Scaling LLM Test-Time Compute Optimally Can be More Effective than Scaling Model Parameters

Charlie Snell

Jaehoon Lee Kelvin Xu

Aviral Kumar

Google DeepMind Carnegie Mellon University

Some Problems Require More Computation at Test Time

You cannot one-shot everything.

- Challenging problems (e.g. IMO) may require exploring multiple approaches to the problem.
- Even simple problems (e.g. countdown game) may fundamentally require search.

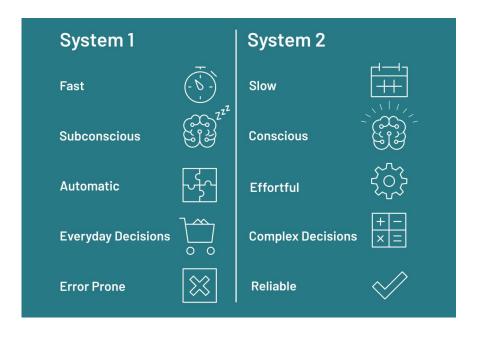
User: Using the numbers [19, 36, 55, 7], create an equation that equals 65. Assistant: Let me solve this step by step.

<think> We need to find an equation using the numbers 19, 36, 55, and 7exactly once, with basic arithmetic operations, that equals 65. One possiblecombination is 55 + 36 - 19 + 7. Let's check: 55 + 36 = 91, 91 - 19 = 72, and 72 + 7 = 79. However, this doesn't equal 65. Another combination is 55 + 36 + 7 - 19.Let's check: 55 + 36 = 91, 91 + 7 = 98, and 98 - 19 = 79. This also doesn't equal65. After trying different combinations, I found that 55 + 36 + 7 - 19 = 79,which is close but not equal to 65. Finally, I found that 55 + 36 - 19 + 7 = 79,which is still not equal to 65. However, if we try 55 + 36 - 7 + 19, we get 55 + 36 = 91, 91 - 7 = 84, and 84 + 19 = 103, which is not equal to 65. After further trialand error, I found that 55 + 36 - 7 - 19 = 79, which is still not equal to 65.However, if we try 55 + 36 - 7 - 19, we get 55 + 36 = 91, 91 - 7 = 84, and 84 - 19 = 65. This equals 65. 45 - 7 + 19 = 79, which is still not equal to 65.

Analogy to Cognitive Science

Current LMs are a very strong system 1.

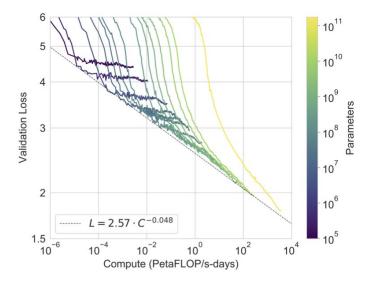
- They can instantly output a coherent essay or a rhyming poem.
- How can we get LMs to think for longer on more challenging problems, like humans do?

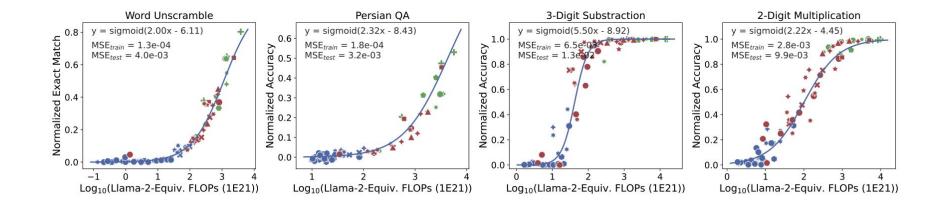


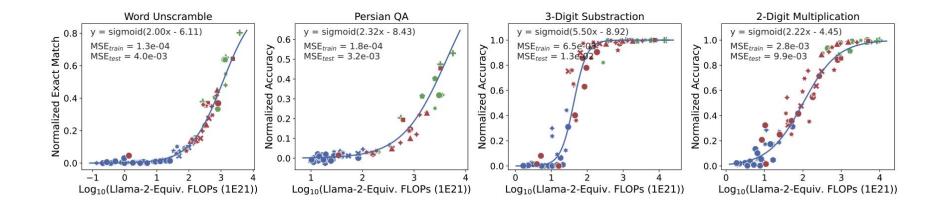
Classical Scaling Laws

For a long time, we could only scale parameters.

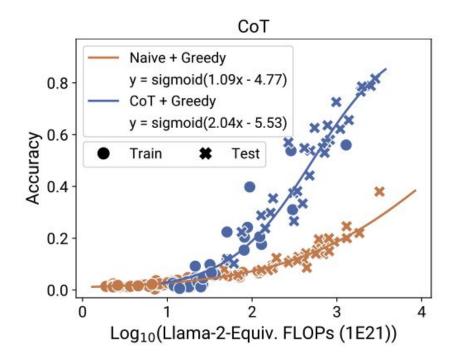
- The more parameters/pretraining compute, the better your next-token prediction ability gets.
- This ability improves predictably with scale.

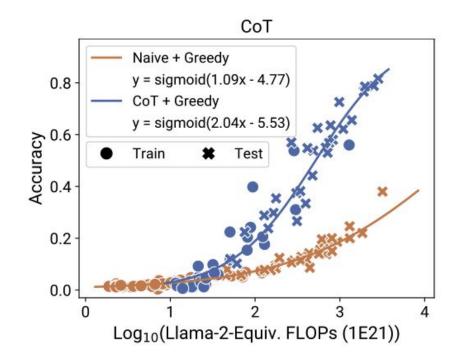






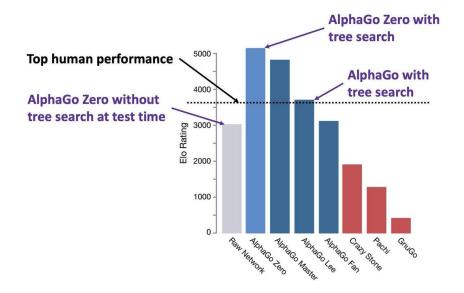
Scaling pre-training yields predictable improvements on many downstream tasks.





Some downstream tasks scale much more slowly than we would like.

Historical Lesson: Test-Time Search Can Improve Scaling



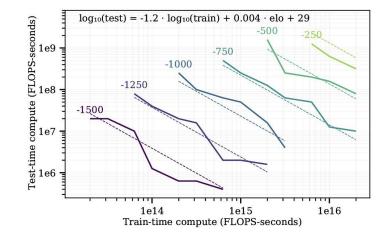
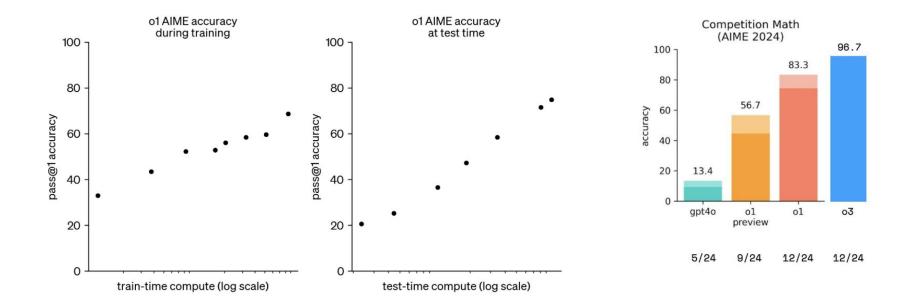


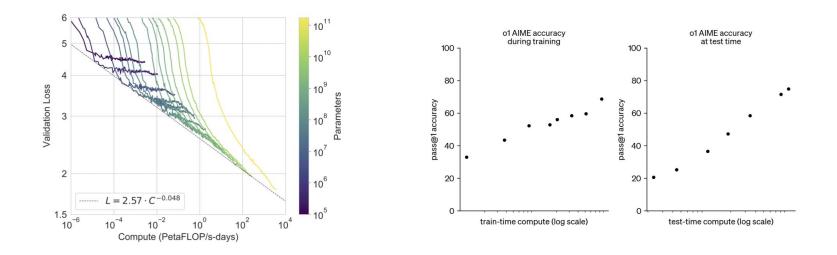
Fig. 9. The trade-off between train-time compute and test-time compute. Each dotted line gives the minimum train-test compute required for a certain Elo on a 9×9 board

Test-Time Scaling with LLMs

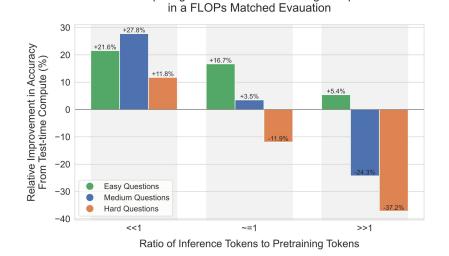


Pre-Training vs Test-Time Scaling

- Is test-time scaling a good use of compute?
- Would we see larger gains from spending compute doing pre-training instead?

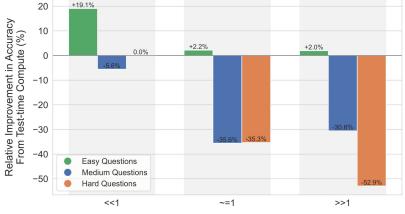


When can Test-time Compute Outperform Pretraining?



Comparing Test-time and Pretraining Compute

Comparing Test-time and Pretraining Compute in a FLOPs Matched Evauation



Ratio of Inference Tokens to Pretraining Tokens

Our Work: Compute-Optimal Scaling

We select the best test-time compute configuration for a given problem and test-time budget.

$$\theta_{q,y^*(q)}^*(N) = \operatorname{argmax}_{\theta} \left(\mathbb{E}_{y \sim \operatorname{Target}(\theta, N, q)} \left[\mathbf{1}_{y=y^*(q)} \right] \right),$$

Our Work: Compute-Optimal Scaling

We select the best test-time compute configuration for a given problem and test-time budget.

$$\theta_{q,y^*(q)}^*(N) = \operatorname{argmax}_{\theta} \left(\mathbb{E}_{y \sim \operatorname{Target}(\theta,N,q)} \left[\mathbf{1}_{y=y^*(q)} \right] \right),$$

In practice: we select algorithm configurations, such as which search algorithm to use, and use question difficulty as a sufficient statistic to represent the question, instead of specializing the algorithm to each question.

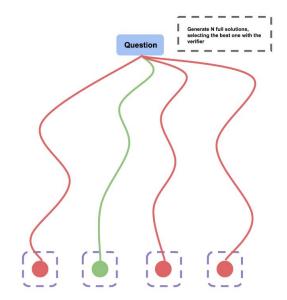
Compute-Optimal Scaling with Question Difficulty

• We use question difficulty as a sufficient statistic for practically

estimating compute optimal scaling.

• For a given difficulty level, select the best performing

hyperparameters.



Compute-Optimal Scaling with Question Difficulty

• We use question difficulty as a sufficient statistic for practically

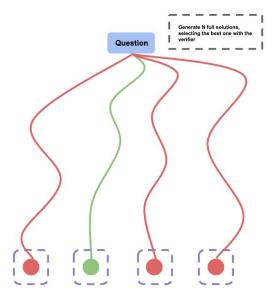
estimating compute optimal scaling.

• For a given difficulty level, select the best performing

hyperparameters.

- Oracle difficulty
 - Sample 2048 outputs per question and bin questions into 5

quantiles by how many of the samples were correct.



Compute-Optimal Scaling with Question Difficulty

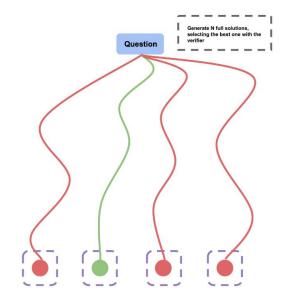
• We use question difficulty as a sufficient statistic for practically

estimating compute optimal scaling.

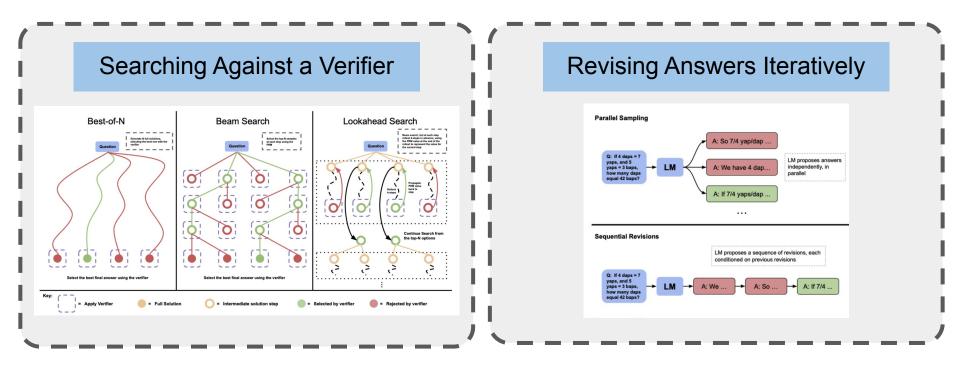
• For a given difficulty level, select the best performing

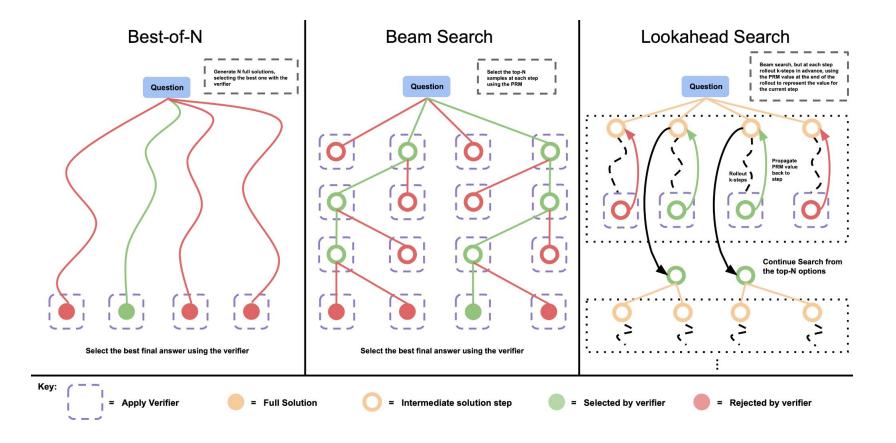
hyperparameters.

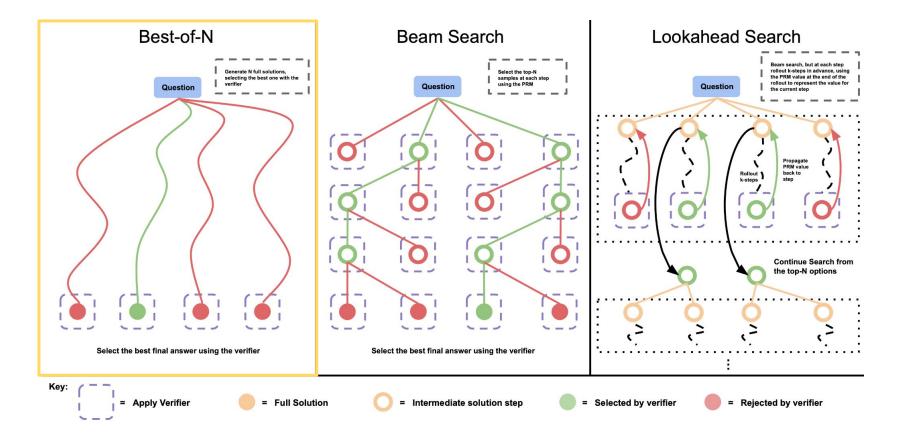
- Oracle difficulty
 - Sample 2048 outputs per question and bin questions into 5 quantiles by how many of the samples were correct.
- Predicted difficulty
 - Do the same thing but use a verifier's predicted correctness score instead of ground truth correctness information.

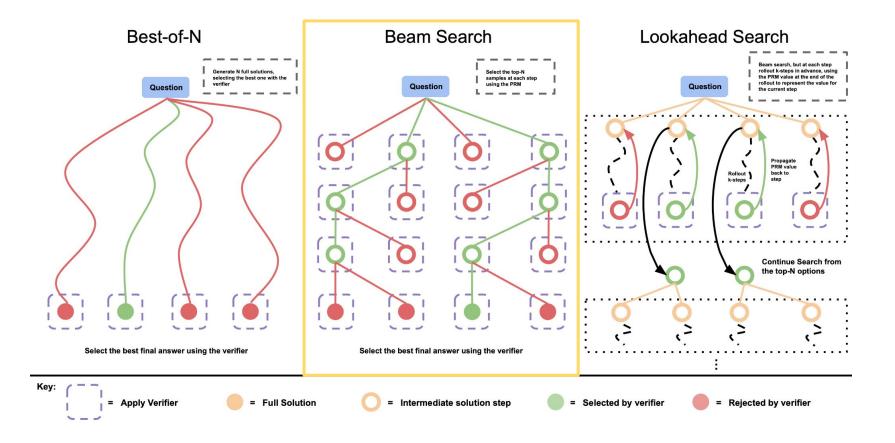


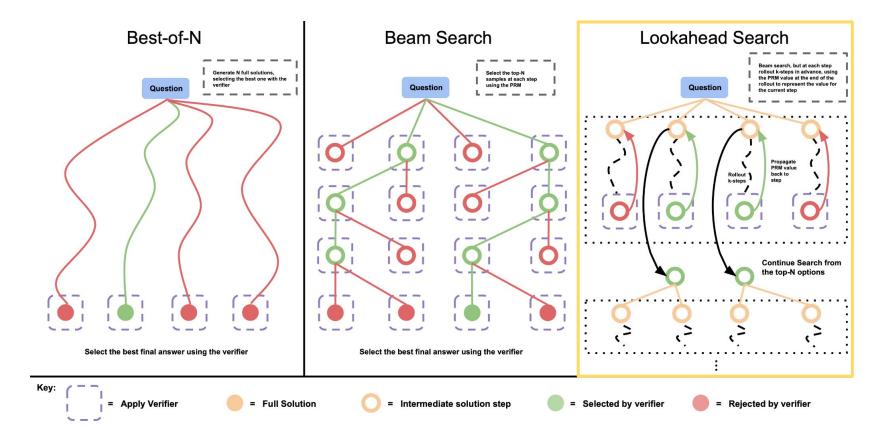
Two Basic Approaches to Scaling Test-Time Compute









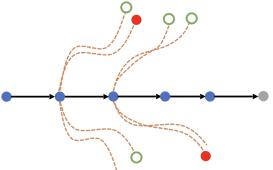


Training a Process Based Verifier

- We learn a PRM, which is a verifier that scores each step in a solution.
 - Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.
 - We instead follow the approach from MathShepard [wang et al. 2024] to learn a value function.

Training a Process Based Verifier

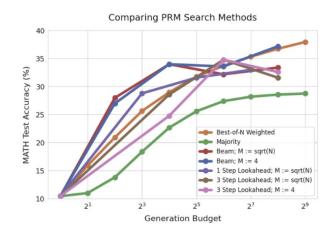
- We learn a PRM, which is a verifier that scores each step in a solution.
 - Prior work [lightman et al. 2023] used human labels of per-step correctness for supervision.
 - We instead follow the approach from MathShepard [wang et al. 2024] to learn a value function.



- Rollout N times from each step in the solution, get the correctness rate of the rollouts
- Train the PRM on these MC rollout targets

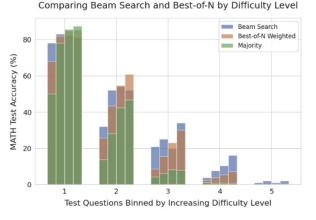
Comparing Search Methods

- Beam search performs best at small budgets.
- At large budgets, Best-of-N performs similarly to beam search.
- Lookahead generally underperforms due to the high cost of the lookahead rollouts.
- All verifier search methods outperform the majority baseline.

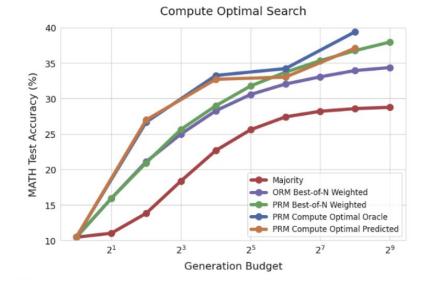


Performance Breakdown by Question Difficulty

- On easy questions, beam-search shows some signs of over-optimization.
- On medium/hard questions, beam-search outperforms best-of-N.
- On the hardest questions, all methods struggle.



Compute Optimal Search

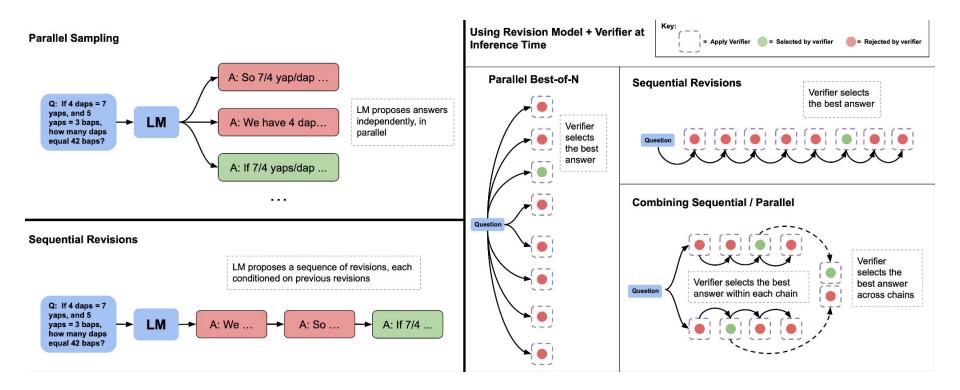


By selecting the best performing search algorithm at each difficulty level, we can nearly outperform best-of-N using up to **4x** less test-time compute.

Takeaways for Scaling Test-time Compute With Verifiers

- The efficacy of a search method depends on the budget and the question.
- Beam search is more effective on harder questions and at lower budgets.
- Best-of-N is more effective on easier questions and at higher budgets.
- By selecting the best setting for each question, we can nearly outperform best-of-N using up to **4x** less test-time compute.

Scaling Test-time Compute With Revisions



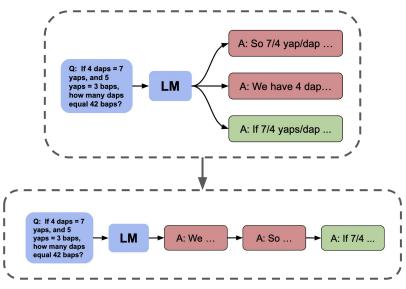
Finetuning a Revision Model

We finetune a model to iteratively revise

answers in context.

Procedure:

- Sample N solutions to a question from the base LM.
- Create a chain of incorrect answers followed by a correct answer.
- 3. Finetune the model to generate the correct answer conditioned on the chain.



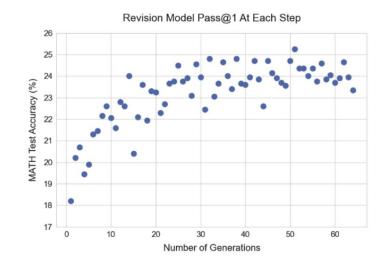
Finetuning a Revision Model

We finetune a model to iteratively revise

answers in context.

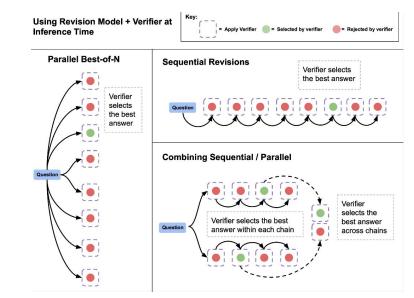
Procedure:

- Sample N solutions to a question from the base LM.
- Create a chain of incorrect answers followed by a correct answer.
- 3. Finetune the model to generate the correct answer conditioned on the chain.

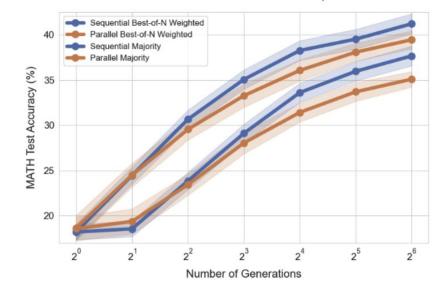


Using a Verifier with the Revision Model

- Sometimes the model will "revise" a correct answer into an incorrect one.
- To correct for this, we:
 - sample N outputs in sequence
 - use a verifier to select the most likely correct answer from the chain



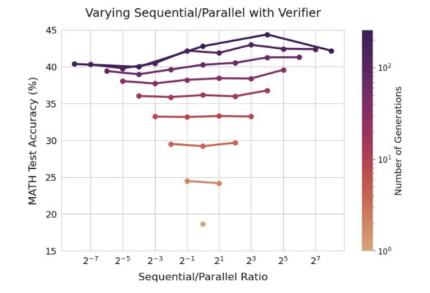
Comparing Sequential and Parallel Sampling



Revision Model Parallel Verses Sequential

Sampling N outputs in sequence from the model outperforms sampling N in parallel.

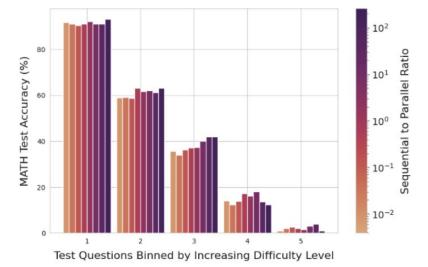
Comparing Sequential and Parallel Sampling



In some cases there is an ideal ratio of sequential to parallel test-time compute.

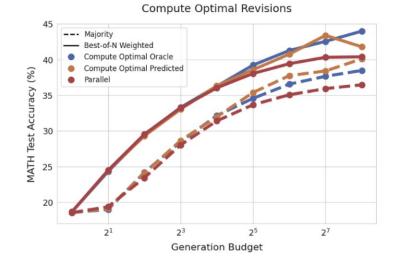
Comparing Sequential and Parallel Sampling

Revisions@128, Varying the Sequential to Parallel Ratio



This ideal ratio also depends on the difficulty of the question at hand.

Scaling Test-time Compute With Revisions

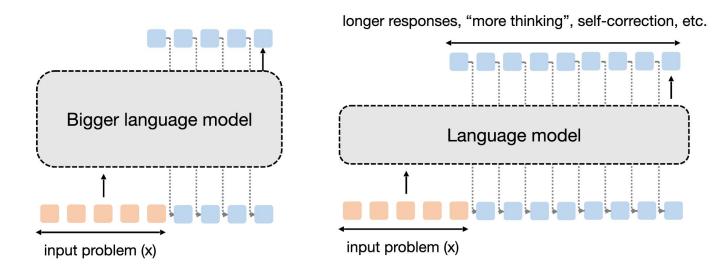


By selecting the best performing ratio at each difficulty level, we can outperform parallel sampling using up to **4x** less test-time compute.

Takeaways for Scaling Test-time Compute With Revisions

- There exists a tradeoff between sequential (e.g. revisions) and parallel (e.g. standard best-of-N) test-time computation.
- The ideal ratio depends on the compute budget and the question at hand.
- Easier questions benefit more from sequential revisions.
- Harder questions perform best with an ideal ratio of sequential and parallel.
- By optimally selecting the ideal ratio, we can outperform parallel sampling using up to **4x** less test-time compute.

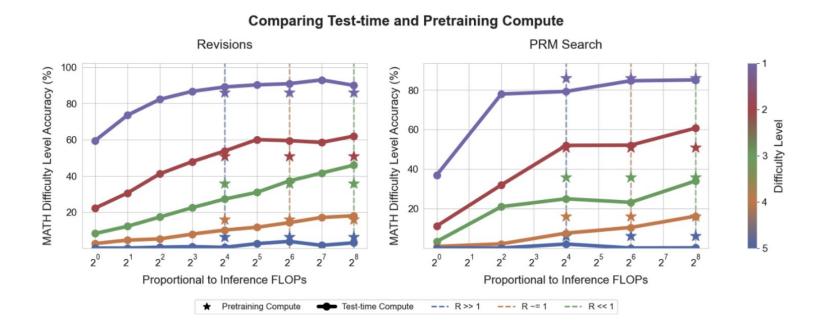
Exchanging Test-time and Pretraining Compute



Can scaling test-time compute be more effective than scaling parameters?

- Depends on the number of inference queries we are expecting.
- If serving to many users, then extra test-time compute will cost a lot.
- If running few inferences, then we can afford more test-time compute.

Exchanging Test-time and Pretraining Compute



On easy/medium difficulty questions, or in settings with low inference requirements, scaling test-time compute can be preferable to scaling parameters.

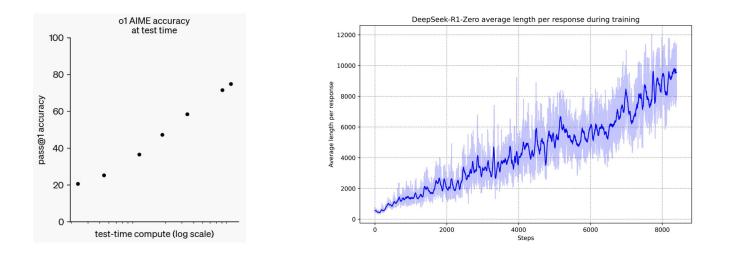
Takeaways/Discussion

Using fairly simple methodology we find that scaling LLM test-time compute can greatly improve performance, and in some cases it can outperform scaling parameters.

Takeaways/Discussion

There is much room for future work to:

1. Improve upon our techniques and explore alternative approaches to scaling test-time compute.



Takeaways/Discussion

There is much room for future work to:

- 1. Improve upon our techniques and explore alternative approaches to scaling test-time compute.
- 2. Conduct additional analysis. E.g. how does the scale of finetuning impact test-time scaling?

