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Assignment 3
* Due March 8th 11:59pm EST

Projects

* Project proposal due March
14th

Next Meta office hours
03/14 3pm ET on machine
translation

W9: Mar 3

W9: Mar 5

W10: Mar 10

W10: Mar 12

W11: Mar 17

W11: Mar 19

Generative Models (Part 1): Generative Adversarial
Networks

Project Planning Session

Generative Models (Part Il): Diffusion Models

PS3/HW3 due Mar 8th 11:59pm (grace period Mar
10th), PS4/HW4 out (due Mar 30th)

Variational Autoencoders (VAEs)

Project Check-in Due March 14th 11:59pm (grace period
until March 16th)

Spring Break

Spring Break

+ Generative Adversarial Networks

« Tutorial on Variational Autoencoders
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bottleneck!
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Ronneberger, et al., “‘U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015
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Liu, et al., “SSD: Single Shot MultiBox Detector”, 2015
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Supervised
Learning

Train Input: {X,Y}

Learning output:
X =Y, P(y|x)

e.g. classification

LUy

+ Cat
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Less Labels

Spectrum of Low-Labeled Learning

Unsupervised
Learning

Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation, etc.
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Supervised Learning

Unsupervised Learning

Continuous

Sample from
Distribution

Unsupervised Learning



Traditional unsupervised learning methods:

Density
estimation

Modeling P(x)

Deep Generative Models

.

Clustering

Comparing/
Grouping

Metric learning & clustering

. Principal
| Component
Analysis

J

Representation
Learning

Almost all deep learning!

Similar in deep learning, but from neural network/learning perspective

) . What to Learn?




Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Netw, orks

) Generative Models Ge‘%




Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

We can parameterize our model as P(x, 8) and use maximum likelihood to optimize the
parameters given an unlabeled dataset: " _
0" =arg IllaXHmede] (:B(l)', 9)
o i

m
= arg max log H Pmodel (;I:(""); 9)
o .
i=1

= arg max 102 Pmodel (:c(i): 9) .
51 ; 5
They are called generative because they can orten generate samples

Example: Multivariate Gaussian with estimated parameters u, o
Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Netw, orks

) Generative Models Ge‘%
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N

Explicit density ‘ Implicit densit}-"

N\ o

Markov Chain ‘

Tractable density‘ Approximate density

-Fully visible belief nets GSN
_NADE / \

_MADE Variational  Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA )

Diffusion Models

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




PixelRNN &

PixelCNN
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-Change of variables
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Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




We can use chain rule to decompose the joint distribution

Factorizes joint distribution into a product of conditional distributions
Similar to Bayesian Network (factorizing a joint distribution)
Similar to language models!

Same as language modeling!

p) = | [plz ) Hp Wi | Wiit, ..., ws)

next history
word

Requires some ordering of variables (edges in a probabilistic graphical model)

We can estimate this conditional distribution as a neural network
Oord et al., Pixel Recurrent Neural Networks

) Factorizing P(x)




Language modeling involves estimating a probability distribution over
sequences of words.

p(S) — p(W~|,W2, e 7Wn) = H p(W, ‘ Wi_1,..., W1)
i next history

wor
d

RNNs are a family of neural architectures for modeling sequences.

h; ho
fo % e —— £ hn

XA X2 Xn

) Language Models as an RNN



p(x) — np('xl X1, '"in—l)
p() = plx) r p(xil, . X 1)

1. Choose ordering (upper left,
top to bottom, left to right.

Separate out pixel 1

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images



2

p() = PP )P lxn) | [pGrilxs, - xi0)
i=1

hy

Model this as RNN with parameters H -
Training: I
We can train similar to language models:

Maximum likelihood approach
Downsides?
Downsides:
Slow sequential generation process

Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images



Idea: Represent conditional distribution
as a convolution layer!

Because of spatial locality in images

Considers larger context (receptive field)

olo|l~|~|~

(=1 =l e

=Nl e
o |l o[ |~ |~

o |l o= | —=| =

Practically can be implemented by
applying a mask, zeroing out “future”
pixels

Faster training but still slow generation
Limited to smaller images

Oord et al., Conditional Image Generation with PixelCNN Decodc-rs

) Pixel CNN Ge%




occluded completions original




Can we update this to modern times?

Oord et al., Conditional Image Generation with PixelCNN Decodzrs

Example Images (PixelCNN)




In a few weeks

“Here is a recipe for
banana bread.” &L

IMAGE OUTPUT

TEXT OUTPUT

[Mixed-l\flodal Auto-Regressive LM}
T 1[ )
t
T T Image Tokenizer }
{ “What can | bake }
with this?”

18E=00E

Mixed Modal Auto-Regressive LM
! { ! f f t

200000

(b) Mixed-Modal Generation

/—.\\If—"\
S
T

Chameleon: Mixed-Modal Early-Fusion Foundation Models




Generative
Adversarial

Networks
(GANS)
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-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models




Implicit generative models do not actually learn an explicit model for p(x)

Instead, learn to generate samples from p(x)
Learn good feature representations
Perform data augmentation

Learn world models (a simulator!) for reinforcement learning

What architecture lets us generate images?

How do we generate a different Generator 1,
Decode architecture image every time?

How?

Learn to sample from a neural network output

) implicit Models



We would like to sample from p(x) using a neural network
ldea:
Sample from a simple distribution (Gaussian)
Transform the sample to p(x)

Samples I I Samples M

N(u, o) Neural Network p(x)

) Learning to Sample eeo S




Input can be a vector with (independent) Gaussian random numbers
We can use a CNN to generate images!

Generator

Vector of
Random
Numbers

N(u,o) Neural Network

How do we train this (loss)?

) Generating Images Ge‘%j’



Instead, learn to generate samples from p(x)

How?

Adversarial training that uses one network’s predictions to train the other
(dynamic loss function!)

Lots of tricks to make the optimization more stable

) implicit Models



Goal: We would like to generate realistic images. How can we drive the
network to learn how to do this?

Idea: Have another network try to distinguish a real image from a generated
(fake) image

Why? Signal can be used to determine how well it's doing at generation
Can be seen as a dynamic (adversarial) loss!

Generator Discriminator

Vector of

Random

Numbers Real or
Fake?

Adversarial Networks



Generator: Update weights to improve
realism of generated images

Discriminator: Update weights to better
discriminate

Generator Discriminator

Vector of Mini-batch of Cross-entropy

Random real & fake data (Real or Fake?)

Numbers We know the
answer (self-

supervised)

Question: What loss functions can we use (for each network)?

) Generative Adversarial Networks (GANS)



Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

mén mSX V(D G) — Emdiata(m) [log D(:BH —|_ EZNPZ(Z) [log(l o D(G(Z)))}

Sample from real Sample from fake

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




where D(x) is the discriminator outputs probability ([0,1]) of real image
x is areal image and G(z) is a generated image

The discriminator wants to maximize this:
D(x) is pushed up (to 1) because x is a real image
1—D(G(2)) is also pushed up to 1 (so that D(G(z)) is pushed down to 0)

In other words, discriminator wants to classify real images as real (1) and
fake images as fake (0)

) Discriminator Perspective




where D(x) is the discriminator outputs probability ([0,1]) of real image
x is areal image and G(z) is a generated image

The generator wants to minimize this:
First term: G(..) doesn’t appear in it!
1—D(G(2)) is pushed down to O (so that D(G(z)) is pushed up to 1)

This means that the generator is fooling the discriminator, i.e. succeeding
at generating images that the discriminator can’t discriminate from real

) Generator Perspective Ge‘%




Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:
Sample from fake

mén mB,X V(D G) — Emdiata(m) [log D(:I:)} —|_ EZNPZ(Z) [log(l o D(G(Z)))}

Generator minimizes How well discriminator
does (0 for fake)
where D(x) is the discriminator outputs probability ([0,1]) of real image

x is areal image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

Sample from real Sample from fake
Discriminator maximizes How well discriminator How well discriminator
does (1 for real) does (0 for fake)

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is areal image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game




Generator

Vector of
Random
Numbers

Vo, 2ok (120 (6 ()

Generator Loss

Discriminator
Mini-batch of Cross-entropy
real & fake data . (Real or Fake?)
We know the

answer (self-
supervised)

vgd%g; log D (@) +1og (1= D (¢ (17)))]

Discriminator Loss

) Generative Adversarial Networks (GANS)



The generator part of the objective does not have good gradient properties

High gradient when D(G(z)) is high (that is, discriminator is wrong)
We want it to improve when samples are bad (discriminator is right)

Alternative objective, maximize:
max [, () log(De,(Ge,(2))) 2|

0
g -Bad generator

ator

(fooling)

—4 |

0.0 0.2 0:4
G(z) -> Generated >

I
0.6 0.8 10

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Converting to Max-Max Game



Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
E‘XIJGTi[‘IIGI][S.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(l}, e ._z(m}} from noise prior p,(z).

e Sample minibatch of m examples {z™), ... (™} from data generating distribution

pdata(az)‘

e Update the discriminator by ascending its stochastic gradient:

Va3 loe D («) + 1og (1- D (¢ (=9)))].

1=

end for
e Sample minibatch of 1 noise samples {z() ..., z(™)} from noise prior py(z).

e Update the generator by descending its stochastic gradient:

Va3 tox (1-0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

Final Algorithm




Vector of
Random
Numbers

)

Generator

B

At the end, we have:
An implicit generative model!
Features from discriminator

Discriminator

Mini-batch of Cross-entropy
real & fake data (Real or Fake?)
We know the

answer (self-
supervised)

Generative Adversarial Networks (GANS)



Low-resolution
images but look
decent!

Last column are
nearest neighbor
matches in dataset




GANs are very difficult to train due to the mini-max objective

Advancements include:
More stable architectures
Regularization methods to improve optimization
Progressive growing/training and scaling

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

) Difficulty in Training




Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

e Use RelLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReLLU activation in the discriminator for all layers.

1024

m df % | ===

Project and reshape

CONV 1
CCNV 3 64

convs -
G(2)

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks




Training GANSs is difficult due to:

Minimax objective — For example, what if generator learns to memorize
training data (no variety) or only generates part of the distribution?

Mode collapse — Capturing only some modes of distribution

Several theoretically-motivated regularization methods
Simple example: Add noise to real samples!

2
A- ]E'I‘NPreahéde{oacj) [HvXD@(;r’ +0)[l = k}

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

) Regularization




Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

)




Generative Adversarial Nets: Convolutional Architectures

Interpolating
between
random
points in
latent space

Radford et al,
ICLR 2016

Georgia !
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Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BIigGAN




(a) 128128 (b) 256 x256

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class
leakage in a partially trained model (d).

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Failure Examples - BigGAN



Source Video

Source to Target 1 Result Smmto!-gn?ﬂ‘l

» »l o) 000/315

https://www.youtube.com/watch?v=PCBTZh41Ris

) Video Generation



https://www.youtube.com/watch?v=PCBTZh41Ris

Generative Adversarial Networks (GANs) can produce amazing
images!

Several drawbacks
High-fidelity generation heavy to train
Training can be unstable
No explicit model for distribution

Larger number of extensions:

GANSs conditioned on labels or other information
Adversarial losses for other applications

) Summary




Comparison of Methods

GAN: Adversarial I

X X » Z >
training D(x) G(z)

VAE: maximize X _| Encoder z Decoder N
variational lower bound q¢,(z|x) Peo (x|z)
Flow-based models: x | Flow Loz . Inlrfrse .
Invertible transform of f(x) f(2z)

distributions
Diffusion models:l X0 . X1 - Xo L

Gradually add Gaussian - - - --1 Te-------- "R ouEs --------
noise and then reverse

Discriminator

Generator
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