
Machine Learning Applications

CS 4644-DL / 7643-A
ZSOLT KIRA

Topics:

• Generative Adversarial Networks

• Assignment 3

• Due March 8th 11:59pm EST

• Projects

• Project proposal due March
14th

• Next Meta office hours
03/14 3pm ET on machine
translation

Symmetry in Encoder/Decoder

We can either learn the kernels,

or take corresponding encoder

kernel and rotate 180 degrees

(no decoder learning)

Image
Convolution

+

Non-Linear

Layer

Pooling

Layer

Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Convolutional Neural Network (CNN)

Encoder

“Image”
(De)Convolution

+

Non-Linear

Layer(Un)Pooling

Layer

(De)Convolution

+

Non-Linear

Layer

Useful, lower-

dimensional

features

Decoder

U-Net

You can

have skip

connections

to bypass

bottleneck!

Ronneberger, et al., “U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015

Single-Shot Detector (SSD)

Liu, et al., “SSD: Single Shot MultiBox Detector”, 2015

Single-shot detectors

use an idea of grids

as anchors, with

different scales and

aspect ratios around

them

⬣ Various tricks

used to increase

the resolution

(decrease

subsampling

ratio)

6Slides by R. Q. FEITOSA

Generative

Models:

Introduction

Spectrum of Low-Labeled Learning

Supervised

Learning

⬣ Train Input: 𝑋, 𝑌

⬣ Learning output: 𝑓
∶ 𝑋 → 𝑌, 𝑃(𝑦|𝑥)

⬣ e.g. classification

Sheep

Dog

Cat

Lion

Giraffe

Unsupervised

Learning

⬣ Input: 𝑋

⬣ Learning

output: 𝑃 𝑥

⬣ Example: Clustering,

density estimation, etc.

Less Labels

Unsupervised Learning

Density

Estimation

Classification

Regression

Clustering

Dimensionality

Reduction

x y

x y

Discrete

Continuous

x c Discrete

x z Continuous

Supervised Learning

Unsupervised Learning

x p(x) Sample from

Distribution

What to Learn?

Traditional unsupervised learning methods:

Similar in deep learning, but from neural network/learning perspective

Modeling 𝑷 𝒙 Comparing/

Grouping

Representation

Learning

Principal

Component

Analysis

Clustering
Density

estimation

Almost all deep learning!Metric learning & clusteringDeep Generative Models

⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc.

⬣ Generative models model 𝑃(𝑥)

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

⬣ Discriminative models model 𝑃 𝑦 𝑥

⬣ Example: Model this via neural network, SVM, etc.

⬣ Generative models model 𝑃(𝑥)

⬣ We can parameterize our model as 𝑃(𝑥, 𝜃) and use maximum likelihood to optimize the

parameters given an unlabeled dataset:

⬣ They are called generative because they can often generate samples

⬣ Example: Multivariate Gaussian with estimated parameters 𝝁, 𝝈

Generative Models

Discriminative vs. Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Diffusion Models

PixelRNN &

PixelCNN

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Factorizing P(x)

We can use chain rule to decompose the joint distribution

⬣ Factorizes joint distribution into a product of conditional distributions

⬣ Similar to Bayesian Network (factorizing a joint distribution)

⬣ Similar to language models!

⬣ Requires some ordering of variables (edges in a probabilistic graphical model)

⬣ We can estimate this conditional distribution as a neural network
Oord et al., Pixel Recurrent Neural Networks

𝒑 𝒙 = ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)
next

word

history

Same as language modeling!

Language Models as an RNN

⬣ Language modeling involves estimating a probability distribution over

sequences of words.

next

wor

d

history

⬣ RNNs are a family of neural architectures for modeling sequences.

Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 ෑ

𝒊=𝟐

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

Oord et al., Pixel Recurrent Neural Networks

𝒑 𝒙 = ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

1. Choose ordering (upper left,

top to bottom, left to right.

Separate out pixel 1

Factorized Models for Images

𝒑 𝒙 = 𝒑 𝒙𝟏 𝒑 𝒙𝟐 𝒙𝟏 𝒑 𝒙𝟑 𝒙𝟏 ෑ

𝒊=𝟏

𝒏𝟐

𝒑 𝒙𝒊 𝒙𝟏, … , 𝒙𝒊−𝟏)

⬣ Model this as RNN with parameters

⬣ Training:

⬣ We can train similar to language models:

⬣ Maximum likelihood approach

⬣ Downsides:

⬣ Slow sequential generation process

⬣ Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Downsides?

Pixel CNN

Oord et al., Conditional Image Generation with PixelCNN Decoders

⬣ Idea: Represent conditional distribution

as a convolution layer!

⬣ Because of spatial locality in images

⬣ Considers larger context (receptive field)

⬣ Practically can be implemented by

applying a mask, zeroing out “future”

pixels

⬣ Faster training but still slow generation

⬣ Limited to smaller images

Example Results: Image Completion (PixelRNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders

Example Images (PixelCNN)

Oord et al., Conditional Image Generation with PixelCNN Decoders

Can we update this to modern times?

Multi/Mixed-Modal Large Language Models

Chameleon: Mixed-Modal Early-Fusion Foundation Models

In a few weeks

Generative

Adversarial

Networks

(GANs)

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Implicit Models

⬣ Implicit generative models do not actually learn an explicit model for 𝒑 𝒙

⬣ Instead, learn to generate samples from 𝒑 𝒙

⬣ Learn good feature representations

⬣ Perform data augmentation

⬣ Learn world models (a simulator!) for reinforcement learning

⬣ How?

⬣ Decode architecture

⬣ Learn to sample from a neural network output

What architecture lets us generate images?

How do we generate a different

image every time?

Learning to Sample

⬣ We would like to sample from 𝒑 𝒙 using a neural network

⬣ Idea:

⬣ Sample from a simple distribution (Gaussian)

⬣ Transform the sample to 𝒑 𝒙

𝑵 𝝁, 𝝈 Neural Network

Samples Samples

𝒑 𝒙

Generating Images

⬣ Input can be a vector with (independent) Gaussian random numbers

⬣ We can use a CNN to generate images!

𝑵 𝝁, 𝝈 Neural Network 𝒑 𝒙

Vector of
Random
Numbers

Generator

How do we train this (loss)?

Implicit Models

⬣ Instead, learn to generate samples from 𝒑 𝒙

⬣ How?

⬣ Adversarial training that uses one network’s predictions to train the other
(dynamic loss function!)

⬣ Lots of tricks to make the optimization more stable

Adversarial Networks

⬣ Goal: We would like to generate realistic images. How can we drive the

network to learn how to do this?

⬣ Idea: Have another network try to distinguish a real image from a generated

(fake) image

⬣ Why? Signal can be used to determine how well it’s doing at generation

⬣ Can be seen as a dynamic (adversarial) loss!

𝑵 𝝁, 𝝈 Neural Network 𝒑 𝒙

Vector of
Random
Numbers

Generator Discriminator

Real or
Fake?

Generative Adversarial Networks (GANs)

Vector of
Random
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the
answer (self-
supervised)

Mini-batch of
real & fake data

Question: What loss functions can we use (for each network)?

⬣ Generator: Update weights to improve

realism of generated images

⬣ Discriminator: Update weights to better

discriminate

⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Sample from real Sample from fake

Discriminator Perspective

⬣ where 𝐷 𝑥 is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧 is a generated image

⬣ The discriminator wants to maximize this:

⬣ 𝐷 𝑥 is pushed up (to 1) because 𝑥 is a real image

⬣ 1 − 𝐷 𝐺 𝑧 is also pushed up to 1 (so that D G z is pushed down to 0)

⬣ In other words, discriminator wants to classify real images as real (1) and

fake images as fake (0)

Generator Perspective

⬣ where 𝐷 𝑥 is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧 is a generated image

⬣ The generator wants to minimize this:

⬣ First term: G(..) doesn’t appear in it!

⬣ 1 − 𝐷 𝐺 𝑧 is pushed down to 0 (so that D G z is pushed up to 1)

⬣ This means that the generator is fooling the discriminator, i.e. succeeding

at generating images that the discriminator can’t discriminate from real

⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

⬣ where 𝐷 𝑥 is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧 is a generated image

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generator minimizes How well discriminator
does (0 for fake)

Sample from fake

⬣ Since we have two networks competing, this is a mini-max two player game

⬣ Ties to game theory

⬣ Not clear what (even local) Nash equilibria are for this game

⬣ The full mini-max objective is:

⬣ where 𝐷 𝑥 is the discriminator outputs probability ([0,1]) of real image

⬣ 𝑥 is a real image and 𝐺 𝑧 is a generated image

Mini-max Two Player Game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

How well discriminator
does (1 for real)

Discriminator maximizes How well discriminator
does (0 for fake)

Sample from fakeSample from real

Generative Adversarial Networks (GANs)

Vector of
Random
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the
answer (self-
supervised)

Generator Loss Discriminator Loss

Mini-batch of
real & fake data

Converting to Max-Max Game

⬣ The generator part of the objective does not have good gradient properties

⬣ High gradient when 𝐷 𝐺 𝑧 is high (that is, discriminator is wrong)

⬣ We want it to improve when samples are bad (discriminator is right)

⬣ Alternative objective, maximize:

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung G(z) -> Generated

Bad generator
Good generator
(fooling)

Final Algorithm

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

Generative Adversarial Networks (GANs)

Vector of
Random
Numbers

Generator Discriminator

Cross-entropy
(Real or Fake?)
We know the
answer (self-
supervised)

Mini-batch of
real & fake data

⬣ At the end, we have:

⬣ An implicit generative model!

⬣ Features from discriminator

Early Results

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

⬣ Low-resolution

images but look

decent!

⬣ Last column are

nearest neighbor

matches in dataset

Difficulty in Training

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

⬣ GANs are very difficult to train due to the mini-max objective

⬣ Advancements include:

⬣ More stable architectures

⬣ Regularization methods to improve optimization

⬣ Progressive growing/training and scaling

DCGAN

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

Regularization

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

⬣ Training GANs is difficult due to:

⬣ Minimax objective – For example, what if generator learns to memorize

training data (no variety) or only generates part of the distribution?

⬣ Mode collapse – Capturing only some modes of distribution

⬣ Several theoretically-motivated regularization methods

⬣ Simple example: Add noise to real samples!

Generative Adversarial Nets: Convolutional Architectures

Radford et al,

 ICLR 2016

Samples

from the

model look

much

better!

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial Nets: Convolutional Architectures

Radford et al,

 ICLR 2016

Interpolating

between

random

points in

latent space

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Example Generated Images - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Failure Examples - BigGAN

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Video Generation

https://www.youtube.com/watch?v=PCBTZh41Ris

https://www.youtube.com/watch?v=PCBTZh41Ris

Summary

⬣ Generative Adversarial Networks (GANs) can produce amazing

images!

⬣ Several drawbacks

⬣ High-fidelity generation heavy to train

⬣ Training can be unstable

⬣ No explicit model for distribution

⬣ Larger number of extensions:

⬣ GANs conditioned on labels or other information

⬣ Adversarial losses for other applications

Comparison of Methods

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Generative Adversarial Nets: Convolutional Architectures
	Slide 47: Generative Adversarial Nets: Convolutional Architectures
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Comparison of Methods

