Topics:
e Generative Adversarial Networks

CS 4644-DL / 7643-A
ZSOLT KIRA

Assignment 3
* Due March 8th 11:59pm EST

Projects

* Project proposal due March
14th

Next Meta office hours
03/14 3pm ET on machine
translation

W9: Mar 3

W9: Mar 5

W10: Mar 10

W10: Mar 12

W11: Mar 17

W11: Mar 19

Generative Models (Part 1): Generative Adversarial
Networks

Project Planning Session

Generative Models (Part Il): Diffusion Models

PS3/HW3 due Mar 8th 11:59pm (grace period Mar
10th), PS4/HW4 out (due Mar 30th)

Variational Autoencoders (VAEs)

Project Check-in Due March 14th 11:59pm (grace period
until March 16th)

Spring Break

Spring Break

+ Generative Adversarial Networks

« Tutorial on Variational Autoencoders

Convolutional Neural Network (CNN))
| | We can either learn the kernels,
ﬂ | or take corresponding encoder

Useful, lower-

| |
| | |
: : : dimensional kernel and rotate 180 degrees
| | | aa=< e (no decoder learning)
| | | ’ |
, | - P
| _ | | _ [
Image : Conch)rIutlon : Pooling : Conch)rIutlon : DeCOdeI’
Non-Linear Layer Non-Linear .
Layer Layer (De)Convolution (De)Convolution
I + I + “Image”
| Non-Linear Non-Linear
| Layer (Un)Pooling Layer
Encoder : Layer
I
|

Useful, lower-
dimensional f
features

&

Symmetry in Encoder/Decoder Gograia |

=

input
image

output
tile

| segmentation
g map

\

388x388

You can
have skip
connections
to bypass
bottleneck!

= CONV 3X3, RelLU
copy and crop
¥ max pool 2x2
4 up-conv 2x2
= CONnv 1x1

Ronneberger, et al., “‘U-Net: Convolutional Networks for Biomedical Image Segmentation”, 2015

Georgia I&
Tech

[
Single-shot detectors | oA
use an idea of grids | =D RHEEIHE
as anchors, with l i R e
) == [tdF -~ I IR B
different scales and l |t T Bt T il
- fiisi LA
aSpeCt ratios around ! ..::; e ¥
h I 1 i loc 1 Aled, cy w, h)
t em | COﬂf ((1 Co, ('p)
Various tricks
) l Extra Feature Layers
used tO InCrease l throu_gh Convs 3Ia1\r Classifier : Conv: 3x3x(4x <CI asses+d))) 1:]
the resolution l N Classifier : Conv: 3x3x(6x(Classes+d)) g %
(decrease . g g
. [2 2|=D|e
subsampling I c | |
. : EE g
ratIO) l __C_rmJ 3x3x1024 Conv: 1x1x1024 oé-o 21 1m2565l? Conv: 1x1x = Coi v'1x13 C 1x1x12 E é
l Comv: 3x3x612-52 Conv: 3x3x256-s2 Conv: 3x3x268-51 Cony: 3x3x286-51

Liu, et al., “SSD: Single Shot MultiBox Detector”, 2015

Single-Shot Detector (SSD) Gogratn |

DEtector TRansformer - DETR

overview
T T T T e S e i e e e €3 Y LY, AR P S S T —
' backbone || encoder ¥ decoder ! prediction heads
| | |
! setof image featuresi: " I R et ——
i ! ! s PN] e |
I 1 :l
I ! no
' ' transformer I' transformer \ il i object
encoder n decoder [
:: o\ S Fe ||
|
LI S f 1
Goooto-0 ; B eoe e,
: : object queries by

Generative

Models:
Introduction

4 'o
o

Geol &?

Tech|)

Supervised
Learning

Train Input: {X,Y}

Learning output:
X =Y, P(y|x)

e.g. classification

LUy

+ Cat

f

Less Labels

Spectrum of Low-Labeled Learning

Unsupervised
Learning

Input: {X}

Learning
output: P(x)

Example: Clustering,
density estimation, etc.

0P = mm
DD&PD .'.‘
o]
DD[E]Q] -
L]]
o]
o ol T
Eag
Em

Supervised Learning

Unsupervised Learning

Continuous

Sample from
Distribution

Unsupervised Learning

Traditional unsupervised learning methods:

Density
estimation

Modeling P(x)

Deep Generative Models

.

Clustering

Comparing/
Grouping

Metric learning & clustering

. Principal
| Component
Analysis

J

Representation
Learning

Almost all deep learning!

Similar in deep learning, but from neural network/learning perspective

) . What to Learn?

Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Netw, orks

) Generative Models Ge‘%

Discriminative vs. Generative Models
Discriminative models model P(y|x)
Example: Model this via neural network, SVM, etc.

Generative models model P(x)

We can parameterize our model as P(x, 8) and use maximum likelihood to optimize the
parameters given an unlabeled dataset: " _
0" =arg IllaXHmede] (:B(l)', 9)
o i

m
= arg max log H Pmodel (;I:(""); 9)
o .
i=1

= arg max 102 Pmodel (:c(i): 9) .
51 ; 5
They are called generative because they can orten generate samples

Example: Multivariate Gaussian with estimated parameters u, o
Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Netw, orks

) Generative Models Ge‘%

Maximum le@llhOOd‘ / GAN
N

Explicit density ‘ Implicit densit}-"

N\ o

Markov Chain ‘

Tractable density‘ Approximate density

-Fully visible belief nets GSN
_NADE / \

_MADE Variational Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Diffusion Models

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

PixelRNN &

PixelCNN

4 'o
o

Geol &?

Tech|)

Maximum leethOd‘ / GAN
N

Explicit density ‘ Implicit densit}-"

N\ o

Markov Chain ‘

Tractable density‘ Approximate density

-Fully visible belief nets GSN
_NADE / \

_MADE Variational Markov Chain
-PixeRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

We can use chain rule to decompose the joint distribution

Factorizes joint distribution into a product of conditional distributions
Similar to Bayesian Network (factorizing a joint distribution)
Similar to language models!

Same as language modeling!

p) = | [plz) Hp Wi | Wiit, ..., ws)

next history
word

Requires some ordering of variables (edges in a probabilistic graphical model)

We can estimate this conditional distribution as a neural network
Oord et al., Pixel Recurrent Neural Networks

) Factorizing P(x)

Language modeling involves estimating a probability distribution over
sequences of words.

p(S) — p(W~|,W2, e 7Wn) = H p(W, ‘ Wi_1,..., W1)
i next history

wor
d

RNNs are a family of neural architectures for modeling sequences.

h; ho
fo % e —— £ hn

XA X2 Xn

) Language Models as an RNN

p(x) — np('xl X1, '"in—l)
p() = plx) r p(xil, . X 1)

1. Choose ordering (upper left,
top to bottom, left to right.

Separate out pixel 1

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images

2

p() = PP)P lxn) | [pGrilxs, - xi0)
i=1

hy

Model this as RNN with parameters H -
Training: I
We can train similar to language models:

Maximum likelihood approach
Downsides?
Downsides:
Slow sequential generation process

Only considers few context pixels

Oord et al., Pixel Recurrent Neural Networks

Factorized Models for Images

Idea: Represent conditional distribution
as a convolution layer!

Because of spatial locality in images

Considers larger context (receptive field)

olo|l~|~|~

(=1 =l e

=Nl e
o |l o[|~ |~

o |l o= | —=| =

Practically can be implemented by
applying a mask, zeroing out “future”
pixels

Faster training but still slow generation
Limited to smaller images

Oord et al., Conditional Image Generation with PixelCNN Decodc-rs

) Pixel CNN Ge%

occluded completions original

Can we update this to modern times?

Oord et al., Conditional Image Generation with PixelCNN Decodzrs

Example Images (PixelCNN)

In a few weeks

“Here is a recipe for
banana bread.” &L

IMAGE OUTPUT

TEXT OUTPUT

[Mixed-l\flodal Auto-Regressive LM}
T 1[)
t
T T Image Tokenizer }
{ “What can | bake }
with this?”

18E=00E

Mixed Modal Auto-Regressive LM
! { ! f f t

200000

(b) Mixed-Modal Generation

/—.\\If—"\
S
T

Chameleon: Mixed-Modal Early-Fusion Foundation Models

Generative
Adversarial

Networks
(GANS)

4 'o
o

Geol &?

Tech|)

Maximum leethOd‘ / GAN
N

Explicit density ‘ Implicit densit}-"

N\ o

Markov Chain ‘

Tractable density‘ Approximate density

-Fully visible belief nets GSN
_NADE / \

_MADE Variational Markov Chain
-PixelRNN Variational autoencoder Boltzmann machine

-Change of variables
models (nonlinear ICA)

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

Generative Models

Implicit generative models do not actually learn an explicit model for p(x)

Instead, learn to generate samples from p(x)
Learn good feature representations
Perform data augmentation

Learn world models (a simulator!) for reinforcement learning

What architecture lets us generate images?

How do we generate a different Generator 1,
Decode architecture image every time?

How?

Learn to sample from a neural network output

) implicit Models

We would like to sample from p(x) using a neural network
ldea:
Sample from a simple distribution (Gaussian)
Transform the sample to p(x)

Samples I I Samples M

N(u, o) Neural Network p(x)

) Learning to Sample eeo S

Input can be a vector with (independent) Gaussian random numbers
We can use a CNN to generate images!

Generator

Vector of
Random
Numbers

N(u,o) Neural Network

How do we train this (loss)?

) Generating Images Ge‘%j’

Instead, learn to generate samples from p(x)

How?

Adversarial training that uses one network’s predictions to train the other
(dynamic loss function!)

Lots of tricks to make the optimization more stable

) implicit Models

Goal: We would like to generate realistic images. How can we drive the
network to learn how to do this?

Idea: Have another network try to distinguish a real image from a generated
(fake) image

Why? Signal can be used to determine how well it's doing at generation
Can be seen as a dynamic (adversarial) loss!

Generator Discriminator

Vector of

Random

Numbers Real or
Fake?

Adversarial Networks

Generator: Update weights to improve
realism of generated images

Discriminator: Update weights to better
discriminate

Generator Discriminator

Vector of Mini-batch of Cross-entropy

Random real & fake data (Real or Fake?)

Numbers We know the
answer (self-

supervised)

Question: What loss functions can we use (for each network)?

) Generative Adversarial Networks (GANS)

Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game

Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

mén mSX V(D G) — Emdiata(m) [log D(:BH —|_ EZNPZ(Z) [log(l o D(G(Z)))}

Sample from real Sample from fake

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is areal image and G(z) is a generated image

The discriminator wants to maximize this:
D(x) is pushed up (to 1) because x is a real image
1—D(G(2)) is also pushed up to 1 (so that D(G(z)) is pushed down to 0)

In other words, discriminator wants to classify real images as real (1) and
fake images as fake (0)

) Discriminator Perspective

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is areal image and G(z) is a generated image

The generator wants to minimize this:
First term: G(..) doesn’t appear in it!
1—D(G(2)) is pushed down to O (so that D(G(z)) is pushed up to 1)

This means that the generator is fooling the discriminator, i.e. succeeding
at generating images that the discriminator can’t discriminate from real

) Generator Perspective Ge‘%

Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:
Sample from fake

mén mB,X V(D G) — Emdiata(m) [log D(:I:)} —|_ EZNPZ(Z) [log(l o D(G(Z)))}

Generator minimizes How well discriminator
does (0 for fake)
where D(x) is the discriminator outputs probability ([0,1]) of real image

x is areal image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game

Since we have two networks competing, this is a mini-max two player game
Ties to game theory
Not clear what (even local) Nash equilibria are for this game

The full mini-max objective is:

Sample from real Sample from fake
Discriminator maximizes How well discriminator How well discriminator
does (1 for real) does (0 for fake)

where D(x) is the discriminator outputs probability ([0,1]) of real image
x is areal image and G(z) is a generated image

Goodfellow, NeurlPS 2016 Tutorial: Generative Adversarial Networks

) Mini-max Two Player Game

Generator

Vector of
Random
Numbers

Vo, 2ok (120 (6 ()

Generator Loss

Discriminator
Mini-batch of Cross-entropy
real & fake data . (Real or Fake?)
We know the

answer (self-
supervised)

vgd%g; log D (@) +1og (1= D (¢ (17)))]

Discriminator Loss

) Generative Adversarial Networks (GANS)

The generator part of the objective does not have good gradient properties

High gradient when D(G(z)) is high (that is, discriminator is wrong)
We want it to improve when samples are bad (discriminator is right)

Alternative objective, maximize:
max [, () log(De,(Ge,(2))) 2|

0
g -Bad generator

ator

(fooling)

—4 |

0.0 0.2 0:4
G(z) -> Generated >

I
0.6 0.8 10

Plot from CS231n, Fei-Fei Li, Justin Johnson, Serena Yeung

Converting to Max-Max Game

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used & = 1, the least expensive option, in our
E‘XIJGTi[‘IIGI][S.
for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z(l}, e ._z(m}} from noise prior p,(z).

e Sample minibatch of m examples {z™), ... (™} from data generating distribution

pdata(az)‘

e Update the discriminator by ascending its stochastic gradient:

Va3 loe D («) + 1og (1- D (¢ (=9)))].

1=

end for
e Sample minibatch of 1 noise samples {z() ..., z(™)} from noise prior py(z).

e Update the generator by descending its stochastic gradient:

Va3 tox (1-0 (6 (=)

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

Final Algorithm

Vector of
Random
Numbers

)

Generator

B

At the end, we have:
An implicit generative model!
Features from discriminator

Discriminator

Mini-batch of Cross-entropy
real & fake data (Real or Fake?)
We know the

answer (self-
supervised)

Generative Adversarial Networks (GANS)

Low-resolution
images but look
decent!

Last column are
nearest neighbor
matches in dataset

GANs are very difficult to train due to the mini-max objective

Advancements include:
More stable architectures
Regularization methods to improve optimization
Progressive growing/training and scaling

Goodfellow, NeurlPS 2016 Generative Adversarial Nets

) Difficulty in Training

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

e Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

e Use RelLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReLLU activation in the discriminator for all layers.

1024

m df % | ===

Project and reshape

CONV 1
CCNV 3 64

convs -
G(2)

Radford et al., Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

Training GANSs is difficult due to:

Minimax objective — For example, what if generator learns to memorize
training data (no variety) or only generates part of the distribution?

Mode collapse — Capturing only some modes of distribution

Several theoretically-motivated regularization methods
Simple example: Add noise to real samples!

2
A-]E'I‘NPreahéde{oacj) [HvXD@(;r’ +0)[l = k}

Kodali et al., On Convergence and Stability of GANs (also known as How to Train your DRAGAN)

) Regularization

Generative Adversarial Nets: Convolutional Architectures

Samples
from the
model look
much
better!

Radford et al,
ICLR 2016

)

Generative Adversarial Nets: Convolutional Architectures

Interpolating
between
random
points in
latent space

Radford et al,
ICLR 2016

Georgia !

Tech)/

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Example Generated Images - BIigGAN

(a) 128128 (b) 256 x256

Figure 4: Samples from our model with truncation threshold 0.5 (a-c) and an example of class
leakage in a partially trained model (d).

Brock et al., Large Scale GAN Training for High Fidelity Natural Image Synthesis

Failure Examples - BigGAN

Source Video

Source to Target 1 Result Smmto!-gn?ﬂ‘l

» »l o) 000/315

https://www.youtube.com/watch?v=PCBTZh41Ris

) Video Generation

https://www.youtube.com/watch?v=PCBTZh41Ris

Generative Adversarial Networks (GANs) can produce amazing
images!

Several drawbacks
High-fidelity generation heavy to train
Training can be unstable
No explicit model for distribution

Larger number of extensions:

GANSs conditioned on labels or other information
Adversarial losses for other applications

) Summary

Comparison of Methods

GAN: Adversarial I

X X » Z >
training D(x) G(z)

VAE: maximize X _| Encoder z Decoder N
variational lower bound q¢,(z|x) Peo (x|z)
Flow-based models: x | Flow Loz . Inlrfrse .
Invertible transform of f(x) f(2z)

distributions
Diffusion models:l X0 . X1 - Xo L

Gradually add Gaussian - - - --1 Te-------- "R ouEs --------
noise and then reverse

Discriminator

Generator

	Slide 1: CS 4644-DL / 7643-A Zsolt Kira
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46: Generative Adversarial Nets: Convolutional Architectures
	Slide 47: Generative Adversarial Nets: Convolutional Architectures
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Comparison of Methods

