
A Polynomial-Time Approximation Algorithm for the
Permanent of a Matrix with Nonnegative Entries

MARK JERRUM

University of Edinburgh, Edinburgh, United Kingdom

ALISTAIR SINCLAIR

University of California at Berkeley, Berkeley, California

AND

ERIC VIGODA

University of Chicago, Chicago, Illinois

Abstract. We present a polynomial-time randomized algorithm for estimating the permanent of an
arbitraryn×n matrix with nonnegative entries. This algorithm—technically a “fully-polynomial ran-
domized approximation scheme”—computes an approximation that is, with high probability, within
arbitrarily small specified relative error of the true value of the permanent.

Categories and Subject Descriptors: F.2.2 [Analysis of algorithms and problem complexity]: Non-
numerical Algorithms and Problems; G.3 [Probability and statistics]: Markov processes; Proba-
bilistic algorithms (including Monte Carlo)

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Markov chain Monte Carlo, permanent of a matrix, rapidly mixing
Markov chains

This work was partially supported by the EPSRC Research Grant “Sharper Analysis of Randomised
Algorithms: a Computational Approach” and by NSF grants CCR-982095 and ECS-9873086.
Part of this work was done while E. Vigoda was with the University of Edinburgh, and part of this
work done while M. Jerrum and E. Vigoda were guests of the Forschungsinstitut f¨ur Mathematik,
ETH, Zürich, Switzerland.
A preliminary version of this article appeared inProceedings of the 33rd ACM Symposium on the
Theory of Computing, (July), ACM, New York, 2001, pp. 712–721.
Authors’ addresses: M. Jerrum, School of Informatics, University of Edinburgh, The King’s Buildings,
Edinburgh EH9 3JZ, United Kingdom, e-mail: mrj@inf.ed.ac.uk; A. Sinclair, Computer Science
Division, University of California at Berkeley, Berkeley, CA 94720-1776; E. Vigoda, Department of
Computer Science, University of Chicago, Chicago, IL 60637.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along with the
full citation. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute
to lists, or to use any component of this work in other works requires prior specific permission and/or
a fee. Permissions may be requested from Publications Dept., ACM, Inc., 1515 Broadway, New York,
NY 10036 USA, fax:+1 (212) 869-0481, or permissions@acm.org.
C© 2004 ACM 0004-5411/04/0700-0671 $5.00

Journal of the ACM, Vol. 51, No. 4, July 2004, pp. 671–697.

672 M. JERRUM ET AL.

1. Problem Description and History

The permanent of ann× n nonnegative matrixA = (a(i, j)) is defined as

per(A) =
∑
σ

∏
i

a(i, σ (i)),

where the sum is over all permutationsσ of {1, 2, . . . ,n}. WhenA is a 0,1 matrix,
we can view it as the adjacency matrix of a bipartite graphGA = (V1,V2, E). It
is clear that the permanent ofA is then equal to the number of perfect matchings
in GA.

The evaluation of the permanent has attracted the attention of researchers for
almost two centuries, beginning with the memoirs of Binet and Cauchy in 1812
(see Minc [1982] for a comprehensive history). Despite many attempts, an efficient
algorithm for general matrices has proved elusive. Indeed, Ryser’s algorithm [Ryser
1963] remains the most efficient for computing the permanent exactly, even though it
uses as many as2(n2n) arithmetic operations. A notable breakthrough was achieved
about 40 years ago with the publication of Kasteleyn’s algorithm for counting
perfect matchings in planar graphs [Kasteleyn 1961], which uses justO(n3) arith-
metic operations.

This lack of progress was explained by Valiant [1979], who proved that ex-
act computation of the permanent is #P-complete, and hence (under standard
complexity-theoretic assumptions) not possible in polynomial time. Since then the
focus has shifted to efficient approximation algorithms with precise performance
guarantees. Essentially the best one can wish for is afully polynomial randomized
approximation scheme(FPRAS), which provides an arbitrarily close approxima-
tion in time that depends only polynomially on the input size and the desired error.
(For precise definitions of this and other notions, see the next section.)

Of the several approaches to designing an fpras that have been proposed, perhaps
the most promising has been the “Markov chain Monte Carlo” approach. This
takes as its starting point the observation that the existence of an FPRAS for the
0,1 permanent is computationally equivalent to the existence of a polynomial time
algorithm for sampling perfect matchings from a bipartite graph (almost) uniformly
at random [Jerrum et al. 1986].

Broder [1986] proposed a Markov chain Monte Carlo method for sampling per-
fect matchings. This was based on simulation of a Markov chain whose state space
consists of all perfect and “near-perfect” matchings (i.e., matchings with two uncov-
ered vertices, or “holes”) in the graph, and whose stationary distribution is uniform.
This approach can be effective only when the near-perfect matchings do not out-
number the perfect matchings by more than a polynomial factor. By analyzing the
convergence rate of Broder’s Markov chain, Jerrum and Sinclair [1989] showed
that the method works in polynomial timewheneverthis condition is satisfied. This
led to an fpras for the permanent of several interesting classes of 0,1 matrices,
including all dense matrices and a.e. (almost every1) random matrix.

For the past decade, an FPRAS for the permanent of arbitrary 0,1 matrices
has resisted the efforts of researchers. There has been similarly little progress on
proving the converse conjecture, that the permanent is hard to approximate in the

1That is, the proportion of matrices that are covered by the FPRAS tends to 1 asn→∞.

A Polynomial-Time Approximation Algorithm 673

worst case. Attention has switched to two complementary questions: how quickly
can the permanent be approximated within an arbitrarily close multiplicative factor;
and what is the best approximation factor achievable in polynomial time? Jerrum
and Vazirani [1996], building upon the work of Jerrum and Sinclair, presented
an approximation algorithm whose running time is exp(O(

√
n)), which though

substantially better than Ryser’s exact algorithm is still exponential time. In the
complementary direction, there are several polynomial time algorithms that achieve
an approximation factor ofcn, for various constantsc (see, e.g., Linial et al. [2000]
and Barvinok [1999]). To date the best of these is due to Barvinok [1999], and gives
c ≈ 1.31 (see also Chien et al. [2002]).

In this article, we resolve the question of the existence of an FPRAS for the
permanent of a general 0,1-matrix (and indeed, of a general matrix with non-
negative entries2) in the affirmative. Our algorithm is based on a refinement of
the Markov chain Monte Carlo method mentioned above. The key ingredient is
the weighting of near-perfect matchings in the stationary distribution so as to
take account of the positions of the holes. With this device, it is possible to
arrange that each hole pattern has equal aggregated weight, and hence that the
perfect matchings are not dominated too much. The resulting Markov chain is a
variant of Broder’s earlier one, with a Metropolis rule that handles the weights.
The analysis of the mixing time follows the earlier argument of Jerrum and
Sinclair [1989], except that the presence of the weights necessitates a combi-
natorially more delicate application of the path-counting technology introduced
in Jerrum and Sinclair [1989]. The computation of the required hole weights
presents an additional challenge which is handled by starting with the complete
graph (in which everything is trivial) and slowly reducing the presence of match-
ings containing nonedges ofG, computing the required hole weights as this pro-
cess evolves.

We conclude this introductory section with a statement of the main result of the
article.

THEOREM 1.1. There exists a fully polynomial randomized approximation
scheme for the permanent of an arbitrary n×n matrix A with nonnegative entries.

The remainder of the article is organized as follows. In Section 2, we summarize
the necessary background concerning the connection between random sampling
and counting, and the Markov chain Monte Carlo method. In Section 3, we define
the Markov chain we will use and present the overall structure of the algorithm,
including the computation of hole weights. In Section 4, we analyze the Markov
chain and show that it is rapidly mixing; this is the most technical section of the
paper. Section 5 completes the proof of Theorem 1.1 by detailing the procedure
by which the random matchings produced by Markov chain simulation are used to
estimate the number of perfect matchings inGA, and hence the permanent of the
associated 0,1-matrixA; this material is routine, but is included for completeness. At
this point, the running time of our FPRAS as a function ofn is Õ(n11); in Section 6,
the dependence onn is reduced toÕ(n10) by using “warm starts” of the Markov

2As explained later (see Section 7), we cannot hope to handle matrices with negative entries as an
efficient approximation algorithm for this case would allow one to compute the permanent of a 0,1
matrix exactly in polynomial time.

674 M. JERRUM ET AL.

chain.3 Finally, in Section 7, we show how to extend the algorithm to handle matrices
with arbitrary nonnegative entries, and in Section 8, we observe some applications
to constructing an FPRAS for various other combinatorial enumeration problems.

2. Random Sampling and Markov Chains

This section provides basic information on the use of rapidly mixing Markov chains
to sample combinatorial structures, in this instance, perfect matchings.

2.1. RANDOM SAMPLING. As stated in the Introduction, our goal is a fully
polynomial randomized approximation scheme (FPRAS) for the permanent. This is
a randomized algorithm which, when given as input ann×n nonnegative matrixA
together with an accuracy parameterε ∈ (0, 1], outputs a numberZ (a random
variable of the coins tossed by the algorithm) such that4

Pr[exp(−ε)Z ≤ per(A) ≤ exp(ε)Z] ≥ 3
4,

and which runs in time polynomial inn and ε−1. The probability 3/4 can be
increased to 1− δ for any desiredδ > 0 by outputting the median ofO(logδ−1)
independent trials [Jerrum et al. 1986].

To construct an FPRAS, we will follow a well-trodden path via random sampling.
We focus on the 0,1 case; see Section 7 for an extension to the case of matrices
with general nonnegative entries. Recall that whenA is a 0,1 matrix, per(A) is
equal to the number of perfect matchings in the bipartite graphGA. Now it is well
known—see for example [Jerrum and Sinclair 1996]—that for this and most other
natural combinatorial counting problems, an FPRAS can be built quite easily from
an algorithm that generates the same combinatorial objects, in this case perfect
matchings, (almost) uniformly at random. It will therefore be sufficient for us to
construct afully-polynomial almost uniform samplerfor perfect matchings, namely
a randomized algorithm which, given as inputs ann × n 0,1 matrixA and abias
parameterδ ∈ (0, 1], outputs a random perfect matching inGA from a distributionU ′
that satisfies

dtv(U ′,U) ≤ δ,
whereU is the uniform distribution on perfect matchings ofGA anddtv denotes
(total) variation distance.5 The algorithm is required to run in time polynomial inn
and logδ−1. For completeness, we will flesh out the details of the reduction to
random sampling in Section 5.

The bulk of this article will be devoted to the construction of a fully polynomial
almost uniform sampler for perfect matchings in an arbitrary bipartite graph. The
sampler will be based on simulation of a suitable Markov chain, whose state space
includes all perfect matchings in the graphGA and which converges to a stationary
distribution that is uniform over these matchings.

3The notationÕ(·) ignores logarithmic factors, and not merely constants.
4The relative error is usually specified as 1± ε. We usee±ε (which differs only slightly from 1± ε)
for algebraic convenience.
5Thetotal variation distancebetween two distributionsπ , π̂ on a finite setÄ is defined asdtv(π, π̂) =
1
2

∑
x∈Ä |π (x)− π̂ (x)| = maxS⊂Ä |π (S)− π̂ (S)|.

A Polynomial-Time Approximation Algorithm 675

Setδ̂← δ/(12n2 + 3).
RepeatT = d(6n2 + 2) ln(3/δ)e times:

Simulate the Markov chain forτ (δ̂) steps;
output the final state if it belongs toM and halt.

Output an arbitrary perfect matching if all trials fail.

FIG. 1. Obtaining an almost uniform sampler from the Markov chain.

2.2. MARKOV CHAINS. Consider a Markov chain with finite state spaceÄ and
transition probabilitiesP. In our application, states are matchings inGA, and we
useM , M ′ to denote generic elements ofÄ. The Markov chain isirreducible if
for every pair of statesM,M ′ ∈ Ä, there exists at > 0 such thatPt (M,M ′) > 0
(that is, all states communicate); it isaperiodic if gcd{t : Pt (M,M ′) > 0} = 1
for all M,M ′ ∈ Ä. It is well known from the classical theory that an irreducible,
aperiodic Markov chain converges to a uniquestationary distributionπ overÄ,
that is,Pt (M,M ′) → π (M ′) ast → ∞ for all M ′ ∈ Ä, regardless of the initial
stateM . If there exists a probability distributionπ onÄwhich satisfies thedetailed
balanceconditions for allM,M ′ ∈ Ä, that is,

π (M)P(M,M ′) = π (M ′)P(M ′,M) =: Q(M,M ′),

then the chain is said to be (time-)reversibleandπ is a stationary distribution.
We are interested in the rate at which a Markov chain converges to its stationary

distribution. To this end, we define themixing time(from stateM) to be

τ (δ) = τM (δ) = min
{
t : dtv(Pt (M, ·), π) ≤ δ}.

When the Markov chain is used as a random sampler, the mixing time determines
the number of simulation steps needed before a sample is produced.

In this article, the state spaceÄ of the Markov chain will consist of the perfect
and “near-perfect” matchings (i.e., those that leave only two uncovered vertices, or
“holes”) in the bipartite graphGA with n+n vertices. The stationary distributionπ
will be uniform over the set of perfect matchingsM, and will assign probability
π (M) ≥ 1/(4n2 + 1) toM. Thus we get an almost uniform sampler for perfect
matchings by iterating the following trial: simulate the chain forτM (δ̂) steps (where
δ̂ is a sufficiently small positive number), starting from some appropriate stateM ,6

and output the final state if it belongs toM. The details are given in Figure 1.

LEMMA 2.1. The algorithm presented in Figure1 is an almost uniform sampler
for perfect matchings with bias parameterδ.

PROOF. Let π̂ be the distribution of the final state of a single simulation of the
Markov chain; note that the length of simulation is chosen so thatdtv(π̂ , π) ≤ δ̂.
Let S ⊂ M be an arbitrary set of perfect matchings, and letM ∈ M be the
perfect matching that is eventually output. (M is a random variable depending on
the random choices made by the algorithm.) The result follows from the chain

6As we shall see, a state is “appropriate” unless it has exceptionally low probability in the stationary
distribution. Except on a few occasions when we need to call attention to the particular initial state,
we may safely drop the subscript toτ .

676 M. JERRUM ET AL.

of inequalities:

Pr(M ∈ S) ≥ π̂ (S)

π̂ (M)
− (1− π̂ (M))T

≥ π (S)− δ̂
π (M)+ δ̂ − exp(−π̂ (M)T)

≥ π (S)

π (M)
− 2δ̂

π (M)
− exp(−(π (M)− δ̂)T)

≥ π (S)

π (M)
− 2δ

3
− δ

3
.

A matching bound Pr(M ∈ S) ≤ π (S)/π (M) + δ follows immediately by con-
sidering the complementary setM \ S. (Recall that the total variation distance
dtv(π, π̂) between distributionsπ and π̂ may be interpreted as the maximum of
|π (S)− π̂ (S)| over all eventsS.)

The running time of the random sampler is determined by the mixing time of
the Markov chain. We will derive an upper bound onτ (δ) as a function ofn andδ.
To satisfy the requirements of a fully polynomial sampler, this bound must be
polynomial inn. (The logarithmic dependence onδ−1 is an automatic consequence
of the geometric convergence of the chain.) Accordingly, we shall call the Markov
chainrapidly mixing(from initial statex) if, for any fixedδ > 0, τ (δ) is bounded
above by a polynomial function ofn. Note that in general the size ofÄ will be
exponential inn, so rapid mixing requires that the chain be close to stationarity
after visiting only a tiny (random) fraction of its state space.

In order to bound the mixing time, we define a multicommodity flow in the
underlying graph of the Markov chain and bound its associated congestion. The
graph of interest isGP = (Ä, EP), whereEP := {(M,M ′) : P(M,M ′) > 0}
denotes the set of possible transitions.7 For all ordered pairs (I , F) ∈ Ä2 of “initial”
and “final” states, letPI ,F denote a collection of simple directed paths inGP from
I to F . In this article, we callf I ,F : PI ,F → R+ a flow from I to F if the follow-
ing holds: ∑

p∈PI ,F

f I ,F (p) = π (I)π (F).

A flow for the entire Markov chain is a collectionf = { f I ,F : I , F ∈ Ä} of
individual flows, one for each pairI , F ∈ Ä. Our aim is to design a flowf which
has smallcongestion%, defined as

% = %(f) = max
t=(M,M ′)∈EP

%t , (1)

where

%t = 1

Q(t)

∑
I ,F∈Ä

∑
p : t∈p∈PI ,F

f I ,F (p) |p|, (2)

7AlthoughGP is formally a directed graph, its edges occur in anti-parallel pairs, by time-reversibility.

A Polynomial-Time Approximation Algorithm 677

q q q qq qq q
q q qq q q q q q q q qq q�� @@ �� @@

@@ �� @@ �� @@ ��
�� @@u v· · ·

(k hexagons)

FIG. 2. A graph with|M(u, v)|/|M| exponentially large.

and|p| denotes the length of (i.e., number of edges contained within) the pathp.
HereQ(t) = Q(M,M ′) = π (M)P(M,M ′), as defined earlier.

The following bound relating congestion and mixing time is standard; the version
presented here is due to Sinclair [1992], building on work of Diaconis and Stroock
[1991].

THEOREM 2.2. For an ergodic, reversible Markov chain with self-loop proba-
bilities P(M,M) ≥ 1/2 for all states M, and any initial state M0 ∈ Ä,

τM0(δ) ≤ %
(

lnπ (M0)
−1+ ln δ−1

)
.

Thus, to prove rapid mixing, it suffices to demonstrate a flow with an upper
bound of the form poly(n) on its congestion for our Markov chain on matchings.
(The term lnπ (M0)−1 will not cause a problem, since the total number of states
will be at most (n+ 1)!, and we will start in a stateM0 that maximizesπ (M0).)

3. The Sampling Algorithm

As explained in the previous section, our goal now is to design an efficient (almost)
uniform sampling algorithm for perfect matchings in a bipartite graphG = GA.
This will, through standard considerations spelled out in Section 5, yield an FPRAS
for the permanent of an arbitrary 0,1 matrix, and hence Theorem 1.1. The (easy)
extension to matrices with arbitrary nonnegative entries is described in Section 7.

Let G = (V1,V2, E) be a bipartite graph onn + n vertices. The basis of our
algorithm is a Markov chainMC defined on the collection of perfect and near-
perfect matchings ofG. LetM denote the set of perfect matchings inG, and let
M(u, v) denote the set of near-perfect matchings with holes only at the vertices
u ∈ V1 andv ∈ V2. The state space ofMC isÄ :=M ∪⋃u,vM(u, v). Previous
work [Broder 1986; Jerrum and Sinclair 1989] considered a Markov chain with
the same state spaceÄ and transition probabilities designed so that the station-
ary distribution was uniform overÄ, or assigned slightly higher weight to each
perfect matching than to each near-perfect matching. Rapid mixing of this chain
immediately yields an efficient sampling algorithm provided perfect matchings
have sufficiently large weight; specifically,|M|/|Ä| must be bounded below by
a inverse polynomial inn. In Jerrum and Sinclair [1989], it was proved that this
condition—rather surprisingly—is also sufficient to imply that the Markov chain
is rapidly mixing. This led to an FPRAS for the permanent of any 0,1 matrix satis-
fying the above condition, including all dense matrices (having at leastn/2 1’s in
each row and column), and a.e. random matrix [Jerrum and Sinclair 1989], as well
as matrices corresponding to vertex transitive graphs (including regular lattices, an
important case for applications in statistical physics) [Kenyon et al. 1996].

On the other hand, it is not hard to construct graphs in which, for some pair
of holesu, v, the ratio|M(u, v)|/|M| is exponentially large. The graph depicted
in Figure 2, for example, has one perfect matching, but 2k matchings with holes
at u andv. For such graphs, the above approach breaks down because the perfect

678 M. JERRUM ET AL.

matchings have insufficient weight in the stationary distribution. To overcome this
problem, we will introduce an additional weight factor that takes account of the
holes in near-perfect matchings. We will define these weights in such a way that
anyhole pattern(including that with no holes, i.e., perfect matchings) is equally
likely in the stationary distribution. Since there are onlyn2+1 such patterns,π will
assign probabilityÄ(1/n2) in total to perfect matchings.

It will actually prove technically convenient to introduce edge weights also.
Thus for each edge (u, v) ∈ E, we introduce a positive weightλ(u, v), which
we call its activity. We extend the notion of activities to matchingsM (of any
cardinality) byλ(M) = ∏

(u,v)∈M λ(u, v). Similarly, for a set of matchingsS we
defineλ(S) = ∑M∈S λ(M).8 For our purposes, the advantage of edge weights is
that they allow us to work with the complete graph onn+ n vertices, rather than
with an arbitrary graphG = (V1,V2, E): we can do this by settingλ(e) = 1 for
e ∈ E, andλ(e) = ξ ≈ 0 for e /∈ E. Takingξ ≤ 1/n! ensures that the “bogus”
matchings have little effect, as will be described shortly.

We are now ready to specify the desired stationary distribution of our Markov
chain. This will be the distributionπ overÄ defined byπ (M) ∝ 3(M), where

3(M) =
{
λ(M)w(u, v) if M ∈M(u, v) for someu, v;

λ(M), if M ∈M.
(3)

andw : V1× V2→ R+ is the weight function for holes to be specified shortly.
To construct a Markov chain havingπ as its stationary distribution, we use a

slight variant of the original chain of Broder [1986] and Jerrum and Sinclair [1989]
augmented with a Metropolis acceptance rule for the transitions. (The chain has
been modified in order to save a factor ofn from its mixing time on the complete
bipartite graph.) The transitions from a matchingM are defined as follows:

(1) If M ∈ M, choose an edgee = (u, v) uniformly at random fromM ; set
M ′ = M \ e.

(2) If M ∈M(u, v), choosez uniformly at random fromV1 ∪ V2.
(i) if z ∈ {u, v} and (u, v) ∈ E, let M ′ = M ∪ (u, v);

(ii) if z ∈ V2, (u, z) ∈ E and (x, z) ∈ M , let M ′ = M ∪ (u, z) \ (x, z);
(iii) if z ∈ V1, (z, v) ∈ E and (z, y) ∈ M , let M ′ = M ∪ (z, v) \ (z, y);
(iv) otherwise, letM ′ = M .

(3) With probability min{1,3(M ′)/3(M)} go to M ′; otherwise, stay atM .

Thus the nonnull transitions are of three types:removingan edge from a perfect
matching (case 1);adding an edge to a near-perfect matching (case 2(i)); and
exchangingan edge of a near-perfect matching with another edge adjacent to one
of its holes (cases 2(ii) and 2(iii)).

Theproposal probabilitiesdefined in steps (1) and (2) for selecting the candidate
matchingM ′ are symmetric, being 1/n in the case of moves between perfect and
near-perfect matchings, and 1/2n between near-perfect matchings. This fact, com-
bined with theMetropolis rulefor accepting the move toM ′ applied in step (3),

8Note that if we setλ(u, v) equal to the matrix entrya(u, v) for every edge (u, v), then per(A) is
exactly equal toλ(M). Thus, our definition is natural.

A Polynomial-Time Approximation Algorithm 679

ensures that the Markov chain is reversible withπ (M) ∝ 3(M) as its stationary
distribution. Finally, to satisfy the conditions of Theorem 2.2, we add a self-loop
probability of 1/2 to every state; that is, on every step, with probability 1/2 we
make a transition as above and otherwise do nothing.

Next we need to specify the weight functionw. Ideally we would like to take
w = w∗, where

w∗(u, v) = λ(M)

λ(M(u, v))
(4)

for each pair of holesu, v withM(u, v) 6= ∅. (We leavew(u, v) undefined when
M(u, v) = ∅.) With this choice of weights, any hole pattern (including that with no
holes) is equally likely under the distributionπ ; since there are at mostn2+1 such
patterns, when sampling from the distributionπ a perfect matching is generated
with probability at least 1/(n2+ 1). In the event, we will not knoww∗ exactly but
will content ourselves with weightsw satisfying

w∗(u, v)

2
≤ w(u, v) ≤ 2w∗(u, v), (5)

with very high probability. This perturbation will reduce the relative weight of
perfect matchings by at most a constant factor.

The main technical result of this paper is the following theorem, which says that,
provided the weight functionw satisfies condition (5), the Markov chain is rapidly
mixing. The theorem will be proved in the next section.

THEOREM 3.1. Assuming the weight function w satisfies inequality(5) for all
(u, v) ∈ V1×V2 withM(u, v) 6= ∅, then the mixing time of the Markov chainMC
is bounded above byτM (δ) = O(n6g(log(π (M)−1)+ logδ−1)).

Finally, we need to address the issue of computing (approximations to) the
weightsw∗ defined in (4). Sincew∗ encapsulates detailed information about the set
of perfect and near-perfect matchings, we cannot expect to compute it directly for
our desired edge activitiesλ(e). Rather than attempt this, we instead initialize the
edge activities to trivial values, for which the correspondingw∗ can be computed
easily, and then gradually adjust theλ(e) towards their desired values; at each step
of this process, we will be able to compute (approximations to) the weightsw∗
corresponding to the new activities.

Recall that we work with thecompletegraph onn + n vertices, and assign an
activity of 1 to all edgese∈ E (i.e., all edges of our graphG), and ultimately a very
small value 1/n! to all “non-edges”e /∈ E. Since the weight of an invalid matching
(i.e., one that includes a non-edge) is at most 1/n! and there are at mostn! possible
matchings, the combined weight of all invalid matchings is at most 1. Assuming
the graph has at least one perfect matching, the invalid matchings merely increase
by at most a small constant factor the probability that a single simulation fails to
return a perfect matching. Thus, our “target” activities areλG(e) = 1 for all e∈ E,
andλG(e) = 1/n! for all othere.

As noted above, our algorithm begins with activitiesλ whose ideal weightsw∗
are easy to compute. Since we are working with the complete graph, a natural
choice is to setλ(e) = 1 for all e. The activities of edgese ∈ E will remain
at 1 throughout; the activities of non-edgese /∈ E will converge to their target
valuesλG(e) = 1/n! in a sequence of phases, in each of which, for some vertexv,

680 M. JERRUM ET AL.

the activitiesλ(e) for all non-edgese 6∈ E which are incident tov are updated to
λ′(e), where exp(−1/2)λ(e) ≤ λ′(e) ≤ exp(1/2)λ(e). (In this application, we only
ever need to reduce the activities, and never increase them, but the added generality
costs us nothing.)

We assume at the beginning of the phase that condition (5) is satisfied; in other
words,w(u, v) approximatesw∗(u, v) within ratio 2 for all pairs (u, v).9 Before up-
dating an activity, we must consolidate our position by finding, for each pair (u, v),
a better approximation tow∗(u, v): one that is within ratioc for some 1< c < 2.
(We shall see later thatc = 6/5 suffices here.) For this purpose, we may use
the identity

w(u, v)

w∗(u, v)
= π (M(u, v))

π (M)
, (6)

sincew(u, v) is known to us and the probabilities on the right hand side may be
estimated to arbitrary precision by taking sample averages. (Recall thatπ denotes
the stationary distribution of the Markov chain.)

Although we do not know how to sample fromπ exactly, Theorem 3.1 does
allow us to sample, in polynomial time, from a distribution ˆπ that is within variation
distanceδ ofπ . We shall see presently that settingδ = O(n−2) suffices in the current
situation; certainly, the exact value ofδ clearly does not affect the leading term in
the mixing time promised by Theorem 3.1. So suppose we generateS samples
from π̂ , and for each pair (u, v) ∈ V1 × V2 we consider the proportionα(u, v)
of samples with hole pairu, v, together with the proportionα of samples that are
perfect matchings. Clearly,

Eα(u, v) = π̂ (M(u, v)) and Eα = π̂ (M). (7)

Naturally, it is always possible that some sample averageα(u, v) will be far from
its expectation, so we have to allow for the possibility of failure. We denote by ˆη
the (small) failure probability we are prepared to tolerate. Provided the sample
sizeS is large enough,α(u, v) (respectively,α) approximates ˆπ (M(u, v)) (respec-
tively, π̂ (M)) within ratio c1/4, with probability at least 1− η̂. Furthermore, ifδ
is small enough, ˆπ (M(u, v)) (respectively, ˆπ (M)) approximatesπ (M(u, v)) (re-
spectively,π (M)) within ratioc1/4. Then, via (6), we have, with probability at least
1− (n2+ 1)η̂, approximations within ratioc to all of the target weightsw∗(u, v).

It remains to determine bounds on the sample sizeS and sampling toleranceδ
that make this all work. Condition (5) entails

Eα(u, v) = π̂ (M(u, v)) ≥ π (M(u, v))− δ ≥ 1

4(n2+ 1)
− δ.

Assuming δ ≤ 1/8(n2 + 1), it follows from any of the standard Chernoff
bounds (see, e.g., Alon and Spencer [1992] or Motwani and Raghavan [1995,
Thms 4.1 & 4.2]), thatO(n2 log(1/η̂)) samples from ˆπ suffice to estimate
Eα(u, v) = π̂ (M(u, v)) within ratio c1/4 with probability at least 1− η̂. Again
using the fact thatπ (M(u, v)) ≥ 1/4(n2 + 1), we see that ˆπ (M(u, v)) will ap-
proximateπ (M(u, v)) within ratio c1/4 providedδ ≤ c1/n2 wherec1 > 0 is a
sufficiently small constant. (Note that we also satisfy the earlier constraint onδ by

9We say thatξ approximates x within ratio rif r −1x ≤ ξ ≤ r x .

A Polynomial-Time Approximation Algorithm 681

Initialize λ(u, v)← 1 for all (u, v) ∈ V1 × V2.
Initialize w(u, v)← n for all (u, v) ∈ V1 × V2.
While there exists a pairy, z with λ(y, z) > λG(y, z) do:

Take a sample of sizeS from MC with parametersλ,w,
using a simulation ofT steps in each case.

Use the sample to obtain estimatesw′(u, v) satisfying
condition (8), for allu, v, with high probability.

Setλ(y, v)← max{λ(y, v) exp(−1/2), λG(y, v)}, for all v ∈ V2,
andw(u, v)← w′(u, v) for all u, v.

Output the final weightsw(u, v).

FIG. 3. The algorithm for approximating the ideal weights.

this setting.) Therefore, takingc = 6/5 and usingS = O(n2 log(1/η̂)) samples,
we obtain refined estimatesw(u, v) satisfying

5w∗(u, v)/6≤ w(u, v) ≤ 6w∗(u, v)/5 (8)

with probability 1− (n2+ 1)η̂. Pluggingδ = c1/n2 into Theorem 3.1, the number
of steps required to generate each sample isT = O(n7 logn), provided we use a
starting state that is reasonably likely in the stationary distribution; and the total
time to update all the weightsw(u, v) is O(n9 logn log(1/η̂)).

We can then update the activity of all non-edgese incident at a common ver-
tex v by changingλ(e) by a multiplicative factor of exp(−1/2). Since a matching
contains at most one edge incident tov, the effect of this updating on the ideal
weight functionw∗ is at most a factor exp(1/2). Thus, since 6 exp(1/2)/5 < 2,
our estimatesw obeying (8) actually satisfy the weaker condition (5) for thenew
activities as well, so we can proceed with the next phase. The algorithm is sketched
in Figure 3.

Starting from the trivial valuesλ(e) = 1 for all edgese of the complete bipartite
graph, we use the above procedure repeatedly to reduce the activity of each non-
edgee /∈ E down to 1/n!, leaving the activities of all edgese ∈ E at unity.
This entire process requiresO(n2 logn) phases, since there aren vertices inV1,
and O(logn!) = O(n logn) phases are required to reduce the activities of edges
incident at each of these vertices to their final values. We have seen that each phase
takes timeO(n9 logn log(1/η̂)). Thus, the overall running time of the algorithm
for computing approximate weights isO(n11(logn)2 log(1/η̂)). It only remains to
choose ˆη.

Recall that ˆη is the failure probability on each occasion that we use a sample mean
to estimate an expectation. If we are to achieve overall failure probabilityη then
we must set ˆη = O(η/(n4 logn)), since there areO(n4 logn) individual estimates
to make in total. Thus

LEMMA 3.2. The algorithm of Figure3 finds approximations w(· , ·) within a
constant ratio of the ideal weights w∗G(· , ·) associated with the desired activitiesλG

in time O(n11(logn)2(logn+ logη−1)), with failure probabilityη.

Although it is not a primary aim of this article to push exponents down as far
as possible, we note that it is possible to reduce the running time in Lemma 3.2
from Õ(n11) to Õ(n10) using a standard artifice. We have seen that the number
of simulation steps to generate a sample is at mostT = O(n7 logn), if we start
from, say, a perfect matchingM0 of maximum activity. However, after generating

682 M. JERRUM ET AL.

an initial sampleM for a phase, we are only observing the hole pattern ofM . Thus
the matchingM is still random with respect to its hole pattern. By starting our
Markov chain from this previous sampleM , we have what is known as a “warm
start,” in which case generating a sample requires onlyO(n6) simulation steps. We
expand on this point in Section 6.

Suppose our aim is to generate one perfect matching from a distribution that is
within variation distanceδ of uniform. Then, we need to setη so that the overall
failure probability is strictly less thanδ, sayη = δ/2. At the conclusion of the
initialization algorithm, we have a good approximation to the ideal weightsw∗G
for our desired activitiesλG. We can then simply simulate the Markov chain with
these parameters to generate perfect matchings from a distribution within variation
distanceδ/2 of uniform. By Theorem 3.1, the (expected) additional time required to
generate such a sample isO(n8(n logn+ logδ−1)), which is negligible in compar-
ison with the initialization procedure. (The extra factorn2 represents the expected
number of samples before a perfect matching is seen.) If we are interested in the
worst-case time to generate a perfect matching, we can see from Lemma 2.1 that it
will be O(n8(n logn+ logδ−1) logδ−1). Again, this is dominated by the initializa-
tion procedure. Indeed the domination is so great that we could generate a sample
of Õ(n2) perfect matchings in essentially the same time bound. Again, all time
bounds may be reduced by a factorÕ(n) by using warm starts.

4. Analysis of the Markov Chain

Our goal in this section is to prove our main technical result on the mixing time of
the Markov chainMC , Theorem 3.1. Following Theorem 2.2, we can get an upper
bound on the mixing time by defining a flow and bounding its congestion. To do
this, we shall use technology introduced in Jerrum and Sinclair [1989], and since
applied successfully in several other examples. The idea in its basic form is to define
acanonical pathγI ,F from each stateI ∈ Ä to every other stateF ∈ Ä, so that no
transition carries an undue burden of paths. These canonical paths then define the
flow f I ,F for all ordered pairs (I , F) by simply settingf I ,F (γI ,F) = π (I)π (F). By
upper bounding the maximum number of such paths that pass through any particular
transition, one obtains an upper bound on the congestion created by such a flow.

In the current application, we can significantly reduce the technical complexity
of this last step by defining canonical paths only for statesI ∈ N := Ä \M to
states inF ∈M, that is, from near-perfect to perfect matchings. Thus, only flows
from I ∈ N to F ∈M will be defined directly. Flows fromI ∈M to F ∈ N can
safely be routed along the reversals of the canonical paths, by time-reversibility.
Flows fromI to F with I , F ∈ N will be routed via a random stateM ∈M using
the canonical pathγI ,M and the reversal of the pathγF,M . Flows with I , F ∈M
will similarly be routed through a random stateM ∈ N . Provided—as is the case
here—bothN andM have nonnegligible probability, the congestion of the flow
thus defined will not be too much greater than that of the canonical paths. This part
of the argument is given quantitative expression in Lemma 4.4, towards the end of
the section. First, though, we proceed to define the set0 = {γI ,F : (I , F) ∈ N×M}
of canonical paths and bound its congestion.

The canonical paths are defined by superimposingI andF . SinceI ∈M(y, z)
for some (y, z) ∈ V1× V2, andF ∈M, we see thatI ⊕ F consists of a collection

A Polynomial-Time Approximation Algorithm 683

q q q qq q q q
q q q qq q q q

q qq q
q q q
q q qqqqq
q q qqq q q q

q q qqq q q
qqq @@ @@

��

@@

��@@

@@

��@@

��
→ → → → →

v0 v1 v1

v2

v3

v4

v6

v5

v7

v0

FIG. 4. Unwinding a cycle withk = 4.

of alternating cycles together with a single alternating path fromy to z. We assume
that the cycles are ordered in some canonical fashion; for example, having ordered
the vertices, we may take as the first cycle the one that contains the least vertex in
the order, as the second cycle the one that contains the least vertex amongst those
remaining, and so on. Furthermore we assume that each cycle has a distinguished
start vertex (e.g., the least in the order). The canonical pathγI ,F from I to F is
obtained by first “unwinding” the path and then “unwinding” the cycles in the
canonical order.

For convenience, denote by∼ the relation between vertices of being connected
by an edge inG. The alternating pathy = v0 ∼ · · · ∼ v2k+1 = z is unwound by:
(i) successively, for each 0≤ i ≤ k − 1, exchanging the edge (v2i , v2i+1) for the
edge (v2i+1, v2i+2); and finally (ii) adding the edge (v2k, v2k+1).

A cyclev0 ∼ v1 ∼ · · · ∼ v2k = v0, where we assume without loss of generality
that the edge (v0, v1) belongs toI , is unwound by: (i) removing the edge (v0, v1);
(ii) successively, for each 1≤ i ≤ k − 1, exchanging the edge (v2i−1, v2i) for the
edge (v2i , v2i+1); and finally (iii) adding the edge (v2k−1, v2k). (Refer to Figure 4.)

For each transitiont , denote by

cp(t) = {(I , F) : γI ,F containst as a transition}
the set of canonical paths using that transition. We define thecongestionof 0 as

%(0) := max
t

{
L

Q(t)

∑
(I ,F)∈cp(t)

π (I)π (F)

}
, (9)

whereL is an upper bound on the length|γI ,F | of any canonical path, andt ranges
over all transitions. This is consistent with our earlier definition (2) when each flow
f I ,F is supported on the canonical pathγI ,F , and the canonical paths are restricted
to pairs (I , F) ∈ N ×M.

Our main task will be to derive an upper bound on%(0), which we state in the
next lemma. From this, it will be a straightforward matter to obtain a flow for all
I , F ∈ Ä with a suitable upper bound on its congestion (see Lemma 4.4 below)
and hence, via Theorem 2.2, a bound on the mixing time.

LEMMA 4.1. Assuming the weight function w satisfies inequality(5) for all
(u, v) ∈ V1× V2, then%(0) ≤ 48n4.

In preparation for proving Lemma 4.1, we establish some combinatorial inequal-
ities concerning weighted matchings with at most four holes that will be used in the
proof. These inequalities are generalizations of those used in Kenyon et al. [1996].
Before stating the inequalities, we need to extend our earlier definitions to match-
ings with four holes. For distinct verticesu, y ∈ V1 andv, z ∈ V2, letM(u, v, y, z)
denote the set of matchings whose holes are exactly the verticesu, v, y, z. For

684 M. JERRUM ET AL.

M ∈M(u, v, y, z), let w(M) = w(u, v, y, z) where

w(u, v, y, z) = w∗(u, v, y, z) := λ(M)/λ(M(u, v, y, z)).

Since the four-hole matchings are merely a tool in our analysis, we can setw = w∗
for these hole patterns. We also set3(M) = λ(M)w(u, v, y, z) for eachM ∈
M(u, v, y, z).

LEMMA 4.2. Let G be as above, and let u, y, y′ ∈ V1 and v, z, z′ ∈ V2 be
distinct vertices. Suppose that u∼ v. Then

(i) λ(u, v)λ(M(u, v)) ≤ λ(M);
(i) λ(u, v)λ(M(u, v, y, z)) ≤ λ(M(y, z));

(iii) λ(u, v)λ(M(u, z))λ(M(y, v)) ≤ λ(M)λ(M(y, z)); and
(iv) λ(u, v)λ(M(u, z, y′, z′)λ(M(y, v)) ≤ λ(M(y′, z′))λ(M(y, z))

+ λ(M(y′, z))λ(M(y, z′)).

PROOF. The mapping fromM(u, v, y, z) toM(y, z), or fromM(u, v) toM,
defined byM 7→ M ∪ {(u, v)} is injective, and preserves activities modulo a factor
λ(u, v); this observation dispenses with (i) and (ii).

Part (iii) is essentially a degenerate version of (iv), so we’ll deal with the latter
first. Our basic strategy is to define an injective map

M(u, z, y′, z′)×M(y, v)→ (M(y′, z′)×M(y, z)) ∪ (M(y′, z)×M(y, z′))

that preserves activities. SupposeMu,z,y′,z′ ∈M(u, z, y′, z′) andMy,v ∈M(y, v),
and consider the superposition ofMu,z,y′,z′ , My,v and the single edge (u, v). Observe
thatMu,z,y′,z′ ⊕My,v⊕{(u, v)} decomposes into a collection of cycles together with
either: a pair of even-length paths, one joiningy to y′ and the other joiningz to z′;
or a pair of odd-length paths, one joiningy to z (respectively,z′) and the other
joining y′ to z′ (respectively,z).10

First, consider the case of a pair of even-length paths. Let5 be the path that
joins z to z′, and let5 = {e0, e1, . . . ,e2k−1} be an enumeration of the edges of5,
starting atz. Note that5 is necessarily the path that contains the edge{u, v}. (The
edgese0 and e2k−1 come from the same matching,My,v. Parity dictates that5
cannot be a single alternating path, so it must be composed of two such, joined by
the edge{u, v}.) Denote by50 thek even edges of5, and by51 thek odd edges.
Finally define a mapping fromM(u, z, y′, z′)×M(y, v) toM(y′, z′)×M(y, z)
by (Mu,z,y′,z′,My,v) 7→ (My′,z′,My,z), whereMy′,z′ := Mu,z,y′,z′ ∪ 50 \ 51 and
My,z := My,v ∪51 \50.

Now consider the case of odd-length paths. Let5 be the path with one endpoint
at y. (Note that this must be the path that contains the edge{u, v}.) The other
endpoint of5 may be eitherz or z′; we’ll assume the former, as the other case
is symmetrical. Let5 = {e0, e1, . . . ,e2k} be an enumeration of the edges of this
path (the direction is immaterial) and denote by50 the k + 1 even edges, and
by51 thek odd edges. Finally define a mapping fromM(u, z, y′, z′) ×M(y, v)
to M(y′, z′) ×M(y, z) by (Mu,z,y′,z′,My,v) 7→ (My′,z′,My,z), whereMy′,z′ :=

10It is at this point that we rely crucially on the bipartiteness ofG. If G is non-bipartite, we may end
up with an even-length path, an odd-length path and an odd-length cycle containingu andv, and the
proof cannot proceed.

A Polynomial-Time Approximation Algorithm 685

Mu,z,y′,z′ ∪ 50 \ 51 and My,z := My,v ∪ 51 \ 50. (If the path5 joins y to
z′ then, using the same construction, we end up with a pair of matchings from
M(y′, z)×M(y, z′).)

Note that this mapping is injective, since we may uniquely recover the pair
(Mu,z,y′,z′,My,v) from (My′,z′,My,z). To see this, observe thatMy′,z′ ⊕ My,z de-
composes into a number of cycles, together with either a pair of odd-length paths
or a pair of even-length paths. These paths are exactly those paths considered in
the forward map. There is only one way to apportion edges from these paths (with
edge (u, v) removed) betweenMu,z,y′,z′ andMy,v. Moreover, the mapping preserves
activities modulo a factorλ(u, v).

Part (iii) is similar to (iv), but simpler. There is only one path, which is of odd
length and joinsy andz. The construction from part (iii) does not refer to the path
ending aty′, and can be applied to this situation too. The result is a pair of matchings
fromM×M(y, z), as required.

COROLLARY 4.3. Let G be as above, and let u, y, y′ ∈ V1 and v, z, z′ ∈ V2 be
distinct vertices. Suppose u∼ v, and also y′ ∼ z′ whenever the latter pair appears.
Then, provided in each case that the left hand side of the inequality is defined:

(i) w∗(u, v) ≥ λ(u, v);
(ii) w∗(u, v, y, z) ≥ λ(u, v)w∗(y, z);

(iii) w∗(u, z)w∗(y, v) ≥ λ(u, v)w∗(y, z); and
(iv) 2w∗(u, z′, y, z)w∗(y′, v) ≥ λ(u, v)λ(y′, z′)w∗(y, z).

PROOF. Inequalities (i), (ii) and (iii) follow directly from the correspondingly
labelled inequalities in Lemma 4.2, and the definition ofw∗.

Inequality (iv) can be verified as follows: From inequality (iv) in Lemma 4.2, we
know that either

2w∗(u, z′, y, z)w∗(y′, v) ≥ λ(u, v)w∗(y, z)w∗(y′, z′) (10)
or

2w∗(u, z′, y, z)w∗(y′, v) ≥ λ(u, v)w∗(y, z′)w∗(y′, z). (11)

(We have swapped the roles of the primed and unprimed vertices, which have the
same status as far as Lemma 4.2 is concerned.) In the first instance, inequality (iv)
of the current lemma follows from inequalities (10) and (i); in the second, from (11)
and (iii).

Armed with Corollary 4.3, we can now turn to the proof of our main lemma.

PROOF OFLEMMA 4.1. Recall that transitions are defined by a two-step proce-
dure: a move is first proposed, and then either accepted or rejected according to the
Metropolis rule. Each of the possible proposals is made with probability at least
1/4n. (The proposal involves either selecting one of then edges or 2n vertices
u.a.r.; however, with probability12 we do not even get as far as making a proposal.)
Thus, for any pair of statesM,M ′ such that the probability of transition fromM
to M ′ is nonzero, we have

P(M,M ′) ≥ 1

4n
min

{
3(M ′)
3(M)

, 1

}
,

686 M. JERRUM ET AL.

or

min{3(M),3(M ′)} ≤ 4n3(M)P(M,M ′). (12)

DefineÄ′ := Ä ∪⋃u,v,y,zM(u, v, y, z), where, as usual,u, y range overV1
and v, z over V2. Also define, for any collectionS of matchings,3(S) :=∑

M∈S3(M). Providedu, v, y, z is a realizable four-hole pattern, that is, provided
M(u, v, y, z) is non-empty,3(M(u, v, y, z))=3(M); this is a consequence of
settingw(u, v, y, z) to the ideal weightw∗(u, v, y, z) for all four-hole patterns.
Likewise, 1

23(M) ≤ 3(M(u, v)) ≤ 23(M), providedu, v is a realizable two-
hole pattern; this is a consequence of inequality (5). Moreover, it is a combinatorial
fact that the number of realizable four-hole patterns exceeds the number of real-
izable two-hole patterns by at most a factor1

2(n − 1)2. (Each realizable two-hole
pattern is contained in at most (n− 1)2 four-hole patterns. On the other hand, each
realizable four-hole pattern contains at least two realizable two-hole patterns, cor-
responding to the two possible augmentations, with respect to some fixed perfect
matching, of some four-hole matching realizing that pattern.) It follows from these
considerations that3(Ä′)/3(Ä) ≤ n2.

Recallπ (M) = 3(M)/3(Ä). We will show that for any transitiont = (M,M ′)
and any pair of statesI , F ∈ cp(t), we can define anencodingηt (I , F) ∈ Ä′ such
thatηt : cp(t)→ Ä′ is an injection (i.e., (I , F) can be recovered uniquely fromt
andηt (I , F)), and

3(I)3(F) ≤ 8 min{3(M),3(M ′)}3(ηt (I , F)). (13)

In the light of (12), this inequality would imply

3(I)3(F) ≤ 32n3(M)P(M,M ′)3(ηt (I , F)). (14)

Summing inequality (14) over (I , F) ∈ cp(t), wheret = (M,M ′) is a most con-
gested transition, we get

%(0) = L

Q(t)

∑
(I ,F)∈cp(t)

π (I)π (F)

= 3(Ä) L

3(M)P(M,M ′)

∑
(I ,F)∈cp(t)

3(I)3(F)

3(Ä)2

≤ 32nL

3(Ä)

∑
(I ,F)∈cp(t)

3(ηt (I , F))

≤ 48n23(Ä′)
3(Ä)

≤ 48n4, (15)

where we have used the following observations: canonical paths have maximum
length 3n/2 (the worst case being the unwinding of a cycle of length four),ηt is
an injection, and3(Ä′) ≤ n23(Ä). Note that (15) is indeed the sought-for bound
on%(0).

We now proceed to define the encodingηt and show that it has the required
properties, specifically that it is injective and satisfies (13). Recall that there are
three stages to the unwinding of an alternating cycle: (i) the initial transition creates

A Polynomial-Time Approximation Algorithm 687

FIG. 5. A canonical path through transitionM → M ′ and its encoding.

a pair of holes; (ii) the intermediate transitions swap edges to move one of the holes
round the cycle; and (iii) the final transition adds an edge to plug the two holes. For
an intermediate transitiont = (M,M ′) in the unwinding of an alternating cycle,
the encoding is

ηt (I , F) = I ⊕ F ⊕ (M ∪ M ′) \ {(v0, v1)}.
(Refer to Figure 5, where just a single alternating cycle is viewed in isolation.) In
all other cases (initial or final transitions in the unwinding of an alternating cycle,
or any transition in the unwinding of the unique alternating path), the encoding is

ηt (I , F) = I ⊕ F ⊕ (M ∪ M ′).

It is not hard to check thatC = ηt (I , F) is always a matching inÄ (this is the
reason that the edge (v0, v1) is removed in the first case above), and thatηt is an
injection. To see this for the first case, note thatI ⊕ F may be recovered from the
identity I ⊕ F = (C ∪ {(v0, v1)})⊕ (M ∪ M ′); the apportioning of edges between
I and F can then be deduced from the canonical ordering of the cycles and the
particular edges swapped by transitiont . The remaining edges, namely those in the
intersectionI ∩ F , are determined byI ∩ F = M ∩ M ′ ∩ C. The second case is
similar, but without the need to reinstate the edge (v0, v1).11 It therefore remains
only to verify inequality (13) for our encodingηt .

For the remainder of the proof, lety, zdenote the holes ofI , that is,I ∈M(y, z)
wherey ∈ V1 andz ∈ V2. (Recall thatI ∈ N and f ∈ M.) Consider first the
case wheret = (M,M ′) is the initial transition in the unwinding of an alternating
cycle, whereM = M ′ ∪ {(v0, v1)}. SinceI ,C ∈M(y, z), M, F ∈M andM ′ ∈
M(v0, v1), inequality (13) simplifies to

λ(I)λ(F) ≤ 8 min{λ(M), λ(M ′)w(v0, v1)} λ(C).

The inequality in this form can be seen to follow from the identity

λ(I)λ(F) = λ(M)λ(C) = λ(M ′)λ(v0, v1)λ(C),

using inequality (i) of Corollary 4.3, together with inequality (5). (There is a factor 4
to spare: this is not the critical case.) The situation is symmetric for the final
transition in the unwinding of an alternating cycle.

11We have implicitly assumed here that we know whether it is a path or a cycle that is currently being
processed. In fact, it is not automatic that we can distinguish these two possibilities just by looking at
M , M ′ andC. However, by choosing the start points for cycles and paths carefully, the two cases can
be disambiguated: just choose the start point of cycles first, and then use the freedom in the choice of
endpoint of the path to avoid the potential ambiguity.

688 M. JERRUM ET AL.

Consider now an intermediate transitiont = (M,M ′) in the unwinding of an
alternating cycle, say one that exchanges edge (v2i , v2i+1) with (v2i−1, v2i). In this
case we haveI ∈M(y, z), F ∈M, M ∈M(v0, v2i−1), M ′ ∈M(v0, v2i+1) and
C ∈M(v2i , v1, y, z). Since

λ(I)λ(F) = λ(M)λ(C)λ(v2i , v2i−1)λ(v0, v1)
= λ(M ′)λ(C)λ(v2i , v2i+1)λ(v0, v1),

inequality (13) becomes

w(y, z) ≤ 8 min

{
w(v0, v2i−1)

λ(v2i , v2i−1)
,

w(v0, v2i+1)

λ(v2i , v2i+1)

}
w(v2i , v1, y, z)

λ(v0, v1)
.

This inequality can be verified by reference to Corollary 4.3: specifically, it follows
from inequality (iv) in the general casei 6= 1, and by a paired application of
inequalities (ii) and (i) in the special casei = 1, when verticesv1 andv2i−1 coincide.
Note that the constant 8= 23 is determined by this case (and a succeeding one), and
arises from the need to apply inequality (5) twice, combined with the factor 2 in (iv).

We now turn to the unique alternating path. Consider any transitiont = (M,M ′)
in the unwinding of the alternating path, except for the final one; such a transition
exchanges edge (v2i , v2i+1) for (v2i+2, v2i+1). Observe thatI ∈M(y, z), F ∈M,
M ∈M(v2i , z), M ′ ∈M(v2i+2, z) andC ∈M(y, v2i+1). Moreover,λ(I)λ(F) =
λ(M)λ(C)λ(v2i , v2i+1) = λ(M ′)λ(C)λ(v2i+2, v2i+1). In inequality (13), we are
left with

w(y, z) ≤ 8 min

{
w(v2i , z)

λ(v2i , v2i+1)
,

w(v2i+2, z)

λ(v2i+2, v2i+1)

}
w(y, v2i+1),

which holds by inequality (iii) of Corollary 4.3 in the general case, and by
inequality (i) in the special casei = 0 whenv2i andy coincide.

The final case is the last transitiont = (M,M ′) in the unwinding of an alter-
nating path, whereM ′ = M ∪ {(v2k, z)}. Note thatI ,C ∈M(y, z), F,M ′ ∈M,
M ∈ M(v2k, z) and λ(I)λ(F) = λ(M ′)λ(C) = λ(M)λ(C)λ(v2k, z). Plugging
these into inequality (13) leaves us with

1≤ 8 min

{
w(v2k, z)

λ(v2k, z)
, 1

}
,

which follows from inequality (i) of Corollary 4.3.
We have thus shown that the encodingηt satisfies inequality (13) in all cases.

This completes the proof of Lemma 4.1.

Recall that our aim is the design of a flowf I ,F for all I , F ∈ Ä with small con-
gestion. The canonical paths0 we have defined provide an obvious way of routing
flow from a near-perfect matchingI to perfect matchingF . We now show how to
extend this flow to all pairs of states with only a modest increase in congestion. The
following lemma is similar in spirit to one used by Schweinsberg [2002].

LEMMA 4.4. Denoting byN := Ä\M the set of near-perfect matchings, there
exists a flow f in MC with congestion

%(f) ≤
[
2+ 4

(
π (N)

π (M)
+ π (M)

π (N)

)]
%(0),

where%(f) is as defined in(1).

A Polynomial-Time Approximation Algorithm 689

PROOF. Our aim is to route flow between arbitrary pairs of statesI , F along
composite paths obtained by concatenating canonical paths from0. First some
notation. For a pair of simple pathsp1 and p2 such that the final vertex ofp1
matches the initial vertex ofp2, let p1 ◦ p2 denote the simple path resulting from
concatenatingp1 andp2 and removing any cycles. Also definēp to be the reversal
of path p.

The flow f I ,F from I to F is determined by the location of the initial and final
statesI andF . There are four cases:

—If I ∈ N andF ∈M then use the direct path from0. That is,PI ,F = {γI ,F},
and f I ,F (p) = π (I)π (F) for the unique pathp ∈ PI ,F .

—If I ∈ M and F ∈ N , then use the reversal of the pathγF,I from 0. That is,
PI ,F = {γI ,F}, and f I ,F (p) = π (I)π (F) for the unique pathp ∈ PI ,F .

—If I ∈ N and F ∈ N , then route flow through a random stateX ∈ M.
So PI ,F = {pX : X ∈ M}, where pX = γI ,X ◦ γF,X, and f I ,F (pX) =
π (I)π (F)π (X)/π (M). (We regard the paths inPI ,F as being labelled by the
intermediate stateX, so that two elements ofPI ,F are distinguishable even if
they happen to be equal as paths.)

—If I ∈M andF ∈M then route flow through a random stateX ∈ N . SoPI ,F =
{pX : X ∈ N }, wherepX = γX,I ◦γX,F , and f I ,F (pX) = π (I)π (F)π (X)/π (N).

It is immediate in all cases that
∑

p f I ,F (p) = π (I)π (F), where the sum is over
all p ∈ PI ,F .

Let t = (M,M ′) be a most congested transition under the flowf just defined,
and recall thatQ(t) = π (M)P(M,M ′). Then

%(f) = 1

Q(t)

∑
I ,F∈Ä

∑
p : t∈p∈PI ,F

f I ,F (p) |p|.

Decompose%(f) into contributions from each of the above four types of paths, by
writing

%(f) = %(fN ,M)+ %(fM,N)+ %(fN ,N)+ %(fM,M),

where

%(fN ,M) = 1

Q(t)

∑
I∈N ,F∈M

∑
p : t∈p∈PI ,F

f I ,F (p) |p|,

etc.
Recall that cp(t) denotes the set of pairs (I , F) ∈ N ×M such that the canonical

path fromI to F passes alongt . LettingL be the maximum length of any canonical
path in0,

%(fN ,M) ≤ L

Q(t)

∑
I∈N ,F∈M

∑
p : t∈p∈PI ,F

f I ,F (p)

= L

Q(t)

∑
(I ,F)∈cp(t)

π (I)π (F)

= %(0).

690 M. JERRUM ET AL.

Likewise, by time reversibility,%(fM,N) ≤ %(0). Furthermore,

%(fN ,N) ≤ 2L

Q(t)

∑
I∈N ,F∈N

∑
p : t∈p∈PI ,F

f I ,F (p)

≤ 2L

Q(t)

∑
I∈N ,F∈N

∑
X∈M

∑
p : t∈p=γI ,X◦γF,X

f I ,F (p)

≤ 2L

Q(t)

[∑
(I ,X)∈cp(t)

∑
F∈N

π (I)π (F)π (X)

π (M)

+
∑

(F,X)∈cp(t)

∑
I∈N

π (I)π (F)π (X)

π (M)

]

= 4π (N)

π (M)
%(0).

Likewise,

%(fM,M) ≤ 4π (M)

π (N)
%(0).

Putting the four inequalities together, the claimed bound on congestion follows.

Our main result, Theorem 3.1 of the previous section, now follows immediately:

PROOF OFTHEOREM3.1. The theorem follows from Lemma 4.1, Lemma 4.4,
Theorem 2.2, and the fact thatπ (N)/π (M) = 2(n2).

It is perhaps worth remarking, for the benefit of those familiar with Diaconis and
Saloff-Coste’s [1993] comparison argument, that the proof of Lemma 4.4 could be
viewed as comparing the Markov chainMC against the random walk in a complete
bipartite graph.

5. Using Samples to Estimate the Permanent

For convenience, we adopt the graph-theoretic view of the permanent of a 0, 1-
matrix as the number of perfect matchings in an associated bipartite graphG. From
Lemma 2.1 and Theorem 3.1 we know how to sample perfect matchings from an
almost uniform distribution. Now, Broder [1986] has demonstrated how an almost
uniform sampler for perfect matchings in a bipartite graph may be converted into an
FPRAS. Indeed, our Theorem 1.1 (the existence of an FPRAS for the permanent of
a 0,1-matrix) follows from Lemma 2.1 and Theorem 3.1 via Broder’s Corollary 5.
Nevertheless, with a view to making the article self contained, and at the same time
deriving an explicit upper bound on running time, we present in this section an
explicit proof of Theorem 1.1. Our proposed method for estimating the number of
perfect matchings inG given an efficient sampling procedure is entirely standard
(see, e.g., Jerrum [2003, Section 3.2]), but we are able to curb the running time by
tailoring the method to our particular situation.

So supposeG is a bipartite graph onn + n vertices and that we want to esti-
mate the number of perfect matchings inG within ratio e±ε, for some specified
ε > 0. Recall that the initialization procedure of Section 3 converges to suitable

A Polynomial-Time Approximation Algorithm 691

hole-weightsw(·, ·) through a sequence of phases. In phasei , a number of samples
are obtained using Markov chain simulation with edge-activitiesλi−1(·, ·) (say) and
corresponding hole-weightswi−1(·, ·). At the beginning, before phase 1,λ0 is the
constant function 1, andw(u, v) = n for every hole-pairu, v. Between one phase
and the next, the weights and activities change by small factors; ultimately, after
the final phaser , the activityλ(u, v) is 1 if (u, v) is an edge ofG, and a very small
value otherwise. The number of phases isr = O(n2 logn).

Let 3i be the weight function associated with the pair (λi ,wi) through defini-
tion (3). The quantity3i (Ä) =∑M∈Ä 3i (M) is a “partition function” for weighted
matchings after thei th phase. Initially,30(Ä) = (n2+ 1)n!; while, at termination,
3r (Ä) is roughlyn2+ 1 times the number of perfect matchings inG. Considering
the “telescoping product”

3r (Ä) = 30(Ä)× 31(Ä)

30(Ä)
× 32(Ä)

31(Ä)
× · · · × 3r (Ä)

3r−1(Ä)
, (16)

we see that we may obtain a rough estimate for the number of perfect matchings
in G by estimating in turn each of the ratios3i+1(Ä)/3i (Ä). We now explain how
this is done.

Assume that the initialization procedure runs successfully, so that (5) holds at
every phase. (We shall absorb the small failure probability of the initialization phase
into the overall failure probability of the FPRAS.) Observe that the rule for updating
the activities fromλi to λi+1, together with the constraints on the weightswi and
wi+1 specified in (5), ensure

1

4e
≤ 3i+1(M)

3i (M)
≤ 4e, for all M ∈ Ä. (17)

Thus we are in good shape to estimate the various ratios in (16) by Monte Carlo
sampling. The final task is to improve this rough estimate to a more accurate one.

Letπi denote the stationary distribution of the Markov chain used in phasei +1,
so thatπi (M) = 3i (M)/3i (Ä). Let Zi denote the random variable that is the
outcome of the following experiment:

By running the Markov chainMC of Section 3 with parameters3 = 3i

andδ = ε/80e2r , obtain a sample matchingM from a distribution
that is within variation distanceε/80e2r of πi .

Return3i+1(M)/3i (M).

If we had sampledM from the exact stationary distributionπi instead of an ap-
proximation, then the resulting modified random variableZ′i would have satisfied

E Z′i =
∑
M∈Ä

3i (M)

3i (Ä)

3i+1(M)

3i (M)
= 3i+1(Ä)

3i (Ä)
.

As it is, noting the particular choice forδ and bounds (17), and using the fact that
exp(−x/4)≤ 1− 1

5x ≤ 1+ 1
5x ≤ exp(x/4) for 0≤ x ≤ 1, we must settle for

exp
(
− ε

4r

) 3i+i (Ä)

3i (Ä)
≤ E Zi ≤ exp

(ε
4r

) 3i+i (Ä)

3i (Ä)
.

Now supposes independent trials are conducted for eachi using the above ex-
periment, and denote bȳZi the sample mean of the results. ThenE Z̄i = E Zi

692 M. JERRUM ET AL.

(obviously), and

exp
(
−ε

4

) 3r (Ä)

30(Ä)
≤ E(Z̄0Z̄1 . . . Z̄r−1) ≤ exp

(ε
4

) 3r (Ä)

30(Ä)
. (18)

For s sufficiently large,
∏

i Z̄i will be close to
∏

i E Z̄i with high probability.
With a view to quantifying “sufficiently large,” observe that in the light of (17),

Var[Z̄i]

(E Z̄i)2
≤ 16

s
.

Thus, takings= 2(r ε−2) we get

Var[Z̄0 · · · Z̄r−1]

(E[Z̄0 · · · Z̄r−1])2
=

r−1∏
i=0

E Z̄2
i

(E Z̄i)2
− 1

=
r−1∏
i=0

(
1+ Var Z̄i

(E Z̄i)2

)
− 1

≤
(

1+ 16

s

)r

− 1

= O(ε2).

So, by Chebyshev’s inequality,

Pr[exp(−ε/4)E(Z̄0 · · · Z̄r−1) ≤ Z̄0 · · · Z̄r−1 ≤ exp(ε/4)E(Z̄0 · · · Z̄r−1)] ≥ 11

12
,

(19)

assuming the constant implicit in the settings= 2(r ε−2) is chosen appropriately.
Combining inequalities (18) and (19) with the fact that30(Ä) = (n2 + 1)n!, we
obtain

Pr[exp(−ε/2)3r (Ä) ≤ (n2+ 1)n! Z̄0 · · · Z̄r−1 ≤ exp(ε/2)3r (Ä)] ≥ 11

12
. (20)

Denote byMG ⊂ M the set of perfect matchings in the graphG. Inequal-
ity (20) provides an effective estimator for3r (Ä), already yielding a rough estimate
for |MG|. The final step is to improve the accuracy of this estimate to within ratio
e±ε, as required. Observe that3r (M) = 1 for any matchingM ∈ MG, so that
3r (MG) is equal to the number of perfect matchings inG. Consider the follow-
ing experiment:

By running the Markov chainMC of Section 3 with parameters3 = 3r

andδ = ε/80e2, obtain a sample matchingM from a distribution
that is within variation distanceε/80e2 of πr .

Return 1 ifM ∈MG, and 0 otherwise.

The outcome of this experiment is a random variable that we denote byY. If M had
been sampled from the exact stationary distributionπr then its expectation would
have been3r (MG)/3(Ä); as it is, we have

exp
(
−ε

4

) 3r (MG)

3r (Ä)
≤ EY ≤ exp

(ε
4

) 3r (MG)

3r (Ä)
.

A Polynomial-Time Approximation Algorithm 693

Let Ȳ denote the sample mean ofs′ = 2(n2ε−2) independent trials of the above
experiment. SinceE Ȳ = EY = Ä(n−2), Chebyshev’s inequality gives

Pr[exp(−ε/4)E Ȳ ≤ Ȳ ≤ exp(ε/4)E Ȳ] ≥ 11

12
,

as before. Combining this with (20), we get

Pr[exp(−ε)|MG| ≤ (n2+ 1)n! Ȳ Z̄0Z̄1 · · · Z̄r−1[≤ exp(ε)|MG|] ≥ 5

6
.

All this was under the assumption that the initialization procedure succeeded. But
provided we arrange for the failure probability of initialization to be at most 1/12,
it will be seen that (n2 + 1)n! Ȳ Z̄0Z̄1 · · · Z̄r−1 is an estimator for the permanent
that meets the specification of an FPRAS.

In total, the above procedure requiresrs + s′ = O(ε−2n4(logn)2) samples; by
Theorem 3.1,O(n7 logn) time is sufficient to generate each sample. (Since there
is no point in settingε = o(1/n!), the logδ−1 term in Theorem 3.1 can never
dominate.) The running time is thusO(ε−2n11(logn)3). Note that this is sufficient
to absorb the cost of the initialization procedure as well, which by Lemma 3.2 is
O(n11(logn)3).

6. Reducing the Running Time by Using “Warm Starts”

In this article, we have concentrated on simplicity of presentation, rather than
squeezing the degree of the polynomial bounding the running time. However, a
fairly simple (and standard) observation allows us to reduce the dependence onn
from Õ(n11)—which was the situation at the end of the previous section—toÕ(n10).

The observation is this. We use Markov chain simulation to generate samples
from a distribution close to the stationary distribution. These samples are used
to estimate the expectationE f of some functionf : Ä → R+. The estimator
for E f is naturally enough the mean off over the sample. By restarting the
Markov chainMC before generating each sample, we ensure that the samples are
independent. This allows the performance of the estimator to be analyzed using
classical Chebyshev and Chernoff bounds. The down-side is that we must wait the
full mixing time of MC between samples.

However, it is known that once a Markov chain has reached near-stationarity it is
possible to draw samples at a faster rate than that indicated by the mixing time; this
“resampling time” is proportional to the inverse spectral gap of the Markov chain.
Although the samples are no longer independent, they are as good as independent
for many purposes. In particular, there exist versions of the Chernoff and Chebyshev
bounds that are adapted to exactly this setting. Versions of the Chernoff bound that fit
our application (specifically estimating the expectations in identities (7) have been
presented by Gillman [1998, Thm 2.1] and Lezaud [1998, Thm 1.1, Remark 3]; a
version of the Chebyshev bound (that we used twice in Section 5) by Aldous [1987].

The appropriate versions of Chernoff and Chebyshev bounds have slight dif-
ferences in their hypotheses. For the estimates requiring Chernoff bounds we use
every matching visited on the sample path, whereas for those estimates requiring
Chebyshev bounds we only use samples spaced by the resampling time. Doing both
simultaneously presents no contradiction.

694 M. JERRUM ET AL.

Initialize λ(u, v)← amax for all (u, v) ∈ V1 × V2.
Initialize w(u, v)← namax for all (u, v) ∈ V1 × V2.
While there exists a pairy, z with λ(y, z) > a(y, z) do:

Take a sample of sizeS from MC with parametersλ,w,
using a simulation ofT steps in each case.

Use the sample to obtain estimatesw′(u, v) satisfying
condition (8), for allu, v, with high probability.

Setλ(y, v)← max{λ(y, v) exp(−1/2), a(y, v)}, for all v ∈ V2,
andw(u, v)← w′(u, v) for all u, v.

Output the final weightsw(u, v).

FIG. 6. The algorithm for nonnegative entries.

Now the inverse spectral gap is bounded by the congestion% (see Sinclair [1992,
Thm 5]), which in the case ofMC is O(n6), by Lemmas 4.1 and 4.4. In contrast, the
mixing time ofMC is O(n7 logn). Thus, provided we consume at leastO(n logn)
samples (which is always the case for us) we can use the higher resampling rate and
save a factorO(n logn) in the running time. This observation reduces all running
times quoted in earlier sections by a similar factor; in particular, the running time of
the approximation algorithm for the permanent in Section 5 comes down toÕ(n10).

7. Arbitrary Weights

Our algorithm easily extends to compute the permanent of an arbitrary matrix
A with nonnegative entries. Letamax = maxi, j a(i, j) andamin = mini, j a(i, j).
Assuming per(A) > 0, then it is clear that per(A) ≥ (amin)n. Rounding zero entries
a(i, j) to (amin)n/n!, the algorithm follows as described in Figure 6.

The running time of this algorithm is polynomial inn and log(amax/amin). For
completeness, we provide astronglypolynomial-time algorithm, that is, one whose
running time is polynomial inn and independent ofamax andamin, assuming arith-
metic operations are treated as unit cost. The algorithm of Linial et al. [2000]
converts, in strongly polynomial time, the original matrixA into a nearly doubly
stochastic matrixB such that 1≥ per(B) ≥ exp(−n−o(n)) and per(B) = α per(A)
whereα is an easily computable scaling factor. Thus it suffices to consider the com-
putation of per(B), in which case we can afford to round up any entries smaller
than (say)n−2n to n−2n. The analysis for the 0,1-case now applies with the same
running time.

Finally, note that we cannot realistically hope to handle matrices which contain
negative entries. One way to appreciate this is to consider what happens if we replace
matrix entrya(1, 1) bya(1, 1)− β whereβ is a parameter that can be varied. Call
the resulting matrixAβ . Note that per(Aβ) = per(A) − β per(A1,1), whereA1,1
denotes the submatrix ofA obtained by deleting the first row and column. On input
Aβ , an approximation scheme would have at least to identify correctly the sign of
per(Aβ); then the root of per(A)−β per(A1,1) = 0 could be located by binary search
and averyclose approximation (accurate to within a polynomial number of digits)
to per(A)/ per(A1,1) found. The permanent ofA itself could then be computed to
similar accuracy (and therefore exactly!) by recursion on the submatrixA1,1, giving
us a polynomial time randomized algorithm that with high probability computes
per(A) exactly. It is important to note here that the cost of binary search scales
linearly with the number of significant digits requested, while that of an FPRAS
scales exponentially.

A Polynomial-Time Approximation Algorithm 695

8. Other Applications

Several other interesting counting problems are reducible (via approximation-
preserving reductions) to the 0,1 permanent. These were not accessible by the
earlier approximation algorithms for restricted cases of the permanent because
the reductions yield a matrixA whose corresponding graphGA may have a dis-
proportionate number of near-perfect matchings. We close the article with two
such examples.

The first example makes use of a reduction due to Tutte [1954]. A perfect match-
ing in a graphG may be viewed as a spanning12 subgraph ofG, all of whose vertices
have degree 1. More generally, we may consider spanning subgraphs whose ver-
tices all have specified degrees, not necessarily 1. The construction of Tutte reduces
an instance of this more general problem to the special case of perfect matchings.
Jerrum and Sinclair [1990] exploited the fact that this reduction preserves thenum-
ber of solutions (modulo a constant factor) to approximate the number of degree
constrained subgraphs of a graph in a certain restricted setting. Combining the same
reduction with Theorem 1.1 yields the following unconditional result.

COROLLARY 8.1. For an arbitrary bipartite graph G, there exists an FPRAS for
computing the number of labeled subgraphs of G with a specified degree sequence.

As a special case, of course, we obtain an FPRAS for the number of labelled
bipartite graphs with specified degree sequence.13

The second example concerns the notion of a 0,1-flow.14 Consider a direc-
ted graph

−→
G = (

−→
V ,
−→
E), where the in-degree (respectively, out-degree) of a vertex

v ∈ −→V is denoted byd−(v) (respectively,d+(v)). A 0,1-flowis defined as a subset
of edges

−→
E′ ⊂ −→E such that in the resulting subgraph (

−→
V ,
−→
E′), d−(v) = d+(v)

for all v ∈ −→V . Counting the number of 0, 1-flows in
−→
G is reducible to counting

perfect matchings in an undirected bipartite graph. Specifically, letG = (V, E) be
the graph with the following vertex and edge sets:

V = {hi, j ,mi, j , ti, j : ∀i, j with −→vi v j ∈ −→E }
∪ {u1

i , . . . ,u
d−(vi)
i : ∀i with vi ∈ −→V

}
,

E = {(hi, j ,mi, j), (mi, j , ti, j) : ∀i, j with −→vi v j ∈ −→E }
∪ {(uk

i , hi, j) : ∀i, j, k satisfyinguk
i , hi, j ∈ −→V }

∪ {(uk
i , t j,i) : ∀i, j, k satisfyinguk

i , t j,i ∈ −→V
}
.

A 0, 1-flow
−→
E′ in

−→
G corresponds to a perfect matchingM in G in the following

manner. For each−→vi v j ∈ −→E′ add the edge (hi, j ,mi, j) to M , while for each−→vi v j ∈−→
E \ −→E′ add the edge (mi, j , ti, j) to M . Now for vi ∈ −→V , observe that the set

of vertices{hi, j } j ∪ {t j ′,i } j ′ , consists of exactlyd−(vi) unmatched vertices. There

12A subgraph ofG is spanningif it includes all the vertices ofG; note that a spanning subgraph is not
necessarily connected.
13Note that this special case is not known to be #P-complete, and hence may conceivably be solvable
exactlyin polynomial time. It seems likely, however, that an FPRAS is the best that can be achieved.
14This notion should not be confused with the notion of flow we used earlier in the analysis of the
Markov chain.

696 M. JERRUM ET AL.

ared−(vi)! ways of pairing these unmatched vertices with the set of vertices{uk
i }k.

Thus the flow
−→
E′ corresponds to

∏
v∈−→V d−(v)! perfect matchings ofG, and it is

clear that each perfect matching ofG is obtained in this way from exactly one flow.
This implies the following corollary.

COROLLARY 8.2. For an arbitrary directed graph
−→
G , there exists an FPRAS

for counting the number of0, 1-flows.

Suppose the directed graph
−→
G has a fixed sources and sinkt . After adding a

simple gadget fromt to s we can estimate the number ofmaximum0, 1-flows from
s to t of given value by estimating the number of 0, 1-flows in the resulting graph.

Finally, we note that the “six-point ice model” on an undirected graphG may be
viewed as a 0, 1-flow on an appropriate orientation ofG, giving us an alternative
approach to the problem of estimating ice configurations considered by Mihail and
Winkler [1992].

REFERENCES

ALDOUS, D. 1987. On the Markov chain simulation method for uniform combinatorial distributions and
simulated annealing.Prob. Eng. Inf. Sci. 1, 33–46.

ALON, N., AND SPENCER, J. 1992. The Probabilistic Method. Wiley, New York.
BARVINOK, A. 1999. Polynomial time algorithms to approximate permanents and mixed discriminants

within a simply exponential factor.Ran. Struct. Algor. 14, 29–61.
BRODER, A. Z. 1986. How hard is it to marry at random? (On the approximation of the permanent). In

Proceedings of the 18th Annual ACM Symposium on Theory of Computing(STOC), ACM, New York,
50–58. (Erratum inProceedings of the 20th Annual ACM Symposium on Theory of Computing, 1988,
p. 551.)

CHIEN, S., RASMUSSEN, L., AND SINCLAIR, A. 2002. Clifford algebras and approximating the permanent.
In Proceedings of the 34th Annual ACM Symposium on Theory of Computing, ACM, New York, 222–231.

DIACONIS, P.,AND SALOFF-COSTE, L. 1993. Comparison theorems for reversible Markov chains.Ann.
Appl. Prob. 3, 696–730.

DIACONIS, P.,AND STROOCK, D. 1991. Geometric bounds for eigenvalues of Markov chains.Ann. Appl.
Prob. 1, 36–61.

GILLMAN , D. 1998. A Chernoff bound for random walks on expander graphs.SIAM J. Comput. 27,
1203–1220.

JERRUM, M. 2003. Counting, sampling and integrating: Algorithms and complexity. InLectures in
Mathematics—ETH Z̈urich. Birkhäuser, Basel.

JERRUM, M., AND SINCLAIR, A. 1989. Approximating the permanent.SIAM J. Comput. 18, 1149–1178.
JERRUM, M., AND SINCLAIR, A. 1990. Fast uniform generation of regular graphs.Theoret. Comput.

Sci. 73, 91–100.
JERRUM, M., AND SINCLAIR, A. 1996. The Markov chain Monte Carlo method: An approach to approx-

imate counting and integration. InApproximation Algorithms for NP-hard Problems(Dorit Hochbaum,
ed.). PWS Publishing, 482–520.

JERRUM, M., VALIANT , L., AND VAZIRANI , V. 1986. Random generation of combinatorial structures from
a uniform distribution.Theoret. Comput. Sci. 43, 169–188.

JERRUM, M., AND VAZIRANI , U. 1996. A mildly exponential approximation algorithm for the permanent.
Algorithmica 16, 392–401.

KASTELEYN, P. W. 1961. The statistics of dimers on a lattice, I., The number of dimer arrangements on
a quadratic lattice.Physica 27, 1664–1672.

KENYON, C., RANDALL , D., AND SINCLAIR, A. 1996. Approximating the number of dimer coverings of
a lattice.J. Stat. Phys. 83, 637–659.

LEZAUD, P. 1998. Chernoff-type bounds for finite Markov chains.Ann. Appl. Prob. 8, 849–867.
LINIAL , N., SAMORODNITSKY, A., AND WIGDERSON, A. 2000. A deterministic strongly polynomial al-

gorithm for matrix scaling and approximate permanents.Combinatorica 20, 545–568.
MIHAIL , M., AND WINKLER, P. 1992. On the number of Eulerian orientations of a graph. InProceedings

of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms, ACM, New York, 138–145.

A Polynomial-Time Approximation Algorithm 697

MINC, H. 1982. Permanents. Encyclopedia of Mathematics and Its Applications Vol. 6, Addison-Wesley,
Reading, Mass.

MOTWANI, R., AND RAGHAVAN , P. 1995. Randomized Algorithms. Cambridge University Press,
Cambridge, Mass.

RYSER, H. J. 1963. Combinatorial Mathematics. The Carus Mathematical Monographs No. 14, Mathe-
matical Association of America.

SCHWEINSBERG, J. 2002. AnO(n2) bound for the relaxation time of a Markov chain on cladograms.
Rand. Struct. Algor. 20, 59–70.

SINCLAIR, A. 1992. Improved bounds for mixing rates of Markov chains and multicommodity flow.
Combinatorics, Probability and Computing 1, 351–370.

TUTTE, W. T. 1954. A short proof of the factor theorem for finite graphs.Canad. J. Math. 6, 347–352.
VALIANT , L. G. 1979. The complexity of computing the permanent.Theoret. Comput. Sci. 8, 189–201.

RECEIVED AUGUST2003;ACCEPTED JANUARY2004

Journal of the ACM, Vol. 51, No. 4, July 2004.

