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Symmetry in Encoder/Decoder

We can either learn the kernels, 

or take corresponding encoder 

kernel and rotate 180 degrees 

(no decoder learning)
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U-Net

You can 

have skip 

connections 

to bypass 

bottleneck!

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015



Single-Shot Detector (SSD) 

Liu, et al., “SSD: Single Shot MultiBox Detector”, 2015

Single-shot detectors 

use an idea of grids 

as anchors, with 

different scales and 

aspect ratios around 

them

⬣ Various tricks 

used to increase 

the resolution 

(decrease 

subsampling 

ratio)
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Generative 

Models: 

Introduction



Spectrum of Low-Labeled Learning

Supervised 

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output:    𝑓
∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep

Dog

Cat

Lion

Giraffe

Unsupervised 

Learning

⬣ Input: 𝑋

⬣ Learning 

output: 𝑃 𝑥

⬣ Example: Clustering, 

density estimation, etc.

Less Labels



Unsupervised Learning

Density 

Estimation

Classification

Regression

Clustering

Dimensionality

Reduction

x y

x y

Discrete

Continuous

x c Discrete

x z Continuous

Supervised Learning

Unsupervised Learning

x p(x) Sample from

Distribution



What to Learn? 

Traditional unsupervised learning methods:

Similar in deep learning, but from neural network/learning perspective

Modeling 𝑷 𝒙 Comparing/

Grouping

Representation 

Learning

Principal 

Component 

Analysis

Clustering
Density 

estimation

Almost all deep learning!Metric learning & clusteringDeep Generative Models



⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc. 

⬣ Generative models model 𝑃(𝑥) 

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc. 

⬣ Generative models model 𝑃(𝑥) 

⬣ We can parameterize our model as 𝑃(𝑥, 𝜃) and use maximum likelihood to optimize the 

parameters given an unlabeled dataset:

⬣ They are called generative because they can often generate samples 

⬣ Example: Multivariate Gaussian with estimated parameters 𝝁, 𝝈

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Diffusion Models



PixelRNN  & 

PixelCNN



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Factorizing P(x)

We can use chain rule to decompose the joint distribution

⬣ Factorizes joint distribution into a product of conditional distributions

⬣ Similar to Bayesian Network (factorizing a joint distribution)

⬣ Similar to language models!

⬣ Requires some ordering of variables (edges in a probabilistic graphical model)

⬣ We can estimate this conditional distribution as a neural network
Oord et al., Pixel Recurrent Neural Networks

𝒑 𝒙 = ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)
next

word

history

Same as language modeling!



Language Models as an RNN

⬣ Language modeling involves estimating a probability distribution over 

sequences of words.

next

wor

d

history

⬣ RNNs are a family of neural architectures for modeling sequences.



Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 ෑ

𝒊=𝟐

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

Oord et al., Pixel Recurrent Neural Networks

𝒑 𝒙 = ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

1. Choose ordering (upper left, 

top to bottom, left to right.

Separate out pixel 1



Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 𝒑 𝒙𝟐 𝒙𝟏 𝒑 𝒙𝟑 𝒙𝟏 ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

⬣ Model this as RNN with parameters

⬣ Training:

⬣ We can train similar to language models:

⬣ Maximum likelihood approach

⬣ Downsides: 

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Downsides?



Pixel CNN

Oord et al., Conditional Image Generation with PixelCNN Decoders

⬣ Idea: Represent conditional distribution 

as a convolution layer!

⬣ Because of spatial locality in images

⬣ Considers larger context (receptive field)

⬣ Practically can be implemented by 

applying a mask, zeroing out “future” 

pixels

⬣ Faster training but still slow generation

⬣ Limited to smaller images



Example Results: Image Completion (PixelRNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders



Example Images (PixelCNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders

Can we update this to modern times?



Multi/Mixed-Modal Large Language Models

Chameleon: Mixed-Modal Early-Fusion Foundation Models

In a few weeks



Generative 

Adversarial 

Networks

(GANs)



Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



Implicit Models

⬣ Implicit generative models do not actually learn an explicit model for 𝒑 𝒙

⬣ Instead, learn to generate samples from 𝒑 𝒙

⬣ Learn good feature representations

⬣ Perform data augmentation

⬣ Learn world models (a simulator!) for reinforcement learning

⬣ How?

⬣ Decode architecture

⬣ Learn to sample from a neural network output

What architecture lets us generate images?

How do we generate a different 

image every time?



Learning to Sample

⬣ We would like to sample from 𝒑 𝒙  using a neural network

⬣ Idea: 

⬣ Sample from a simple distribution (Gaussian)

⬣ Transform the sample to 𝒑 𝒙

𝑵 𝝁, 𝝈 Neural Network

Samples Samples

𝒑 𝒙



Generating Images

⬣ Input can be a vector with (independent) Gaussian random numbers

⬣ We can use a CNN to generate images!

𝑵 𝝁, 𝝈 Neural Network 𝒑 𝒙

Vector of 
Random 
Numbers

Generator

How do we train this (loss)?



Implicit Models

⬣ Instead, learn to generate samples from 𝒑 𝒙

⬣ How?

⬣ Adversarial training that uses one network’s predictions to train the other 
(dynamic loss function!)

⬣ Lots of tricks to make the optimization more stable



Adversarial Networks

⬣ Goal: We would like to generate realistic images. How can we drive the 

network to learn how to do this?

⬣ Idea: Have another network try to distinguish a real image from a generated 

(fake) image

⬣ Why? Signal can be used to determine how well it’s doing at generation

⬣ Can be seen as a dynamic (adversarial) loss!

𝑵 𝝁, 𝝈 Neural Network 𝒑 𝒙

Vector of 
Random 
Numbers

Generator Discriminator

Real or 
Fake?



Generative Adversarial Networks (GANs)

Vector of 
Random 
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the 
answer (self-
supervised)

Mini-batch of 
real & fake data

Question: What loss functions can we use (for each network)? 

⬣ Generator: Update weights to improve 

realism of generated images

⬣ Discriminator: Update weights to better 

discriminate



⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks



⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Sample from real Sample from fake



Discriminator Perspective

⬣ where 𝐷 𝑥  is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧  is a generated image

⬣ The discriminator wants to maximize this:

⬣ 𝐷 𝑥  is pushed up (to 1) because 𝑥 is a real image

⬣ 1 − 𝐷 𝐺 𝑧  is also pushed up to 1 (so that D G z  is pushed down to 0)

⬣ In other words, discriminator wants to classify real images as real (1) and 

fake images as fake (0)



Generator Perspective

⬣ where 𝐷 𝑥  is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧  is a generated image

⬣ The generator wants to minimize this:

⬣ First term: G(..) doesn’t appear in it!

⬣ 1 − 𝐷 𝐺 𝑧  is pushed down to 0 (so that D G z  is pushed up to 1)

⬣ This means that the generator is fooling the discriminator, i.e. succeeding 

at generating images that the discriminator can’t discriminate from real



⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

⬣ where 𝐷 𝑥  is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧  is a generated image

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generator minimizes How well discriminator 
does (0 for fake) 

Sample from fake



⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

⬣ where 𝐷 𝑥  is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧  is a generated image

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

How well discriminator 
does (1 for real) 

Discriminator maximizes How well discriminator 
does (0 for fake) 

Sample from fakeSample from real



Generative Adversarial Networks (GANs)

Vector of 
Random 
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the 
answer (self-
supervised)

Generator Loss Discriminator Loss

Mini-batch of 
real & fake data



Converting to Max-Max Game

⬣ The generator part of the objective does not have good gradient properties

⬣ High gradient when 𝐷 𝐺 𝑧  is high (that is, discriminator is wrong)

⬣ We want it to improve when samples are bad (discriminator is right)

⬣ Alternative objective, maximize:

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung G(z) -> Generated

Bad generator
Good generator 
(fooling)



Final Algorithm

Goodfellow, NeurIPS 2016 Generative Adversarial Nets



Generative Adversarial Networks (GANs)

Vector of 
Random 
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the 
answer (self-
supervised)

Mini-batch of 
real & fake data

⬣ At the end, we have:

⬣ An implicit generative model!

⬣ Features from discriminator



Early Results

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

⬣ Low-resolution 

images but look 

decent!

⬣ Last column are 

nearest neighbor 

matches in dataset



Difficulty in Training

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

⬣ GANs are very difficult to train due to the mini-max objective

⬣ Advancements include:

⬣ More stable architectures

⬣ Regularization methods to improve optimization

⬣ Progressive growing/training and scaling



DCGAN

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks



Regularization

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

⬣ Training GANs is difficult due to:

⬣ Minimax objective – For example, what if generator learns to memorize 

training data (no variety) or only generates part of the distribution?

⬣ Mode collapse – Capturing only some modes of distribution

⬣ Several theoretically-motivated regularization methods

⬣ Simple example: Add noise to real samples!



Generative Adversarial Nets: Convolutional Architectures

Radford et al,

 ICLR 2016

Samples 

from the 

model look 

much 

better!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Generative Adversarial Nets: Convolutional Architectures

Radford et al,

 ICLR 2016

Interpolating 

between 

random 

points in 

latent space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n



Example Generated Images - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis



Failure Examples - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis



Video Generation

https://www.youtube.com/watch?v=PCBTZh41Ris 

https://www.youtube.com/watch?v=PCBTZh41Ris


Summary

⬣ Generative Adversarial Networks (GANs) can produce amazing 

images!

⬣ Several drawbacks

⬣ High-fidelity generation heavy to train

⬣ Training can be unstable

⬣ No explicit model for distribution

⬣ Larger number of extensions:

⬣ GANs conditioned on labels or other information

⬣ Adversarial losses for other applications



Comparison of Methods
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