Topics:

Generative Adversarial Networks

CS 4644-DL / 7643-A ZSOLT KIRA

• Assignment 3

- Due March 8th 11:59pm EST
- Projects
 - Project proposal due March 14th

 Next Meta office hours 03/14 3pm ET on machine translation

W9: Mar 3	Generative Models (Part I): Generative Adversarial Networks	Generative Adversarial Networks ;
W9: Mar 5	Project Planning Session	
W10: Mar 10	Generative Models (Part II): Diffusion Models PS3/HW3 due Mar 8th 11:59pm (grace period Mar 10th), PS4/HW4 out (due Mar 30th)	
W10: Mar 12	Variational Autoencoders (VAEs) Project Check-in Due March 14th 11:59pm (grace period until March 16th)	Tutorial on Variational Autoencoders
W11: Mar 17	Spring Break	
W11: Mar 19	Spring Break	

Symmetry in Encoder/Decoder

U-Net

You can have skip connections to bypass bottleneck!

Ronneberger, et al., "U-Net: Convolutional Networks for Biomedical Image Segmentation", 2015

Single-shot detectors use an idea of **grids** as anchors, with different scales and aspect ratios around them

 Various tricks used to increase the resolution (decrease subsampling ratio)

Liu, et al., "SSD: Single Shot MultiBox Detector", 2015

DEtector TRansformer - DETR overview

Slides by R. Q. FEITOSA

Generative Models: Introduction

Traditional unsupervised learning methods:

Similar in deep learning, but from neural network/learning perspective

Discriminative vs. Generative Models

- Discriminative models model P(y|x)
 - Example: Model this via neural network, SVM, etc.
- Generative models model P(x)

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Discriminative vs. Generative Models

- Discriminative models model P(y|x)
 - Example: Model this via neural network, SVM, etc.
- Generative models model P(x)
- We can parameterize our model as $P(x, \theta)$ and use maximum likelihood to optimize the parameters given an unlabeled dataset: $\theta^* = \arg \max \prod_{m=1}^{m} p_{model}(x^{(i)}; \theta)$

$$P^* = \arg \max_{\boldsymbol{\theta}} \prod_{i=1}^m p_{\text{model}} \left(\boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right)$$
$$= \arg \max_{\boldsymbol{\theta}} \log \prod_{i=1}^m p_{\text{model}} \left(\boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right)$$
$$= \arg \max_{\boldsymbol{\theta}} \sum_{i=1}^m \log p_{\text{model}} \left(\boldsymbol{x}^{(i)}; \boldsymbol{\theta} \right).$$

- They are called generative because they can often generate samples
 - Example: Multivariate Gaussian with estimated parameters μ, σ

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Netvorks

Generative Models

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

PixelRNN & PixelCNN

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

We can use chain rule to decompose the joint distribution

- Factorizes joint distribution into a product of conditional distributions
 - Similar to Bayesian Network (factorizing a joint distribution)
 - Similar to language models!

p

Same as language modeling!

$$(x) = \prod_{i=1}^{n^2} p(x_i | x_1, \dots, x_{i-1})$$

$$p(s) = \prod_i p(W_i | W_{i-1}, \dots, W_1)$$

$$next$$
word
history
word

- Requires some ordering of variables (edges in a probabilistic graphical model)
- We can estimate this conditional distribution as a neural network

Oord et al., Pixel Recurrent Neural Networks

 Language modeling involves estimating a probability distribution over sequences of words.

$$p(\mathbf{s}) = p(w_1, w_2, \dots, w_n) = \prod_{\substack{i \\ wor}} p(w_i \mid w_{i-1}, \dots, w_1)$$

RNNs are a family of neural architectures for modeling sequences.

$$p(x) = \prod_{i=1}^{n^2} p(x_i | x_1, \dots, x_{i-1})$$
$$p(x) = p(x_1) \prod_{i=2}^{n^2} p(x_i | x_1, \dots, x_{i-1})$$

1. Choose ordering (upper left, top to bottom, left to right.

Separate out pixel 1

Oord et al., Pixel Recurrent Neural Networks

Georg

 $p(x) = p(x_1)p(x_2|x_1)p(x_3|x_1)\prod_{i=1}^{n^2} p(x_i|x_1, \dots, x_{i-1})$

- Model this as RNN with parameters
- Training:
 - We can train similar to language models:
 - Maximum likelihood approach

Downsides?

- Downsides:
 - Slow sequential generation process
 - Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images

- Idea: Represent conditional distribution as a convolution layer!
 - Because of spatial locality in images
- Considers larger context (receptive field)
- Practically can be implemented by applying a mask, zeroing out "future" pixels
- Faster training but still slow generation
 - Limited to smaller images

Oord et al., Conditional Image Generation with PixelCNN Decoders

occluded

completions

original

Oord et al., Conditional Image Generation with PixelCNN Decoders

Example Results: Image Completion (PixelRNN)

Geyser

Hartebeest

Grey whale

Tiger

Can we update this to modern times?

Oord et al., Conditional Image Generation with PixelCNN Decoders

Example Images (PixelCNN)

Chameleon: Mixed-Modal Early-Fusion Foundation Models

Multi/Mixed-Modal Large Language Models

Generative Adversarial Networks (GANs)

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

• Implicit generative models do not actually learn an explicit model for p(x)

- Instead, learn to generate samples from p(x)
 - Learn good feature representations
 - Perform data augmentation
 - Learn world models (a simulator!) for reinforcement learning

How?

Decode architecture

- What architecture lets us generate images? How do we generate a different image every time?
- Learn to sample from a neural network output

• We would like to sample from p(x) using a neural network

Idea:

- Sample from a simple distribution (Gaussian)
- Transform the sample to p(x)

0

Input can be a vector with (independent) Gaussian random numbers

We can use a CNN to generate images!

How do we train this (loss)?

Instead, learn to generate samples from p(x)

How?

- Adversarial training that uses one network's predictions to train the other (dynamic loss function!)
- Lots of tricks to make the optimization more stable

- Goal: We would like to generate *realistic* images. How can we drive the network to learn how to do this?
- Idea: Have another network try to distinguish a real image from a generated (fake) image
 - Why? Signal can be used to determine how well it's doing at generation
 - Can be seen as a dynamic (adversarial) loss!

 $N(\mu, \sigma)$

Neural Network

p(x)

Adversarial Networks

Question: What loss functions can we use (for each network)?

Since we have two networks competing, this is a mini-max two player game

- Ties to game theory
- Not clear what (even local) Nash equilibria are for this game

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Since we have two networks competing, this is a mini-max two player game

- Ties to game theory
- Not clear what (even local) Nash equilibria are for this game
- The full mini-max objective is:

$$\begin{split} \min_{G} \max_{D} V(D,G) &= \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))] \\ & \text{Sample from real} \end{split}$$

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

The discriminator wants to maximize this:

- D(x) is pushed up (to 1) because x is a real image
- 1 D(G(z)) is also pushed up to 1 (so that D(G(z)) is pushed down to 0)
- In other words, discriminator wants to classify real images as real (1) and fake images as fake (0)

Discriminator Perspective

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\text{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is a real image and G(z) is a generated image

The generator wants to minimize this:

- First term: G(..) doesn't appear in it!
- 1 D(G(z)) is pushed down to 0 (so that D(G(z)) is pushed up to 1)
- This means that the generator is fooling the discriminator, i.e. succeeding at generating images that the discriminator can't discriminate from real

Generator Perspective

Since we have two networks competing, this is a mini-max two player game

- Ties to game theory
- Not clear what (even local) Nash equilibria are for this game
- The full mini-max objective is:

Sample from fake

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$$

Generator *minimizes*

How well discriminator does (0 for fake)

• where D(x) is the discriminator outputs probability ([0,1]) of real image

• x is a **real image** and G(z) is a **generated** image

Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Mini-max Two Player Game

Since we have two networks competing, this is a mini-max two player game

Ties to game theory

Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is: Sample from real Sample from fake $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$ **Discriminator** *maximizes* How well discriminator How well discriminator does (1 for real) does (0 for fake) where D(x) is the discriminator outputs probability ([0,1]) of real image • x is a real image and G(z) is a generated image Goodfellow, NeurIPS 2016 Tutorial: Generative Adversarial Networks

Mini-max Two Player Game

Generative Adversarial Networks (GANs)

The generator part of the objective does not have good gradient properties

 $\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{\mathsf{data}}(\boldsymbol{x})} [\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})} [\log(1 - D(G(\boldsymbol{z})))]$

- High gradient when D(G(z)) is high (that is, discriminator is wrong)
- We want it to improve when samples are bad (discriminator is right)

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(\boldsymbol{z}^{(i)}\right)\right)\right).$$

end for

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

Generative Adversarial Networks (GANs)

- Low-resolution images but look decent!
- Last column are nearest neighbor matches in dataset

c)

Early Results

d)

GANs are very difficult to train due to the mini-max objective

Advancements include:

- More stable architectures
- Regularization methods to improve optimization
- Progressive growing/training and scaling

Goodfellow, NeurIPS 2016 Generative Adversarial Nets

Architecture guidelines for stable Deep Convolutional GANs

DCGAN

- Replace any pooling layers with strided convolutions (discriminator) and fractional-strided convolutions (generator).
- Use batchnorm in both the generator and the discriminator.
- Remove fully connected hidden layers for deeper architectures.
- Use ReLU activation in generator for all layers except for the output, which uses Tanh.
- Use LeakyReLU activation in the discriminator for all layers.

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

- Training GANs is difficult due to:
 - Minimax objective For example, what if generator learns to memorize training data (no variety) or only generates part of the distribution?
 - Mode collapse Capturing only some modes of distribution
- Several theoretically-motivated regularization methods
 - Simple example: Add noise to real samples!

$$\lambda \cdot \mathbb{E}_{x \sim P_{real}, \delta \sim N_d(0, cI)} \left[\left\| \nabla_{\mathbf{x}} D_{\theta}(x + \delta) \right\| - k \right]^2$$

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

Generative Adversarial Nets: Convolutional Architectures

DI9

Samples from the model look much better!

Radford et al, ICLR 2016

Slide Credit: Fei-Fei Li, Justin Johnson, Serena Yeung, CS 231n

Generative Adversarial Nets: Convolutional Architectures

Interpolating between random points in latent space

Radford et al, ICLR 2016

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BigGAN

(a) 128×128

(b) 256×256

1	EN.
10	D
10	•/

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class leakage in a partially trained model (d).

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

https://www.youtube.com/watch?v=PCBTZh41Ris

 Generative Adversarial Networks (GANs) can produce amazing images!

Several drawbacks

- High-fidelity generation heavy to train
- Training can be unstable
- No explicit model for distribution
- Larger number of extensions:
 - GANs conditioned on labels or other information
 - Adversarial losses for other applications

Comparison of Methods

Gradually add Gaussian noise and then reverse