the complete graphroa- n vertices, rather than
with an arbitrary graptG = (V1, Vo, E): we can do this by setting(e) = 1 for
ec E,andA(e) = & ~ Ofore ¢ E. Takingé < 1/n! ensures that the “bogus”
matchings have little effect, as will be described shortly.

We are now ready to specify the desired stationary distribution of our Markov
chain. This will be the distributior over defined byz (M) o« A(M), where

ACM) — A(M)w(u,v) if M e M(u,v) for someu, v; 3
(M) = (M), if M e M. ®)

andw : V; x V, — RT is the weight function for holes to be specified shortly.

To construct a Markov chain having as its stationary distribution, we use a
slight variant of the original chain of Broder [1986] and Jerrum and Sinclair [1989]
augmented with a Metropolis acceptance rule for the transitions. (The chain has
been modified in order to save a factormofrom its mixing time on the complete
bipartite graph.) The transitions from a matchivgare defined as follows:

Q) If M € M, choose an edge = (u, Vv) uniformly at random fromM; set
M =M\e
(2) If M € M(u, v), choosez uniformly at random fromVy U V.
@) if ze {u,viand (,v) € E,letM' = M U (u, v);
(i) if ze Vo, (u,2) e Eand &, z) € M, letM’' = M U (u, 2) \ (X, 2);
(i) if ze V4, (z,v) e Eand g y) € M, letM" =M U (z,v) \ (z,¥);
(iv) otherwise, letM’ = M.
(3) With probability miql, A(M")/A(M)} go to M’; otherwise, stay at.

Thus the nonnull transitions are of three typesnovingan edge from a perfect
matching (case l)adding an edge to a near-perfect matching (case 2(i)); and
exchangingan edge of a near-perfect matching with another edge adjacent to one
of its holes (cases 2(ii) and 2(iii)).

Theproposal probabilitieslefined in steps (1) and (2) for selecting the candidate
matchingM’ are symmetric, being/h in the case of moves between perfect and
near-perfect matchings, angdzh between near-perfect matchings. This fact, com-
bined with theMetropolis rulefor accepting the move tv’ applied in step (3),

8Note that if we set.(u, v) equal to the matrix entrg(u, v) for every edge , v), then perf) is
exactly equal to.(M). Thus, our definition is natural.
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ensures that the Markov chain is reversible witfiM) o« A(M) as its stationary
distribution. Finally, to satisfy the conditions of Theorem 2.2, we add a self-loop
probability of 1/2 to every state; that is, on every step, with probabilitg e
make a transition as above and otherwise do nothing.

Next we need to specify the weight functian Ideally we would like to take
w = w*, where

A(M)
TAYIORY) )

for each pair of holes, v with M(u, v) # @. (We leavew(u, v) undefined when
M(u, v) = @.) With this choice of weights, any hole pattern (including that with no
holes) is equally likely under the distributian since there are at most + 1 such
patterns, when sampling from the distributisra perfect matching is generated
with probability at least 4(n? + 1). In the event, we will not knowv* exactly but
will content ourselves with weights satisfying

w*(u,v) =

w*(u, v)

<w(u, V) <2w*(u, V), )

with very high probability. This perturbation will reduce the relative weight of
perfect matchings by at most a constant factor.

The main technical result of this paper is the following theorem, which says that,
provided the weight functiow satisfies condition (5), the Markov chain is rapidly
mixing. The theorem will be proved in the next section.

THEOREM 3.1. Assuming the weight function w satisfies inequdbfyfor all
(u, v) € V1 x Vo with M(u, v) # @, then the mixing time of the Markov chalfiC'
is bounded above b (8) = O(nPg(log(r(M)~1) + logs—1)).

Finally, we need to address the issue of computing (approximations to) the
weightsw* defined in (4). Sincev* encapsulates detailed information about the set
of perfect and near-perfect matchings, we cannot expect to compute it directly for
our desired edge activitiege). Rather than attempt this, we instead initialize the
edge activities to trivial values, for which the correspondiigcan be computed
easily, and then gradually adjust thée) towards their desired values; at each step
of this process, we will be able to compute (approximations to) the weights
corresponding to the new activities.

Recall that we work with theompletegraph onn + n vertices, and assign an
activity of 1 to all edgee € E (i.e., all edges of our grapB), and ultimately a very
small value ¥n! to all “non-edges’® ¢ E. Since the weight of an invalid matching
(i.e., one thatincludes a non-edge) is at mgst! and there are at moat possible
matchings, the combined weight of all invalid matchings is at most 1. Assuming
the graph has at least one perfect matching, the invalid matchings merely increase
by at most a small constant factor the probability that a single simulation fails to
return a perfect matching. Thus, our “target” activities/agée) = 1 foralle € E,
andig(e) = 1/n! for all othere.

As noted above, our algorithm begins with activitleshose ideal weights/*
are easy to compute. Since we are working with the complete graph, a natural
choice is to set.(e) = 1 for all e. The activities of edgee € E will remain
at 1 throughout; the activities of non-edgest E will converge to their target
valuesig(e) = 1/n!in a sequence of phases, in each of which, for some vertex
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the activitiesi(e) for all non-edge® ¢ E which are incident towv are updated to

A'(e), where expt1/2)r(e) < A/'(e) < exp(l/2)Ar(e). (In this application, we only

ever need to reduce the activities, and never increase them, but the added generality
costs us nothing.)

We assume at the beginning of the phase that condition (5) is satisfied; in other
words,w(u, v) approximatesv*(u, v) within ratio 2 for all pairs ¢, v).° Before up-
dating an activity, we must consolidate our position by finding, for each pait)(

a better approximation te*(u, v): one that is within ratia for some 1< ¢ < 2.
(We shall see later that = 6/5 suffices here.) For this purpose, we may use
the identity
w(u,v)  w(M(u,V)) ©)
w*(u, V) T(M)
sincew(u, v) is known to us and the probabilities on the right hand side may be
estimated to arbitrary precision by taking sample averages. (Recait thatiotes
the stationary distribution of the Markov chain.)

Although we do not know how to sample from exactly, Theorem 3.1 does
allow us to sample, in polynomial time, from a distributiothat is within variation
distance of 7. We shall see presently that settihg: O(n—2) suffices in the current
situation; certainly, the exact value &tlearly does not affect the leading term in
the mixing time promised by Theorem 3.1. So suppose we genEratenples
from 7, and for each pairy,v) € Vi x V, we consider the proportioa(u, v)
of samples with hole pau, v, together with the proportioa of samples that are
perfect matchings. Clearly,

Ea(u,v) = #(M(u,v)) and Ea = #(M). 7)

Naturally, it is always possible that some sample avetggeVv) will be far from
its expectation, so we have to allow for the possibility of failure. We denote by ~
the (small) failure probability we are prepared to tolerate. Provided the sample
sizeSis large enoughy(u, v) (respectivelyy) approximates (M(u, v)) (respec-
tively, 77 (M)) within ratio ¢/4, with probability at least 1- 7. Furthermore, i§
is small enoughy (M (u, v)) (respectivelyz{M)) approximatesr (M(u, v)) (re-
spectively;r (M)) within ratioc'/4. Then, via (6), we have, with probability at least
1 — (n? + 1)7, approximations within ratie to all of the target weighter*(u, v).

It remains to determine bounds on the sample Sizad sampling tolerance
that make this all work. Condition (5) entails

-1
T 4(n2+1)

Assumings < 1/8(n?> + 1), it follows from any of the standard Chernoff
bounds (see, e.g., Alon and Spencer [1992] or Motwani and Raghavan [1995,
Thms 4.1 & 4.2)), thatO(n?log(1/7)) samples fromx " suffice to estimate
Ea(u,Vv) = 7 (M(u, v)) within ratio c/* with probability at least 1- 7. Again

using the fact thatr (M(u, v)) > 1/4(n? + 1), we see that (M (u, v)) will ap-
proximates (M (u, v)) within ratio ¢/ provideds < c;/n? wherec; > 0 is a
sufficiently small constant. (Note that we also satisfy the earlier constrainbgn

Ea(u, V) = 7 (M(u,V)) > 7(M(u, V) —§

9We say that approximates x within ratio if r ~1x < & <rx.
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Initialize A(u, v) < 1 for all (u, v) € V1 x Va.
Initialize w(u, v) < nforall (u, v) € Vi x Va.
While there exists a paiy, z with A(y, 2) > Ag(Y, 2) do:
Take a sample of sizé from MC with parametera, w,
using a simulation of’ steps in each case.
Use the sample to obtain estimategu, v) satisfying
condition (8), for allu, v, with high probability.
Seti(y, v) < maxir(y, v)exp(=1/2), rc(y, v)}, forallv € Vs,
andw(u, v) < w’(u, v) for all u, v.
Output the final weights/(u, v).

Fic. 3. The algorithm for approximating the ideal weights.

this setting.) Therefore, taking = 6/5 and usingS = O(n?log(1/7)) samples,
we obtain refined estimategu, v) satisfying

5w*(u, v)/6 < w(u, v) < 6w*(u, v)/5 (8)

with probability 1— (n? 4+ 1)7. Pluggings = ¢;/n? into Theorem 3.1, the number

of steps required to generate each sample is O(n’ logn), provided we use a
starting state that is reasonably likely in the stationary distribution; and the total
time to update all the weights(u, v) is O(n°lognlog(1/7)).

We can then update the activity of all non-edgescident at a common ver-
texv by changingr(e) by a multiplicative factor of exp{1/2). Since a matching
contains at most one edge incidentviothe effect of this updating on the ideal
weight functionw* is at most a factor exp(2). Thus, since 6 exp(R)/5 < 2,
our estimatesv obeying (8) actually satisfy the weaker condition (5) for tesv
activities as well, so we can proceed with the next phase. The algorithm is sketched
in Figure 3.

Starting from the trivial values(e) = 1 for all edges of the complete bipartite
graph, we use the above procedure repeatedly to reduce the activity of each non-
edgee ¢ E down to I¥n!, leaving the activities of all edges € E at unity.

This entire process requirg3(n®logn) phases, since there amevertices inVy,
andO(logn!) = O(nlogn) phases are required to reduce the activities of edges
incident at each of these vertices to their final values. We have seen that each phase
takes timeO(n®lognlog(1/7)). Thus, the overall running time of the algorithm

for computing approximate weights @(n*'(logn)?log(1/7)). It only remains to
choosey”

Recall that;is the failure probability on each occasion that we use a sample mean
to estimate an expectation. If we are to achieve overall failure probabilityen
we must sefy = O(n/(n*logn)), since there ar®(n*logn) individual estimates
to make in total. Thus

LEMMA 3.2. The algorithm of Figure8 finds approximations (v, -) within a
constant ratio of the ideal weightsW: , -) associated with the desired activitieg
in time O(n*(logn)?(logn + log 1)), with failure probabilitys.

Although it is not a primary aim of this article to push exponents down as far
as possible, we_note that it is possible to reduce the running time in Lemma 3.2
from O(n'?) to O(n'9) using a standard artifice. We have seen that the number
of simulation steps to generate a sample is at rffost O(n’ logn), if we start
from, say, a perfect matching, of maximum activity. However, after generating
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an initial sampleM for a phase, we are only observing the hole pattefd oThus
the matchingM is still random with respect to its hole pattern. By starting our
Markov chain from this previous sampM, we have what is known as a “warm
start,” in which case generating a sample requires @{ly?) simulation steps. We
expand on this point in Section 6.

Suppose our aim is to generate one perfect matching from a distribution that is
within variation distanceé of uniform. Then, we need to setso that the overall
failure probability is strictly less tha#, sayn = §/2. At the conclusion of the
initialization algorithm, we have a good approximation to the ideal weiglits
for our desired activitieds. We can then simply simulate the Markov chain with
these parameters to generate perfect matchings from a distribution within variation
distances /2 of uniform. By Theorem 3.1, the (expected) additional time required to
generate such a sample@$n®(nlogn + log5~1)), which is negligible in compar-
ison with the initialization procedure. (The extra fact8irepresents the expected
number of samples before a perfect matching is seen.) If we are interested in the
worst-case time to generate a perfect matching, we can see from Lemma 2.1 that it
will be O(n®(nlogn +logs—1) logs—1). Again, this is dominated by the initializa-
tion procedure. Indeed the domination is so great that we could generate a sample
of O(n?) perfect matchings in essentially the same time bound. Again, all time
bounds may be reduced by a fac@®(n) by using warm starts.

4. Analysis of the Markov Chain

Our goal in this section is to prove our main technical result on the mixing time of
the Markov chain/C, Theorem 3.1. Following Theorem 2.2, we can get an upper
bound on the mixing time by defining a flow and bounding its congestion. To do
this, we shall use technology introduced in Jerrum and Sinclair [1989], and since
applied successfully in several other examples. The idea inits basic formis to define
acanonical pathy,  from each staté € 2 to every other staté € €2, so that no
transition carries an undue burden of paths. These canonical paths then define the
flow f, g for all ordered pairsl(, F) by simply settingf, (y1 ) = 7n (1 )7 (F). By
upper bounding the maximum number of such paths that pass through any particular
transition, one obtains an upper bound on the congestion created by such a flow.
In the current application, we can significantly reduce the technical complexity
of this last step by defining canonical paths only for states V' := Q \ M to
states inF € M, that is, from near-perfect to perfect matchings. Thus, only flows
from| € N to F € M will be defined directly. Flows fromh € M to F € A/ can
safely be routed along the reversals of the canonical paths, by time-reversibility.
Flows froml to F with I, F € N will be routed via a random statd € M using
the canonical patly v and the reversal of the pajl m. Flows with|, F € M
will similarly be routed through a random st € . Provided—as is the case
here—both\/ and M have nonnegligible probability, the congestion of the flow
thus defined will not be too much greater than that of the canonical paths. This part
of the argument is given quantitative expression in Lemma 4.4, towards the end of
the section. First, though, we proceed to define thEset{y, ¢ : (I, F) € N'x M}
of canonical paths and bound its congestion.
The canonical paths are defined by superimposiagdF. Sincel € M(y, 2)
for some §, 2) € V1 x V,, andF € M, we see that @ F consists of a collection
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FiG. 4. Unwinding a cycle witlkk = 4.

of alternating cycles together with a single alternating path fydmz. We assume
that the cycles are ordered in some canonical fashion; for example, having ordered
the vertices, we may take as the first cycle the one that contains the least vertex in
the order, as the second cycle the one that contains the least vertex amongst those
remaining, and so on. Furthermore we assume that each cycle has a distinguished
start vertex (e.g., the least in the order). The canonical pathfrom | to F is
obtained by first “unwinding” the path and then “unwinding” the cycles in the
canonical order.

For convenience, denote bythe relation between vertices of being connected
by an edge irG. The alternating paty = vg ~ - -- ~ Va1 = Zis unwound by:
(i) successively, for each @ i < k — 1, exchanging the edge, v, 1) for the
edge V211, Vai12); and finally (ii) adding the edgevfx, Vok1).

A cyclevg ~ vy ~ - - ~ vy = Vg, Where we assume without loss of generality
that the edgev, v1) belongs tal, is unwound by: (i) removing the edgey( v,);
(ii) successively, for each £ i < k — 1, exchanging the edgey_1, vy) for the
edge ¥z, V2i11); and finally (iii) adding the edgevék_1, vak). (Refer to Figure 4.)

For each transitiob, denote by

cpt) = {(l, F) : y1 r containg as a transitioh
the set of canonical paths using that transition. We definedhgestiorof I" as

- L
o(I') := max 0 (IVF);p(t)nu)n(F)}, (9)

whereL is an upper bound on the lendth ¢| of any canonical path, artdanges
over all transitions. This is consistent with our earlier definition (2) when each flow
fi r is supported on the canonical pathg, and the canonical paths are restricted
to pairs (, F) e N x M.

Our main task will be to derive an upper boundg(f), which we state in the
next lemma. From this, it will be a straightforward matter to obtain a flow for all
I, F € Q with a suitable upper bound on its congestion (see Lemma 4.4 below)
and hence, via Theorem 2.2, a bound on the mixing time.

LEmMmMA 4.1. Assuming the weight function w satisfies inequggyfor all
(u, V) € V1 x Vs, thenp(") < 48n*.

In preparation for proving Lemma 4.1, we establish some combinatorial inequal-
ities concerning weighted matchings with at most four holes that will be used in the
proof. These inequalities are generalizations of those used in Kenyon et al. [1996].
Before stating the inequalities, we need to extend our earlier definitions to match-
ings with four holes. For distinct verticesy € Vi andv, z € V,, let M(u, v, Yy, 2)
denote the set of matchings whose holes are exactly the vedicesy, z. For
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M e M(u,v,y, 2), letw(M) = w(u, v, y, z) where
w(u,Vv,y,2) =w"(U,V,Y, 2) ;= A(M)/A(M(u,V, Y, 2)).

Since the four-hole matchings are merely a tool in our analysis, we can=set*
for these hole patterns. We also setM) = A(M)w(u, v, y, z) for eachM ¢
M(u,v,y, 2).

LEMMA 4.2. Let G be as above, and lety,y € Vi andv,z,Z € V, be
distinct vertices. Suppose thatuv. Then

(i) A(u, V)A(M(u,V)) = A(M);
(i) A(u, VIA(M(u, v, y, 2)) < A(M(y, 2));
(iii) A(u, V)A(M(u, 2)A(M(y, V) < A(M)A(M(y. 2)); and
(V) A(u, VIAM(u, z, Y, Z)A(M(Y, V)) < AM(Y', Z)A(M(Y, 2)
+ MY, 2)AMUY. 2)).

PROOF The mapping fromM(u, v, y, z) to M(y, z), or from M(u, v) to M,
defined byM — M U {(u, v)} is injective, and preserves activities modulo a factor
A(u, v); this observation dispenses with (i) and (ii).

Part (iii) is essentially a degenerate version of (iv), so we’'ll deal with the latter
first. Our basic strategy is to define an injective map

M(U. 2y, Z) x M(y, V) = (M(Y', Z) x M(y, 2)) U (M(Y', 2) x M(y. Z))

that preserves activities. Suppddg .y » € M(u, z,y', Z) andMy, € M(y, V),
and consider the superpositionMf, , y », My v and the single edgei(v). Observe
thatMy, 2y > @ My v @ {(u, v)} decomposes into a collection of cycles together with
either: a pair of even-length paths, one joinintp y’ and the other joining to Z/;

or a pair of odd-length paths, one joiniygto z (respectively,z) and the other
joining y’ to Z (respectivelyz).t°

First, consider the case of a pair of even-length pathsILée the path that
joinszto Z, and letlT = {ey, €1, ..., &x_1} be an enumeration of the edgeslof
starting atz. Note thatlT is necessarily the path that contains the efdge}. (The
edgesey andeyx_1 come from the same matchindyly . Parity dictates thafl
cannot be a single alternating path, so it must be composed of two such, joined by
the edgqu, v}.) Denote by, thek even edges dfl, and byIl, thek odd edges.
Finally define a mapping from(u, z, y', Z) x M(y, v) to M(Y', Z) x M(y, 2)
by (Myzy.z, Myy) = (My 2, My ;), whereMy » := My zy > U g\ I1; and
My,z = My,v U Hl\ .

Now consider the case of odd-length paths.Idie the path with one endpoint
at y. (Note that this must be the path that contains the ddgeg}.) The other
endpoint ofIT may be eithezz or Z; we’ll assume the former, as the other case
is symmetrical. Lefl = {eg, €1, ..., &x} be an enumeration of the edges of this
path (the direction is immaterial) and denote iy the k + 1 even edges, and
by I, thek odd edges. Finally define a mapping frovi(u, z, y’, ') x M(y, v)
to M(y', Z) x M(y,z) by (Myzy 7, Myy) = (My 2, My;), whereMy, , =

101t is at this point that we rely crucially on the bipartitenessoflf G is non-bipartite, we may end
up with an even-length path, an odd-length path and an odd-length cycle contaeniuly, and the
proof cannot proceed.
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Muzy,z U Tlp \ 11 and My, := My, U Iy \ TIo. (If the pathII joins y to
Z then, using the same construction, we end up with a pair of matchings from
MUY, 2) x M(y, Z).)

Note that this mapping is injective, since we may uniquely recover the pair
(Myzy.z, Myy) from (My », My ;). To see this, observe thidy, ;, & My , de-
composes into a number of cycles, together with either a pair of odd-length paths
or a pair of even-length paths. These paths are exactly those paths considered in
the forward map. There is only one way to apportion edges from these paths (with
edge (1, v) removed) betweeNl, , , » andMy ;. Moreover, the mapping preserves
activities modulo a factok(u, v).

Part (iii) is similar to (iv), but simpler. There is only one path, which is of odd
length and joing/ andz. The construction from part (iii) does not refer to the path
ending aty’, and can be applied to this situation too. The resultis a pair of matchings
from M x M(y, 2), as required. (J

COROLLARY 4.3. Let G be asabove,andlety,y € V;andv, z,Z € V, be
distinct vertices. Supposeu v, and also ¥~ Z whenever the latter pair appears.
Then, provided in each case that the left hand side of the inequality is defined:

(i) w*(u,v) = A(u, v);
(i) w*(u, v, vy, 2) = A(u, VIW*(y, 2);
(@ii) w*(u, 2w*(y, v) > A(u, v)w*(y, 2); and
(iv) 2w*(u, Z, y, w*(y', v) = A(u, V)A(Y', Z)w*(y, 2).

PrROOFE. Inequalities (i), (ii) and (iii) follow directly from the correspondingly
labelled inequalities in Lemma 4.2, and the definitiomf

Inequality (iv) can be verified as follows: From inequality (iv) in Lemma 4.2, we
know that either

2w*(u, Z., y, W (Y, v) = A(u, VIW*(y, W (Y, Z) (10)
or
2w (u, Z, y, 2W*(y', v) = A(u, V)W (y, Z)W*(Y', 2). (11)

(We have swapped the roles of the primed and unprimed vertices, which have the
same status as far as Lemma 4.2 is concerned.) In the first instance, inequality (iv)
of the currentlemma follows from inequalities (10) and (i); in the second, from (11)
and (iii). [

Armed with Corollary 4.3, we can now turn to the proof of our main lemma.

PrROOF OFLEMMA 4.1. Recall that transitions are defined by a two-step proce-
dure: a move is first proposed, and then either accepted or rejected according to the
Metropolis rule. Each of the possible proposals is made with probability at least
1/4n. (The proposal involves either selecting one of thedges or & vertices
u.a.r.; however, with probabilitg we do not even get as far as making a proposal.)
Thus, for any pair of statell, M’ such that the probability of transition froiv
to M’ is nonzero, we have

P(M, M) > % min{A(M/) 1},

A(M)”
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or
min{A(M), A(M")} < 4n A(M)P(M, M"). (12)

DefineQ’ := QU qu ,M(u,v,y, z), where, as usual, y range oveNl
and v, z over V,. Also deflne for any collectiorS of matchings,A(S) :
Y mes A(M). Providedu, v, y, zis a realizable four-hole pattern, that is, prowded
M(u,v,y,2)is non-emptyJ\(M(u, Vv, Y, 2)) = A(M); this is a consequence of
settingw(u, v, y, 2) to the ideal weighiv*(u, v, y, z) for all four-hole patterns.
Likewise, %A(M) < A(M(u,V)) < 2A(M), providedu, v is a realizable two-
hole pattern; this is a consequence of inequality (5). Moreover, it is a combinatorial
fact that the number of realizable four-hole patterns exceeds the number of real-
izable two-hole patterns by at most a facgrﬁn — 1)2. (Each realizable two-hole
pattern is contained in at most £ 1)? four-hole patterns. On the other hand, each
realizable four-hole pattern contains at least two realizable two-hole patterns, cor-
responding to the two possible augmentations, with respect to some fixed perfect
matching, of some four-hole matching realizing that pattern.) It follows from these
considerations that (Q')/A(Q) < n°.

Recallr (M) = A(M)/A(£2). We will show that for any transition= (M, M’)
and any pair of statels F € cp(t), we can define aancodingy: (I, F) € ' such
thatn, : cpt) — ' is an injection (i.e., , F) can be recovered uniquely from
andn: (I, F)), and

A(DA(F) = 8minfA(M), A(MVA®Mm(I, F)). (13)
In the light of (12), this inequality would imply
A(NA(F) <32n A(M)P(M, M)A (1, F)). (14)

Summing inequality (14) over ( F) e cp(t), wheret = (M, M’) is a most con-
gested transition, we get

oM =—= > =()r(F)

Q(t) (1,F)ecp(t)
B A(Q)L A(DA(F)
T AMP(M, M A(Q)2

32nL
< —= Alm(1, F))
A) (I,F);p(t)

- 4802 A ()
T A(Q)
< 48n%, (15)

where we have used the following observations: canonical paths have maximum
length 31/2 (the worst case being the unwinding of a cycle of length fayr)s
an injection, and\ (') < n?A(2). Note that (15) is indeed the sought-for bound
ono(T).

We now proceed to define the encodimgand show that it has the required
properties, specifically that it is injective and satisfies (13). Recall that there are
three stages to the unwinding of an alternating cycle: (i) the initial transition creates

/) (I,F)ecp(t)
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FiG. 5. A canonical path through transitidh — M’ and its encoding.

a pair of holes; (ii) the intermediate transitions swap edges to move one of the holes
round the cycle; and (iii) the final transition adds an edge to plug the two holes. For
an intermediate transition= (M, M’) in the unwinding of an alternating cycle,

the encoding is

(I, F)=1®&F & (MUM)\ {(vo, v1)}.

(Refer to Figure 5, where just a single alternating cycle is viewed in isolation.) In
all other cases (initial or final transitions in the unwinding of an alternating cycle,
or any transition in the unwinding of the unique alternating path), the encoding is

n(l,F)=1®F & (MUM).

It is not hard to check that = (I, F) is always a matching i (this is the
reason that the edge&y( v1) is removed in the first case above), and thais an
injection. To see this for the first case, note that F may be recovered from the
identity | & F = (C U {(vo, v1)}) ® (M U M’); the apportioning of edges between
| andF can then be deduced from the canonical ordering of the cycles and the
particular edges swapped by transittoifhe remaining edges, namely those in the
intersectionl N F, are determined by N F = M N M’ N C. The second case is
similar, but without the need to reinstate the edagg \(;).!* It therefore remains
only to verify inequality (13) for our encoding.

For the remainder of the proof, Igt zdenote the holes df, thatis,| € M(y, 2)
wherey € V; andz € V,. (Recall thatl € N and f € M.) Consider first the
case wher¢ = (M, M’) is the initial transition in the unwinding of an alternating
cycle, whereM = M’ U {(vo, v1)}. Sincel,C € M(y,2z), M,F € M andM’ €
M(vg, V1), inequality (13) simplifies to

MDA(F) < 8 min{A(M), A(M)w(vo, v1)} A(C).
The inequality in this form can be seen to follow from the identity
A(A(F) = A(M)A(C) = A(M")A(vo, V1)A(C),

using inequality (i) of Corollary 4.3, together with inequality (5). (There is a factor 4
to spare: this is not the critical case.) The situation is symmetric for the final
transition in the unwinding of an alternating cycle.

we have implicitly assumed here that we know whether it is a path or a cycle that is currently being
processed. In fact, it is not automatic that we can distinguish these two possibilities just by looking at
M, M” andC. However, by choosing the start points for cycles and paths carefully, the two cases can
be disambiguated: just choose the start point of cycles first, and then use the freedom in the choice of
endpoint of the path to avoid the potential ambiguity.
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Consider now an intermediate transitibr= (M, M’) in the unwinding of an
alternating cycle, say one that exchanges etgeysi 1) with (v _1, V). In this
case we havé € M(y,2), F € M, M € M(vp, V2i_1), M" € M(vo, Voi.1) and
C e M(vy, V1, Y, 2). Since

)»(l )X(F) = )»(M)X(C))»(Vgi s V2i_1))\.(V0, Vl)
= AMM)A(C)A(V2i, Vi +1)A(Vo, V1),

inequality (13) becomes

w(y,z) <8 min{w(vo’ Vai-1) W(Vo, V2i+1)} w(Va, V1, Y, 2)

MVai, Vai—1) " A(Vai, Vaiy1) A(Vo, V1)
This inequality can be verified by reference to Corollary 4.3: specifically, it follows
from inequality (iv) in the general case# 1, and by a paired application of
inequalities (ii) and (i) in the special caise- 1, when vertices; andv,; _; coincide.
Note that the constant8 22 is determined by this case (and a succeeding one), and
arises from the need to apply inequality (5) twice, combined with the factor 2 in (iv).

We now turn to the unique alternating path. Consider any trangiteiM, M’)
in the unwinding of the alternating path, except for the final one; such a transition
exchanges edge4, voi 1) for (voi 2, Voiy1). Observe that € M(y, 2), F € M,
M € M(Va, 2), M" € M(V342,2) andC € M(y, Voi11). Moreover (1 )A(F) =
AMA(CIA(Vai, Vair1) = A(MILCIA(V2i42, Voi11). In inequality (13), we are
left with

w(Vvzi, 2) W(Vzi 42, 2)
A(Vai, Vai1) M(Vait2, Vai1)
which holds by inequality (iii) of Corollary 4.3 in the general case, and by
inequality (i) in the special case= 0 whenv,; andy coincide.

The final case is the last transition= (M, M’) in the unwinding of an alter-
nating path, wherdl’ = M U {(v, 2)}. Note thatl, C € M(y, 2), F, M" € M,
M € M(vax, 2) and A(1)A(F) = A(M)AL(C) = A(M)A(C)r(vx, 2). Plugging
these into inequality (13) leaves us with

W(vz, 2) 1}

MV, 2) )
which follows from inequality (i) of Corollary 4.3.

We have thus shown that the encodipgsatisfies inequality (13) in all cases.
This completes the proof of Lemma 4.1.]

w(y,z) <8 min{ } W(Y, Vai11),

1§8min{

Recall that our aim is the design of a flow g for all I, F € & with small con-
gestion. The canonical pathiswe have defined provide an obvious way of routing
flow from a near-perfect matchingto perfect matchindg-. We now show how to
extend this flow to all pairs of states with only a modest increase in congestion. The
following lemma is similar in spirit to one used by Schweinsberg [2002].

LEMMA 4.4. Denoting byV := Q\ M the set of near-perfect matchings, there
exists a flow f in MC with congestion
V) | 7(M)
)] o(I'),

ot = [2+4( 20+ 05

wherep(f) is as defined irfl1).
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ProOOF.  Our aim is to route flow between arbitrary pairs of stdteg along
composite paths obtained by concatenating canonical pathsIfrofRirst some
notation. For a pair of simple path® and p, such that the final vertex op;
matches the initial vertex gb,, let p; o p, denote the simple path resulting from
concatenatingy; and p, and removing any cycles. Also defipeto be the reversal
of pathp.

The flow f; ¢ from | to F is determined by the location of the initial and final
statesl andF. There are four cases:

—If | € N andF € M then use the direct path from That is,P, r = {y1.F},
and f; g(p) = 7 (1) (F) for the unique patlp € P, k.

—If I € M andF € N, then use the reversal of the path, from I". That is,
P ={nr}, andf, g(p) = 7z (I)x(F) for the unique patlp € P, .

—If I € N andF € N, then route flow through a random staXe € M.
SoPir = {px : X € M}, wherepx = y1.x o Yr.x, and f| g(px) =
7 (1) (F)r (X)/7(M). (We regard the paths iR, r as being labelled by the
intermediate stat&, so that two elements d?, ¢ are distinguishable even if
they happen to be equal as paths.)

—If | € MandF € M then route flow through arandom stétes /. SOP, =
{px : X € N'},wherepx = Yx.1oyx.r,andf; g(px) = 7 (1) (F)7 (X)/7 (N).

It is immediate in all cases th{tjp fi r(p) = w ()7 (F), where the sum is over
all P e 'P|,|:.

Lett = (M, M’) be a most congested transition under the floyust defined,
and recall thaQ(t) = =(M)P(M, M’). Then

1
Q(f)Z@ Z Z fi.e(P) IpI.

I,FeQ p:tepeP
Decompose( ) into contributions from each of the above four types of paths, by
writing
o(f) = o(fxvn) + o(frn) + o(fynv) + e(farm),
where
1
Q(fN,M)Z—t Z Z fi.e(P) 1Pl
Q( ) leN,FeM p:tepeP ¢

etc.

Recall that cp) denotes the set of pairk,(F) € N x M such that the canonical
path froml to F passes along LettingL be the maximum length of any canonical
path inT,

L
o(fvm) < @IGZ Z fi.e(p)

N,FeM p:tepeP

L
- ) (F
Q) <I,F>;p<t>n( (")

= o(D).
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Likewise, by time reversibilityQ(fM ~) < o(I"). Furthermore,

o(fyw) = Q(t) |GZ Z fi.r(p)

N,FeN p: tepeP

<2 Y Y fip)

N Q(t) leN,FeEN XeM p:tep=y xoVFx
3 g[ (1) (F)m (X)
B Q(t) (1,X)ecp(t) FeN H(M)

n(l)n(F)n(X)}

+ (M)

(F,X)ecpt) l eN

471(/\f) o(1).

(M)

Likewise,

etaun) = o a(r)

Putting the four inequalities together, the claimed bound on congestion follaws.
Our main result, Theorem 3.1 of the previous section, now follows immediately:

PrOOF OFTHEOREM 3.1. The theorem follows from Lemma 4.1, Lemma 4.4,
Theorem 2.2, and the fact that\) /7 (M) = ©(n?). O

Itis perhaps worth remarking, for the benefit of those familiar with Diaconis and
Saloff-Coste’s [1993] comparison argument, that the proof of Lemma 4.4 could be
viewed as comparing the Markov ch&C against the random walk in a complete
bipartite graph.

5. Using Samples to Estimate the Permanent

For convenience, we adopt the graph-theoretic view of the permanent,df-a 0
matrix as the number of perfect matchings in an associated bipartite Grdgrom
Lemma 2.1 and Theorem 3.1 we know how to sample perfect matchings from an
almost uniform distribution. Now, Broder [1986] has demonstrated how an almost
uniform sampler for perfect matchings in a bipartite graph may be converted into an
FPRAS. Indeed, our Theorem 1.1 (the existence of an FPRAS for the permanent of
a 0,1-matrix) follows from Lemma 2.1 and Theorem 3.1 via Broder’s Corollary 5.
Nevertheless, with a view to making the article self contained, and at the same time
deriving an explicit upper bound on running time, we present in this section an
explicit proof of Theorem 1.1. Our proposed method for estimating the number of
perfect matchings is given an efficient sampling procedure is entirely standard
(see, e.g., Jerrum [2003, Section 3.2]), but we are able to curb the running time by
tailoring the method to our particular situation.

So supposés is a bipartite graph on + n vertices and that we want to esti-
mate the number of perfect matchingsGnwithin ratio ¢, for some specified
¢ > 0. Recall that the initialization procedure of Section 3 converges to suitable
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hole-weightsv(-, -) through a sequence of phases. In phasaumber of samples

are obtained using Markov chain simulation with edge-activities(-, -) (say) and
corresponding hole-weightsg; _;(, -). At the beginning, before phase X, is the
constant function 1, ama(u, v) = n for every hole-paiu, v. Between one phase
and the next, the weights and activities change by small factors; ultimately, after
the final phase, the activityA(u, v) is 1 if (u, v) is an edge of5, and a very small
value otherwise. The number of phases is O(n?logn).

Let A; be the weight function associated with the pair, (v;) through defini-
tion (3). The quantity\; (Q) = Y "\, Ai (M) is a“partition function” for weighted
matchings after theth phase. InitiallyAo(2) = (n? + 1)n!; while, at termination,
A, () is roughlyn? + 1 times the number of perfect matchingsdnConsidering
the “telescoping product”

A1(2) y Ao(S2) . A (2)
Ao(R2)  A1(R) Ar-1()’

we see that we may obtain a rough estimate for the number of perfect matchings
in G by estimating in turn each of the ratios_ 1(2)/ A (€2). We now explain how
this is done.

Assume that the initialization procedure runs successfully, so that (5) holds at
every phase. (We shall absorb the small failure probability of the initialization phase
into the overall failure probability of the FPRAS.) Observe that the rule for updating
the activities from\; to A1, together with the constraints on the weighisand
w; 1 specified in (5), ensure

i < M <4e, forallM e Q. a7

e~ Ai{(M)
Thus we are in good shape to estimate the various ratios in (16) by Monte Carlo
sampling. The final task is to improve this rough estimate to a more accurate one.

Let; denote the stationary distribution of the Markov chain used in phase
so thatzi (M) = Aj(M)/A;i(R2). Let Z; denote the random variable that is the
outcome of the following experiment:

A (R2) = Ao(€2) x (16)

By running the Markov chaiMC of Section 3 with parameters = A
ands = ¢/80¢e’r, obtain a sample matchirg from a distribution
that is within variation distance/80e?r of 7;.

ReturnA;1(M)/Ai(M).

If we had sampledM from the exact stationary distribution instead of an ap-
proximation, then the resulting modified random variablevould have satisfied
EZ/ =3 Ai(M) Aia(M) Ai+1(Q)‘
s Ai(Q)  Ai(M) Ai(€2)
As itis, noting the particular choice férand bounds (17), and using the fact that
expx/4)<1— %x <1+ %x < expk/4) for 0 < x < 1, we must settle for

i+i(€2) i+i(€2)
EXp(_487> Az\i+(szs)2 =Bz = exF’(:T) AAT(QS; '

Now supposes independent trials are conducted for eaalsing the above ex-
periment, and denote b¥; the sample mean of the results. THEZ; = E Z;
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(obviously), and

e\ Ar(R2) = = = e\ Ar(R2)
—— E(ZoZy...2Z— - .

xp( 4) Ao() = 02 & 1)56Xp(4) Ao(R)

For s sufficiently large,[ ], Z; will be close to[ [ E Z; with high probability.
With a view to quantifying “sufficiently large,” observe that in the light of (17),
Var[Z] _16

(E Zi)z ~ s’
Thus, takings = O(r ¢ ~2) we get

(18)

Var[Zo- - Z; 1] _ﬁ E Z?
(E[Zo---Zra])? i G (EZi)?

= 0(£?)
So, by Chebyshev’s inequality,
= = — = — = 11
Priexpte/4)E(Zo- - Zr-1) < Zo- -+ Zr—1 < exple/4) E(Zo- -~ Zr-1)] = 5,
(19)

assuming the constant implicit in the settg: @(r ¢ ~2) is chosen appropriately.
Combining inequalities (18) and (19) with the fact te$(2) = (n? + 1)n!, we
obtain

Prlexp(-e/2)Ar(2) < (P + 1t Zo-- Z;_1 < exp/2A ()] = 15, (20)

Denote byMg C M the set of perfect matchings in the gra@h Inequal-
ity (20) provides an effective estimator fag (2), already yielding a rough estimate
for | Mg|. The final step is to improve the accuracy of this estimate to within ratio
e, as required. Observe that, (M) = 1 for any matching € Mg, so that
Ar(Mg) is equal to the number of perfect matchinggdnConsider the follow-
ing experiment:

By running the Markov chaiMC of Section 3 with parameters = A,
ands = £/80€?, obtain a sample matchirg from a distribution
that is within variation distance/80e? of ;.

Return 1 ifM € Mg, and 0 otherwise.

The outcome of this experiment is a random variable that we denotelby had
been sampled from the exact stationary distributipthen its expectation would
have beem\,(Mg)/A(R); as it is, we have

8) Ar(Ma)

eXp(_Z A(Q)

8) Ar(Ma)

gEYgexp<Z Q)
r
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Let Y denote the sample mean sif= ©(n%s~?) independent trials of the above
experiment. SincEY = EY = Q(n~?), Chebyshev’s inequality gives

vav; o 11
Prlexp—e/4)EY <Y < expe/4)EY] > P
as before. Combining this with (20), we get
—= = = 5
Priexpe)| Mgl < (N2 +1)n!Y ZoZy - - - Zr_4[ < expE)|Mg] > -

All this was under the assumption that the initialization procedure succeeded. But
provided we arrange for the failure probability of initialization to be at mg&®]

it will be seen thatif? + 1)n!'Y ZoZ; - - - Z,_, is an estimator for the permanent
that meets the specification of an FPRAS.

In total, the above procedure requires+ s' = O(¢~?n*(logn)?) samples; by
Theorem 3.10(n’ logn) time is sufficient to generate each sample. (Since there
is no point in settinge = o(1/n!), the logs~—* term in Theorem 3.1 can never
dominate.) The running time is th@(s ~2n*!(logn)®). Note that this is sufficient
to absorb the cost of the initialization procedure as well, which by Lemma 3.2 is
O(n*Y(logn)3).

6. Reducing the Running Time by Using “Warm Starts”

In this article, we have concentrated on simplicity of presentation, rather than
squeezing the degree of the polynomial bounding the running time. However, a
fairly simple (and standard) observation allows us to reduce the dependence on
from O(n')—which was the situation atthe end of the previous sectiono¢td?).

The observation is this. We use Markov chain simulation to generate samples
from a distribution close to the stationary distribution. These samples are used
to estimate the expectatidh f of some functionf : @ — RT. The estimator
for E f is naturally enough the mean df over the sample. By restarting the
Markov chainMC before generating each sample, we ensure that the samples are
independent. This allows the performance of the estimator to be analyzed using
classical Chebyshev and Chernoff bounds. The down-side is that we must wait the
full mixing time of MC between samples.

However, it is known that once a Markov chain has reached near-stationarity it is
possible to draw samples at a faster rate than that indicated by the mixing time; this
“resampling time” is proportional to the inverse spectral gap of the Markov chain.
Although the samples are no longer independent, they are as good as independent
for many purposes. In particular, there exist versions of the Chernoff and Chebyshev
boundsthat are adapted to exactly this setting. Versions of the Chernoff bound that fit
our application (specifically estimating the expectations in identities (7) have been
presented by Gillman [1998, Thm 2.1] and Lezaud [1998, Thm 1.1, Remark 3]; a
version of the Chebyshev bound (that we used twice in Section 5) by Aldous [1987].

The appropriate versions of Chernoff and Chebyshev bounds have slight dif-
ferences in their hypotheses. For the estimates requiring Chernoff bounds we use
every matching visited on the sample path, whereas for those estimates requiring
Chebyshev bounds we only use samples spaced by the resampling time. Doing both
simultaneously presents no contradiction.
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Initialize A(u, v) < amax for all (u, v) € Vi x Va.
Initialize w(u, v) < namax for all (u, v) € Vi x Va.
While there exists a paly, z with A(y, 2) > a(y, z) do:
Take a sample of sizé from MC with parametera, w,
using a simulation of steps in each case.
Use the sample to obtain estimate4u, v) satisfying
condition (8), for allu, v, with high probability.
Seti(y, v) < maxi(y, v) exp(=1/2), a(y, v)}, forallv € Vy,
andw(u, v) < w’(u, v) for all u, v.
Output the final weights/(u, v).

Fic. 6. The algorithm for nonnegative entries.

Now the inverse spectral gap is bounded by the congest{eae Sinclair [1992,
Thm 5]), which in the case dIC is O(n®), by Lemmas 4.1 and 4.4. In contrast, the
mixing time of MC is O(n’ logn). Thus, provided we consume at le&n log n)
samples (which is always the case for us) we can use the higher resampling rate and
save a facto©O(nlogn) in the running time. This observation reduces all running
times quoted in earlier sections by a similar factor; in particular, the running time of
the approximation algorithm for the permanent in Section 5 comes do@(rtt).

7. Arbitrary Weights

Our algorithm easily extends to compute the permanent of an arbitrary matrix
A with nonnegative entries. Lek,ax = max j a(i, j) andamin = min; j a(, j).
Assuming perd) > 0, then it is clear that pe) > (amin)". Rounding zero entries

a(i, j) to (amin)"/n!, the algorithm follows as described in Figure 6.

The running time of this algorithm is polynomial mand log&max/amin). For
completeness, we providestronglypolynomial-time algorithm, that is, one whose
running time is polynomial im and independent @&f,ax andanmin, assuming arith-
metic operations are treated as unit cost. The algorithm of Linial et al. [2000]
converts, in strongly polynomial time, the original matAxinto a nearly doubly
stochastic matriB such that 1> per(B) > exp(—n—o(n)) and perB) = « per(A)
wherex is an easily computable scaling factor. Thus it suffices to consider the com-
putation of perB), in which case we can afford to round up any entries smaller
than (say)n=2" to n=2". The analysis for the 0,1-case now applies with the same
running time.

Finally, note that we cannot realistically hope to handle matrices which contain
negative entries. One way to appreciate thisis to consider what happens if we replace
matrix entrya(l, 1) bya(l, 1) — B whereg is a parameter that can be varied. Call
the resulting matrixAz. Note that perdg) = per(A) — g per(Ay 1), where Ay,
denotes the submatrix @ obtained by deleting the first row and column. On input
Ag, an approximation scheme would have at least to identify correctly the sign of
per(Ag); thenthe root of pe) — 8 per(A. 1) = 0 could be located by binary search
and averyclose approximation (accurate to within a polynomial number of digits)
to per(A)/ per(A. 1) found. The permanent dA itself could then be computed to
similar accuracy (and therefore exactly!) by recursion on the subm@irixgiving
us a polynomial time randomized algorithm that with high probability computes
per(A) exactly. It is important to note here that the cost of binary search scales
linearly with the number of significant digits requested, while that of an FPRAS
scales exponentially.
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8. Other Applications

Several other interesting counting problems are reducible (via approximation-
preserving reductions) to the 0,1 permanent. These were not accessible by the
earlier approximation algorithms for restricted cases of the permanent because
the reductions yield a matriA whose corresponding grapd, may have a dis-
proportionate number of near-perfect matchings. We close the article with two
such examples.

The first example makes use of a reduction due to Tutte [1954]. A perfect match-
ing in a graphG may be viewed as a spanniigubgraph o6, all of whose vertices
have degree 1. More generally, we may consider spanning subgraphs whose ver-
tices all have specified degrees, not necessarily 1. The construction of Tutte reduces
an instance of this more general problem to the special case of perfect matchings.
Jerrum and Sinclair [1990] exploited the fact that this reduction preservesihe
ber of solutions (modulo a constant factor) to approximate the number of degree
constrained subgraphs of a graph in a certain restricted setting. Combining the same
reduction with Theorem 1.1 yields the following unconditional result.

COROLLARY 8.1. Foranarbitrary bipartite graph G, there exists an FPRAS for
computing the number of labeled subgraphs of G with a specified degree sequence.

As a special case, of course, we obtain an FPRAS for the number of labelled
bipartite graphs with specified degree sequéce.

The second example concerns the notion of a 0,1-ffo@onsider a direc-
ted graph@ = (7, ), where the in-degree (respectively, out-degree) of a vertex
v e V is denoted by_(v) (respectivelyd, (v)). A 0,1-flowis defined as a subset
of edges? C E such that in the resulting subgra W( ?), d_(v) = d,(v)
forallv e V. Counting the number of,a-flows inf%p is reducible to counting
perfect matchings in an undirected bipartite graph. Specificallg let (V, E) be
the graph with the following vertex and edge sets:

V = {hi,j,mi,j,ti,j ZVi, j Wlth\WJ c ﬁ}
Ufud, . uM i with v e V1,

|
E = {(hi.j.m;), (M. t)): Vi, j with iV} € E}
U {(uk, hi ) : Vi, j, k satisfyingu®, b ; € V'}
U {(uk, t5) : Vi, |, k satisfyingu, t;; € V.

A0, 1-flow EinG corresponds to a perfect matchilin G in the following
manner. For eactiV; € E’ add the edgeh( j, m; j) to M, while for eachvvj €
\ E’ add the edgeng j, t j) to M. Now forv; € V, observe that the set
of vertices{h; j}; U {tj;};, consists of exactlyl_(v;) unmatched vertices. There

2A subgraph ofG is spanningf it includes all the vertices o; note that a spanning subgraph is not
necessarily connected.

BNote that this special case is not known to be #P-complete, and hence may conceivably be solvable
exactlyin polynomial time. It seems likely, however, that an FPRAS is the best that can be achieved.
This notion should not be confused with the notion of flow we used earlier in the analysis of the
Markov chain.
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ared_(v;)! ways of pairing these unmatched vertices with the set of verti.d‘e}s.
Thus the flowE’ corresponds t [, . d_(v)! perfect matchings 06, and it is
clear that each perfect matching®fis obtained in this way from exactly one flow.
This implies the following corollary.

COROLLARY 8.2. For an arbitrary directed graph@, there exists an FPRAS
for counting the number df, 1-flows.

Suppose the directed gra[ﬁ has a fixed source and sinkt. After adding a
simple gadget fronh to s we can estimate the numbermximun0, 1-flows from
stot of given value by estimating the number gfiGflows in the resulting graph.
Finally, we note that the “six-point ice model” on an undirected graphay be
viewed as a 01-flow on an appropriate orientation &, giving us an alternative
approach to the problem of estimating ice configurations considered by Mihail and
Winkler [1992].
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