Guest Lecture Ga Tech CS 4644 / 7643 Deep Learning

LLM Agents extensions of LLMs or start of something wonderful?

Hao Zhu

https://zhuhao.me

LLM Agent = ?

agent thinking

OV

decision makers powered by LLMs

LLM thinking

LLMs connected to tools/memory etc.

two useful thinking tools

agent thinking

How to improve the models' capabilities to interact with the world? Are LLMs good priors to start with?

How to make full use of the LLMs' agentic capabilities? What algorithms and systems we should on top of them?

Yeah, I know. "Agentic" is weird.

priors to

Is' agent

1 system

Look Up "agentic"

Translate "agentic

we only wanted to train next-token predictors, how did it learn...

coding

memory

in-context learning

we only wanted to train next-token predictors, how did it learn...

we only wanted to train next-token predictors, how did it learn...

coding — LLM doing surprisingly well

A syntactic neural model for general-purpose code generation

pre-LLM NL2Code

semantic parsing -> AST

(Yin and Neubig, 2017)

LLM NL2Code

instruction following

(OpenAl Codex, 2021)

coding — and they got even better now

Vibe Coding

ask LLM to code and it just works.

coding capabilities (con't)

w does GPT Obtain its Ability? Tracing Emergent Abilities of Language Models to their Source

"early" history

code in the pertaining data

(Fu et al, 2022)

code as a detour

prompt to code for QA

(Gao et al, 2023)

we only wanted to train next-token predictors, how did it learn...

we only wanted to train next-token predictors, how did it learn...

coding

in-context learning

memory — attention mechanism

Tracking the World State with Recurrent Entity Networks

pre-LLM attention

attention used in story QA

(Henaff et al, 2017)

Gemini 1.5 Pro

10M ~perfect recall

(Google, 2024)

even stronger memory w/ RAG

Retrieval-Augmented Generation for Large Language Models: A Survey

Figure 1: While long-context LLMs (LC) surpass RAG in long-context understanding, RAG is significantly more cost-efficient. Our approach, SELF-ROUTE, combining RAG and LC, achieves comparable performance to LC at a much lower cost.

Retrieval Augmented Generation or Long-Context LLMs?

A Comprehensive Study and Hybrid Approach

we only wanted to train next-token predictors, how did it learn...

coding

in-context learning

we only wanted to train next-token predictors, how did it learn...

coding

memory

in-context learning

in-context learning

pre-LLM few-shot learning gradient-based meta learning (Finn et al, 2017)

ICL emerges 10M ~perfect recall (Brown et al, 2020)

we only wanted to train next-token predictors, how did it learn...

coding

memory

in-context learning

we only wanted to train next-token predictors, how did it learn...

coding

memory

in-context learning

grounding

Mapping Language Models to Grounded Conceptual Spaces

non-multimodal LLMs

rich concept structure

(Patel et al, 2022)

Navigation Prompt:

You are on a busy road and you want to leave the main road and merge onto the ramp.

GPT-4V:

Observation: [...] The lane markings indicate that the current lane is ending or merging, as suggested by the dashed lines becoming solid and the arrow on the road pointing towards the merge. There is a sign indicating a hospital nearby, which may not directly affect driving decisions but suggests a possible increase in pedestrian and emergency vehicle activity.

Action: Reduce speed, prepare to merge right.

On the Road with GPT-4V(ision):
Early Explorations
of Visual-Language Model on
Autonomous Driving

GPT-4V

embodied design making

(Wen et al, 2023)

we only wanted to train next-token predictors, how did it learn...

coding

memory

in-context learning

two useful thinking tools

agent thinking

How to improve the models' capabilities to interact with the world? Are LLMs good priors to start with?

How to make full use of the LLMs' agentic capabilities? What algorithms and systems we should on top of them?

Yeah, I know. "Agentic" is weird.

priors to

Is' agent

1 system

Look Up "agentic"

Translate "agentic

the capabilities that an agent needs to \ \ have to interact with the world

perception

planning

agency

the capabilities that an agent needs to \ \ have to interact with the world

perception

Gemini Robotics: Bringing AI into the Physical World

Gemini-Robotics

Understanding the semantic structure of observation

(Google, 2025)

the capabilities that an agent needs to \ \ have to interact with the world

agency

the capabilities that an agent needs to have to interact with the world

perception

agency

planning

Hierarchical task and motion planning in the now

Task and Motion Planning

Top-down decomposition w/ bottom-up constraints

(Kaelbling and Lozano-Pérez, 2011)

the capabilities that an agent needs to have to interact with the world

perception

agency

the capabilities that an agent needs to \ \ have to interact with the world

planning

agency — the essence but hard to define

Defining agency: Individuality, normativity, asymmetry, and spatio-temporality in action.

Agency Is Frame-Dependent

the capabilities that an agent needs to \ \ have to interact with the world

planning

the capabilities that an agent needs to have to interact with the world

perception

planning

agency

learning

learning through search

Mastering the game of Go with deep neural networks and tree search

learning through RL

Human-level control through deep reinforcement learning

the capabilities that an agent needs to have to interact with the world

perception

planning

agency

are LLMs good priors?

t grounding

the agentic capabilities

short summary

agent thinking

LLMs provide good priors for the capabilities that we consider as essential for agents, so we should start from there.

We could think from these agentic capabilities perspective when building agents.

coding for planning/learning

Code as Policies: Language Model Programs for Embodied Control

code as policy

control robot w/o eyes

(Liang et al, 2022)

Eureka: Human-Level Reward Design via Coding Large Language Models

code as reward

prompt to code for QA

(Ma et al, 2024)

coding for planning

Benchmark	Tool Source	Example Curation	Domain (§4.1)	Executable
ToolBench ₁	existing dataset	adopted, human annotated	₾, 🚱	1
ToolBench ₂	RapidAPI	model synthesized	ф, ©	/
ToolQA	existing dataset	model synthesized	血, 93	1
ToolAlpaca	PublicAPIs	model synthesized	印, 由, ⑤, 日	×
API-Bank	PublicAPIs	human annotated	₾, 🚱	1
MetaTool	OpenAI Plugins	model synthesized	⊕, ⊗, ⊞	×
Gorilla	HF, Torch, TF	model synthesized	Œ	×
HuggingGPT	HF	human annotated	Œ	x *
Task Bench	HF, PublicAPIs	model synthesized	(£, ⊞, ⊗)	×

Tool use / make cases

when (not) to use tools

(Wang et al, 2024)

memory for perception

Episodic Memory Verbalization using Downscaled Hierarchical Representations of Life-Long Robot Experience

hierarchical memory

long memory robotics QA

(Bärmann et al, 2024)

JARVIS-1: Open-World Multi-task Agents with Memory-Augmented Multimodal Language Models

self-improving agents

memory augmented MLM

(Wang, 2024)

memory & ICL for learning

agent workflow memory

summarization + positive experience replay

(Wang et al, 2024)

perception w/ LLM-favored input

WebArena: A Realistic Web Environment for Building Autonomous Agents

agent-computer interface

tools/feedback/guardrails

(Yang et al, 2024)

web navigation

accessibility tree

(Zhou et al, 2024)

agency

Sotopia: Interactive evaluation for social intelligence in language agents

social intelligence

sources of action are explicit (goals) + implicit (norms)

individuality
(Zhou et al, 2024)

planning — looking ahead

10k-100k
turns

The NetHack Learning Environment

BALROG: Benchmarking Agentic LLM and VLM Reasoning On Games

learning

simple but robust recipe

BC + SR (filtered BC) (Wang et al, 2024)

Sotopia- π : Interactive Learning of Socially Intelligent Language Agents.

SR only reinforces existing good behavior, won't work without a good prior.

learning & agency

NNetNav: Unsupervised Learning of Browser Agents Through Environment Interaction in the Wild

exploration + hindsight labeling

(Murty et al, 2025)

Persona driven diversity

short summary

agent thinking

When building on top of LLMs capabilities, consider the agentic aspect of them. Do they contribute to planning, learning, perception, or agency?

bonus: another thinking tool

agent thinking

LLM Thinking

human thinking

human thinking

human thinking

As a homework, review the previous examples, are there *safety*, *reliability*, *privacy* or other concerns that a human user might have?

Are and helpful in mitigating these concerns?

What do people want from AI agents? Reliability? Safety? Privacy? Social Norm? Social Intelligence? Sense of control?

this lecture is heavily influenced by

- Graham Neubig (CMU): https://youtu.be/ a3SjRsqV9ZA
- Hongyi Li (李宏毅, NTU): https://youtu.be/
 M2Yg1kwPpts (in Mandarin)
- Prithviraj Ammanabrolu (UCSD): https://pearls-lab.github.io/ai-agents-course/index.html

Please check them out.

thanks!

questions?

you can also reach me at https://zhuhao.me