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Abstract

We propose a robust proactive threshold signature scheme, a multisignature scheme and a
blind signature scheme which work in any Gap Diffie-Hellman (GDH) group (where the Com-
putational Diffie-Hellman problem is hard but the Decisional Diffie-Hellman problem is easy).
Our constructions are based on the recently proposed GDH signature scheme of Boneh et al.
[BLS]. Due to the nice properties of GDH groups and of the base scheme, it turns out that
most of our constructions are much simpler, more efficient and have more useful characteristics
than similar existing constructions. We support all the proposed schemes with proofs under the
appropriate computational assumptions, using the corresponding notions of security.
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1 Introduction

Recently Boneh, Lynn and Shacham [BLS] proposed a new signature scheme that uses groups
where the Computational Diffie-Hellman (CDH) problem is hard but the Decisional Diffie-Hellman
(DDH) problem is easy. (Recall that the CDH problem asks to compute h = glogg u·logg v given the
three random group elements (g, u, v) and the DDH problem asks to decide whether the four group
elements (g, u, v, h) are all random or they are a valid Diffie-Hellman tuple, namely, they have the
property that logg u = logv h.) Following [BLS] we will refer to such groups as Gap Diffie-Hellman
(GDH) groups. The first example a GDH group is given in [J] and more details on the existence
and composition of GDH groups can be found in [JN, BF, BLS]. Another signature scheme that
works in GDH groups has been proposed by Lysyanskaya in [L]. Unlike the scheme of [BLS], it
does not use random oracles but is less efficient.

Let G be a GDH group of prime order p and let g be a generator of G. Similarly to most discrete-
log-based schemes, the secret key of the signature scheme GS of [BLS] is a random element x ∈ Z∗

p

and the public key is y = gx. To sign a message M ∈ {0, 1}∗ a signer who holds x computes the
signature σ = H(M)x, where H is a hash function mapping arbitrary strings to the elements of
G \ {1}, where 1 denotes the identity element of G. Following [BLS] let us denote G∗ = G \ {1}.
In order to verify the validity of a candidate signature σ of a message M , a verifier simply checks
whether (g, y, H(M), σ) is a valid Diffie-Hellman tuple.

Boneh et al. [BLS] prove that signature scheme GS is secure against existential forgery under
chosen message attack in the random oracle model assuming that the underlying group is GDH.
They also show that using this signature scheme in some GDH groups leads to very short signatures
of length approximately 160 bits. In this paper we show that besides this attractive property, GS
gives rise to various efficient extensions. More precisely, we propose a robust threshold proactive
signature scheme, a multisignature scheme and a blind signature scheme which are all based on
the GS signature scheme. Thanks to the elegant structure of GDH groups and of the base scheme
it turns out that most of our constructions are much simpler, more efficient and have more useful
properties than similar existing constructions. We support all the proposed schemes with proofs
under the appropriate computational assumptions using the corresponding notions of security.

1.1 The new GDH threshold signature scheme

The idea behind the (t, n)-threshold cryptography approach [B86, D88, DF89, S] is to distribute
secret information (i.e. a secret key) and computation (i.e. signature generation or decryption)
between n parties in order to remove single point of failure. The goal is to allow any subset of
more than t parties to jointly reconstruct a secret and perform the computation while preserving
security even in the presence of an active adversary which can corrupt up to t (a threshold) parties.
A review of research on threshold cryptography is presented in [D94].

In threshold signature schemes the secret key is distributed among n parties with the help of a
trusted dealer or without it by running an interactive protocol among all parties. To sign a message
M any subset of more than t parties can use their shares of the secret and execute an interactive
signature generation protocol, which outputs a signature of M that can be verified by anybody
using the unique fixed public key. The security notion for threshold signature schemes requires
that no polynomial-time adversary that corrupts any t parties can learn any information about the
secret key or can forge a valid signature on a new message of its choice. An important property of
threshold signature schemes is robustness, which requires that even t malicious parties that deviate
from the protocol cannot prevent it from generating a valid signature. Another useful property
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of a threshold signature scheme is proactivness [OY, CH] (or periodic refreshment of shares of a
secret) whose goal is to protect a system from an adversary that builds-up knowledge of a secret by
several attempted break-ins to several locations. In general, the main goals of threshold signature
constructions are to provably achieve the following properties: to support as high a threshold t as
possible, to avoid use of a trusted dealer, to be robust, proactive and as efficient as possible in
terms of computation, interaction and length of the shares.

The new GDH threshold signature scheme. In Section 3.2 we propose the thre-shold sig-
nature scheme TGS that works in any GDH group. It is based on the GDH signature scheme of
[BLS]. Our threshold GDH group signature scheme can tolerate any t < n/2 malicious parties,
which is an optimal result. Its key generation protocol does not require a trusted dealer. The sig-
nature generation protocol does not require interaction or any zero-knowledge proofs, and avoids
other difficulties pertaining to various threshold schemes. The signature generation protocol has
a minimal overhead compared to that of the base scheme. The shares are short and their length
does not depend on the number of parties. The signature share generation protocol is basically the
signing algorithm of the base scheme and the signature reconstruction requires only multiplication
of shares. We state the security result in Theorem 3.2. The proof is in the random oracle model
only because the latter is used in the proof of security of the base signature scheme. We also show
how proactive security can be added to our scheme using general methods of [HJKY, HJJKY].

Related work. There exist many threshold signature scheme constructions, i.e. [DF89, H,
DF91, FGMY, R, GJKR96, Sh]. The proposals of [DF89, H] lack security proofs, the schemes of
[DF89, DF91] are non-robust while those of [FGMY, R] are robust and proactive but require a lot
of interaction. We compare our scheme with the threshold DSS signature scheme of Gennaro et al.
[GJKR96] and with the threshold RSA scheme of Shoup [Sh].

The threshold DSS signature proposed in [GJKR96] is robust, does not require a trusted dealer
and has a proof of security without the random oracle assumption. It deals with technical difficulties
such as combining shares of two secrets into shares of the product of these secrets and producing
shares of a reciprocal of a secret given shares of this secret. To achieve robustness, the authors
use error-correction techniques of Berlekamp and Welch [BW]. As a result, the threshold DSS can
tolerate only t < n/4 malicious parties, the threshold signature-generation protocol requires a lot
of interaction and the complexity of a threshold scheme increases considerably related to the base
signature scheme. The scheme can be made proactive following the methods of [HJKY, HJJKY].

The robust threshold RSA signature scheme of [Sh] is proven secure in the random oracle model.
It can tolerate t < n/2 malicious parties and its signature generation algorithm is non-interactive.
It, however, requires a trusted dealer to run the key generation protocol. The public key uses an
RSA modulus that is a product of two safe primes. The protocol utilizes zero-knowledge proofs in
the random oracle model in order to achieve robustness. Proactivization is not considered in [Sh].

1.2 The new GDH multisignature scheme

In order to gain intuition about what multisignature schemes are we first discuss this notion infor-
mally and compare it to other notions.

A multisignature scheme allows any subgroup of a group of players to jointly sign a document
such that a verifier is convinced that each member of the subgroup participated in signing. The
trivial solution which satisfies the above informal definition is as follows. The resulting multisigna-
ture is simply a concatenation of a description of the subgroup and of regular signatures computed
by each member of the subgroup using its own secret key. In fact this simple scheme will meet
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the security requirements we formalize in Section 4.3 . Its main drawback, however, is that the
signature length and verification time grows linearly with the number of users in the subgroup.

Multisignature schemes are different from threshold signatures for several reasons. The goal
of a multisignature is to prove that each member of the stated subgroup signed the message and
the size of this subgroup can be arbitrary, whereas in the latter setting the goal is to prove that
some subgroup of sufficient size signed the message, and the minimal size is a parameter of the
scheme and should be known in advance. As opposed to multisignatures, a threshold signature does
not reveal identities of individual signers. Another difference is that the verification protocol of a
threshold signature scheme does not depend on the current subgroup of signers. Multisignatures
are also different from group signatures [CH, CS] and ring signatures [RST], where every individual
member of the group can produce a valid signature on behalf of the whole group. In the latter two
settings a signer remains anonymous with respect to a verifier. In the group signature setting there
is also a third party called a group manager which can identify the identity of the signer.

Related work. Multisignatures have been introduced in [IN] and have been the topic of many
other works such as [H, LHL, HMP, O, OO91, OO99, MOR]. The schemes of [OO91, OO99] do
not support subgroups of signers, they allow only the case where each player of the group signs the
document. The solutions of [IN, O] are not very efficient: multisignature generation and verification
time grows linearly with the number of players. But most importantly, until recent works of Ohta
and Okamoto and of Micali et al. [OO99, MOR] there were no formal notions of security for
multisignatures and therefore there were no provably secure multisignature schemes. As a result,
the proposals of [LHL, H] have been successfully attacked. The notion of security of [OO99] is not
strong enough since it does not consider the possibility of adversarial attacks during key generation.

Micali et al. [MOR] first formalize the strong notion of security for multisignatures (they call
them “accountable-subgroup multisignatures.”) They modify the Schnorr-signature-based multisig-
nature scheme originally proposed by Ohta and Okamoto in [OO99] and prove its security. The
model of security and the multisignature scheme of [MOR] assume that the subset of signers L is
known a priori. Each signer has to know all participants of the current subgroup of signers L, a
description of which is hashed and signed along with a message. The authors of [MOR] state it as
an interesting open problem to find a provably secure multisignature scheme where the composition
of the subgroup can be decided after the signature shares are computed.

In their independent work Boneh et al. [BGLS] propose a new aggregate signature scheme based
on the GS signature scheme. Unlike multisignatures, aggregate signature schemes permit a group
of users to aggregate multiple signatures of different messages. The scheme of [BGLS] requires
GDH groups with a special structure provided by bilinear maps.

The new GDH multisignature scheme. In Section 4.1 we give precise definitions of multisig-
nature schemes and their security. Our model of security is very similar to the simplified model of
security of [MOR], but it is more general, it does not have the restriction that the subset of sign-
ers should be known in advance. In Section 4.2 we propose the new GDH multisignature scheme
MGS. It works in any GDH group. Our MGS scheme solves the open problem stated in [MOR]:
it does not require a priori knowledge of a subgroup of signers and is provably secure. We state
the security result in Section 4.4and provide a proof in Section B . Moreover, MGS is more effi-
cient than the one of [MOR] which requires three rounds of communication for the multisignature
generation protocol, where MGS requires only one, it is basically non-interactive. Similarly to
their scheme, the signature length and verification time for MGS is independent of the size of the
subgroup and is almost the same as for the base signature scheme. In fact each signature share
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of our multisignature scheme is the standard GDH signature. In the scheme of [MOR] a signer is
not allowed to begin a new signing protocol until the previous one has completed. This is because
their proof of security uses rewinding which is incompatible with concurrency. Our scheme does
not have such restriction not only because our proof does not use rewinding but mostly because
the signing protocol is non-interactive.

We note that the approach underlying the construction of the multisignature scheme MGS
can be used to achieve efficient batch verification of GDH signatures of the same message under
different public keys.

1.3 The new GDH blind signature scheme

Blind signatures are the basic tool of digital cash schemes. Using a blind signature protocol a user
can obtain from a bank a digital coin, that is a token properly signed by the bank. The goal of
blind signature protocols is to enable a user to obtain a signature from a signer so that the signer
does not learn information about the message it signed and so that the user cannot obtain more
than one valid signature after one interaction with the signer. Chaum [C] first proposed the RSA-
based blind signature scheme. However, it has been proved secure only recently by Bellare et al.
[BNPS]. The reason for this time gap is that it appears impossible to prove security of Chaum’s
scheme based on standard RSA assumptions. The approach taken by [BNPS] is to introduce the
new plausible computational assumption, namely, “chosen-target-one-more-RSA-inversion” and to
prove security of Chaum’s RSA blind signature based on this assumption. In [BNPS] the authors
suggest that an analogue of this assumption can be formulated for any family of one-way functions.

In Section 5.1 we define the new blind signature scheme BGS that works in GDH groups. The
protocol is very similar to the RSA blind signature protocol. Namely, a user multiplies hash of
the message with a random group element, submits it to the bank and later “derandomizes” the
signature obtained from the bank using knowledge of the public key and of the random factor. In
order to prove the security of BGS we follow the approach of [BNPS] and in Section 5.3 define a
new computational problem, the Chosen-target Computational-Diffie-Hellman problem. Given a
set Z = {z1, . . . , zn} of random members of a cyclic group G =< g > of prime order p, a random
public key y = gx and the “helper” oracle (·)x the goal is to output a set of distinct G elements
{v1, . . . , vl} such that for all i ∈ {1, . . . , l} there exists zj ∈ Z with zj = vx

i while the number of
queries to the helper oracle is strictly less than l. Note that without the helper oracle the Chosen-
target CDH assumption is equivalent to the standard CDH assumption. We conjecture that the
chosen-target CDH problem is hard for all groups where the CDH problem is hard. This includes
GDH groups. In Section C we prove the security of the blind signature BGS scheme under the
Chosen-target CDH assumption.

1.4 Blind multisignatures

Using blind multisignature scheme a user obtains a multisignature of a message from a group of
signers so that multisignature’s length is independent from the number of signers and the signers
or their coalition do not learn any information about the message. Horster, Michels and Petersen
[HMP1] discuss such schemes and suggest that they can be useful for voting protocols. They also
propose blind multisignature protocol based on El Gamal signature scheme. We note that our
multisignature MGS and blind signature BGS schemes can be straightforwardly combined into a
blind multisignature protocol. The user simply runs BGS protocol independently with each signer
and obtains GS signatures of the message, each computed using the corresponding signer’s secret
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key. These signatures can be simply multiplied together producing MGS multisignature, which
can be verified using the signers’ public keys. These blind multisignature scheme is much more
simple and efficient that the scheme of [HMP1].

2 Background

Signature schemes and their security. A signature scheme S consists of three algorithms.
The randomized key generation algorithm K takes a global information I and outputs a pair (sk,pk)
of a secret and a public keys. The global information can contain, for example, a security parameter,
a description of the group and its generator, and the description of the hash function. We do not
focus on who generates these parameters and assume that they are publicly available. A (possibly)
randomized signature generation algorithm S takes a message M to sign and global info I and a
secret key sk and outputs M along with a signature σ. A deterministic verification algorithm V
takes a public key pk, a message M and a signature σ and outputs 1 (accepts) if the signature
is valid and 0 (rejects) otherwise. In the random oracle model [BR] both signing and verification
algorithms have access to the random hash oracle. Usually M ∈ {0, 1}∗. The common requirement
is that V(pk,S(I, sk,M)) = 1 for all M ∈ {0, 1}∗.

The widely-accepted notion of security for signature schemes is unforgeability under chosen-
message attacks [GMR].

Definition 2.1 Let S = (K,S,V) be a signature scheme and let I be the global information. The
adversary A is given a random public key and access to the random hash oracle H(·) and the signing
oracle SH(·)

I,sk (·). The latter has access to the former oracle, takes a message as input and returns a
signature of it computed using I, sk. The adversary can query its oracles and occasionally returns
a pair (M,σ). The advantage of the adversary Advsign

S,I (A) is defined as the probability of A to
output the valid message-signature pair, such that the message has not been queried to the signing
oracle.

The signature scheme S is called to be secure against existential forgery under chosen message
attack (or just a secure signature scheme) if there does not exist a polynomial-time1 adversary A
with non-negligible advantage Advsign

S,I (A).

We now recall the basic signature scheme of [BLS]. It uses Gap-Diffie-Hellman groups, so
accordingly we first provide the definitions for the latter.

Diffie-Hellman problems and GDH groups. Let G be a multiplicative group of the prime
order p. We consider the following two problems in G.

Computational Diffie-Hellman (CDH) problem. Given (g, u, v), the three random elements of
G, to compute h = glogg u·logg v.

Decisional Diffie-Hellman (DDH) problem. Given the four G elements (g, u, v, h), which with
equal probability can be either all random elements of G or have the property that logg u = logv h,
to output 0 in the former case and 1 otherwise.

We will refer to any four elements of G with the property defined above as a valid Diffie-Hellman
(DH) tuple.

1Here and everywhere in the paper we assume that the complexity is measured as a function of a security parameter
contained in the global info I. If I contains more than a security parameter we fix the randomized generator for I
and the probability includes its choices.)
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We now can define GDH groups. They are basically the groups where CDH problem is hard,
while DDH problem is easy.

Definition 2.2 A prime order group G is a GDH group if there exists an efficient algorithm VDDH()
which solves the DDH problem in G and there is no polynomial-time (in |p|) algorithm which solves
the CDH problem.

For the details on the existence and composition of GDH groups see [BF, BLS, J, JN].

The GDH signature scheme GS. Let G be a GDH group. Let [{0, 1}∗→G∗] be a hash function
family, each member of which maps arbitrary long strings to G∗ and H be a random member of
this family. The global information I contains the generator g of G, p and a description of H. The
algorithms of GS[G] = (K,S,V) are as follows.

• K(I) : Parse I as (p, g, H). Pick random x
R← Z∗

p and compute y ← gx. Return (pk =
(p, g, H, y), sk = x).

• S(I, sk,M) : Parse I as (p, g, H). Compute σ = H(M)x. Return (M,σ).

• V(pk,M, σ) : Parse pk as (p, g, H, y). If VDDH(g, y, H(M), σ) = 1 then return 1, else return
0.

In [BLS] the authors state and prove the following result.

Theorem 2.3 Let G be a GDH group. Then GS[G] is a secure signature scheme in the random
oracle model.

3 Robust Proactive Threshold GDH Signature Scheme

We present a threshold version of GDH signature scheme which is robust, proactive and does not
require a trusted dealer. The construction is very simple, since the structure of the base scheme
permits to avoid many difficulties one needs to overcome while making threshold versions of many
standard signature schemes, such as RSA, DSS, etc.

3.1 Definitions

We now recall the basic setting and notions of threshold signature schemes.

Communication model. As usual, the participants in our scheme are the set of n players
{P1, . . . , Pn}. All players are connected by a broadcast channel as well as by secure point-to-point
channels.

Threshold secret sharing. The set of values (s1, . . . , sn) is said to be a (t, n)-threshold secret
sharing of the value s if any k ≤ t values from this set does not reveal any information about s and
there exists an efficient algorithm which takes as input any t + 1 values from this set and outputs

s. We write (s1, . . . , sn)
(t,n)−→ s.

Threshold signature schemes and their security. Let S = (K,S,V) be a signature scheme
and let I be the associated global information. A corresponding (t, n)-threshold signature scheme
TS = (T K, T S,V) consists of three algorithms, where the verification algorithm is the same as
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of S. A randomized distributed threshold key generation algorithm T K is an interactive protocol
that takes I and is run by the players P1, . . . , Pn. The protocol returns the public key pk, and

the private output of each player Pi is a value xi such that (x1, . . . , xn)
(t,n)−→ sk, where sk is a

secret key corresponding to pk. T K is said to complete successfully if it outputs (sk,pk) having the
distribution the same as the output of K. The distributed possibly randomized threshold signature
generation algorithm T S is an interactive protocol run by the subset of the players, where the input
of each player Pi is a message M , the global info I and the player’s private input xi. The algorithm
can be considered as consisting of two interactive protocols: a signature share generation and
signature reconstruction. At the end of the signature share generation protocol each player outputs
its signature share. All signature shares are then combined using the signature reconstruction
protocol. The output of the algorithm is a message-signature pair (M,σ). T S is said to complete
successfully if it outputs (M,σ) such that (M,σ) = S(I, sk,M), for all M ∈ {0, 1}∗.

Definition 3.1 Let I be the global info, S = (K,S,V) be a signature scheme and let TS =
(T K, T S,V) be the corresponding threshold signature scheme. TS is called secure robust threshold
signature scheme if the following conditions hold:

1. Unforgeability. No polynomial-time adversary which is given I, is allowed to corrupt up
to t players and given the view of the protocols T K, T S, the latter being run on the input
messages of the adversary’s choice, can produce the valid pair (M,σ) such that M has not
been submitted by the adversary as public input to T S.

2. Robustness. For every polynomial-time adversary that is allowed to corrupt up to t players,
the protocols T K, T S complete successfully.

In the above definition corruption means that an adversary chooses the players it wants to corrupt
in advance and is allowed to alter the computation of the corrupted player in any way and to see
their private inputs. If the above definition is adjusted to the random oracle model, then all the
parties are given access to the random hash oracle.

3.2 TGS, the Threshold GDH Signature Scheme

Let G be a GDH group, I = (p, g, H) be the global info and let GS[G] = (K,S,V) be the GDH
signature scheme as defined in Section 2. The algorithms T K, T S of the corresponding threshold
GDH signature scheme TGS[G] = (T K, T S,V) are defined as follows.
T K is exactly the distributed key generation protocol DKG for discrete-log based systems

of Gennaro et al. [GJKR99]2. It is jointly executed by a set of paries {P1, . . . , Pn} It takes as
input I and outputs a public key y. The private output of each player Pi is a share xi such that

(x1, . . . , xn)
(t,n)−→ x, where x = logg y. Any subset R of t + 1 players can reconstruct x using well-

known techniques of Lagrange interpolation: x =
∑

i∈R Lixi, where Li is the appropriate Lagrange
2We are interested in verifiable threshold key generation algorithms without a trusted dealer producing Shamir’s

secret sharing of a secret [S]. Some threshold signature scheme, e.g. threshold DSS proposed in [GJKR96] use the
distributed key generation protocol (DKG) of Pedersen [P]. The intuition behind the latter protocol is to have n
parallel executions of Feldman’s verifiable secret sharing protocol [F], such that each player acts as a dealer. However,
[GJKR99] point out the weakness of DKG of [P]. Namely, it is possible for a corruptive adversary to prevent the
protocol from completing correctly by manipulating the distribution of the shared secret key. DKG protocol of
[GJKR99] is based on the ideas similar to the protocol of [P], has comparable complexity, but provably fixes the
weakness of the latter. We use the security results of [GJKR99] to prove the security of our threshold signature
scheme.
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coefficient for the set R. As [GJKR99] shows, for each xi, the value Bi = gxi can be computed
from publicly available information. Hence, we assume that these values are publicly available and
will use them to achieve robustness.

In order to execute the signature share generation protocol of T S each player Pi in any subset
of more than t players takes input a message M and its share xi, computes the signature share
σi = H(M)xi and broadcasts σi. The signature reconstruction protocol can be performed by any
player or a set of players. We will assume for simplicity that it is run by some designated player D.
In order to achieve robustness D checks that VDDH(g,Bi,H(M), σi) = 1 for each i. If this does not
hold, new output requested from the corresponding player or it is assumed malicious. Assuming
wlog that R is a set of t + 1 honest players, D computes the resulting signature σ = Πi∈R(σLi

i ),
where Li is the appropriate publicly known Lagrange coefficient for the set R. The output of the
protocol is (M,σ).

Theorem 3.2 Let G be a GDH group. Then TGS[G] is a secure threshold signature scheme in
the random oracle model against an adversary which is allowed to corrupt any t < n/2 players.

The proof of the above theorem is in Section A.

3.3 Adding proactive security

The idea of the proactive approach is to periodically renew shares of a secret such that informa-
tion gained by an adversary learning some number of shares (less than a threshold) in one time
period be useless for the adversary’s next attacks in the future time periods when all shares are
renewed. Proactive secret sharing algorithm PSS has been proposed in [HJKY]. In order to sim-
plify an application of PSS [HJJKY] state the requirements on a threshold signature scheme for
proactivization with the help of the PSS protocol. Namely, the authors prove that the security
of the robust threshold signature scheme will be preserved when used with PSS protocol if it is
a discrete-log based robust threshold signature scheme, which threshold key generation protocol
implements Shamir’s secret sharing of the secret key x corresponding to the public key y = gx and
outputs verification information (gx1 , . . . , gxn), where (x1, . . . , xn) are secret shares of the players
and if the threshold signature protocol is simulatable. Note that TGS meets all these requirements
(recall that the verification information mentioned above is not explicitely output by T K but can
be computed using publicly available information.) Thus TGS can be proactivized using PSS and
methods of [HJKY, HJJKY]. We add that PSS outputs the verification information after each
share update, hence the verification of signature shares can be conducted as before.

We now briefly summarize the properties of TGS. It is robust and can tolerate any t < n/2
malicious parties. Its key generation protocol does not require a trusted dealer. Its signature
share generation protocol is basically the signing algorithm of the base scheme and the signature
reconstruction requires only multiplication of shares. Therefore the signature generation protocol
does not require interaction or any zero-knowledge proofs, and has a minimal overhead compared
to that of the base scheme. The shares are short and their length does not depend on the number
of parties. We also showed how proactive security can be added to our scheme. We compared the
new GDH threshold signature scheme with some other existing constructions in Section 1.
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4 The GDH Multisignature Scheme

4.1 Multisignature schemes

Let P = {P1, . . . , Pn} be a group of n players. Let I be the global information string. The
algorithms of a multisignature scheme MS = (MK,MS,MV) are defined as follows. A randomized
key generation algorithm MK takes a global information I and outputs a pair (sk,pk) of a secret
and a public keys. Each player Pi ∈ P runsMK and as a result obtains a pair of secret and public
keys (ski,pki). A possibly randomized multisignature generation algorithm MS is an interactive
protocol run by an arbitrary subset of players L ⊆ P . The input of each Pi ∈ L is a message
M ∈ {0, 1}∗, the global info I and the player’s secret key ski. The output of the algorithm is a
triple T = (M,L, σ) consisting of the message, description of the subgroup L and the multisignature.
A deterministic verification algorithmMV takes M,L, σ and public keys of all players in L and T
and outputs 1 (accepts) or 0 (rejects).

Note that it is up to a particular application to decide what subgroup is required to sign a
message. A person who verifies the validity of a multisignature might reject it not because it’s
invalid but because she is not satisfied with the subgroup which signed the message. We leave it to
applications to agree each time on the desired subgroup of signers and for the analysis we do not
take this problem into account.

4.2 MGS, the GDH multisignature scheme

We now describe the new multisignature scheme MGS which is based on the GS signature scheme
of [BLS] we recalled in Section 2 . The construction is very simple and efficient, and it also solves
an open problem stated in [MOR], namely, to find a provably secure multisignature scheme where
the composition of the subgroup can be decided after the signature shares are computed by the
signers.

Let G be a GDH group and let I be the global information that consists of a generator g of G,
p = |G| and a description H of a random member of the family of hash functions [{0, 1}∗→G∗].
Let P = {P1, . . . ,Pn} be the group of players. The key generation algorithm of MGS[G] =
(MK,MS,MV) is the same as the one of GS[G]. The rest of the algorithms are as follows.
MS: Any player Pj ∈ P with a secret key skj = xj , that wishes to participate in signing

takes M , computes and broadcasts σj ← H(M)xj . Let L = {Pi1 , . . . , Pil} be a subgroup of players
contributed to the signing. Let J = {i1, . . . , il} denote the set of indices of such players. The
designated signer D (which can be implemented by any player) that we assume wlog knows the
signer of each signature computes σ = Πj∈J(σj) and outputs T = (M,L, σ).
MV: The verifier takes T = (M,L, σ) and the list of public keys of the players in L: (pki1 , . . . ,pkil

),
where pkij = gxij for each ij ∈ J . The verifier computes pkL = Πj∈J(pkj) = Πj∈J(gxj ) and outputs
VDDH(g,pkL,H(M), σ).

The robustness property can be added to MGS if D verifies the validity of each signature it
receives. We provided the comparison of MGS with other multisignature schemes in Section 1.

Batch verification of GS signatures. The approach underlying the above multisignature
scheme can easily be applied to provide efficient batch verification of several GS signatures of
the same message under different public keys3. A verifier needs first to play the role of D above

3This problem is orthogonal to the problem of batch verification of signatures of the different messages under the
same key, which has been addressed in [BGR].
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to multiply the given signatures and then continue the verification according to the verification
algorithm above.

4.3 Security of multisignatures

The notion of security for multisignatures has to capture the possibility of an adversary to “forge” a
subgroup L and a multisignature of some message such that the latter is accepted by a verifier when
not all players of the subgroup L did sign the message. In other words, no valid multisignature
should keep an honest player that part of L accountable if it did not participate in signing.

In order to achieve its goal an adversary might corrupt players, send arbitrary messages during
multisignature generation protocol, etc. We also allow an adversary to create arbitrary keys for
corrupted players, possibly dependent on the keys of honest players, in order to model well-known
rogue-key attacks. With respect to these attacks we put only one limitation on the adversary,
namely we require it to prove knowledge of secret keys during the public key registration, which
is (or should be) the standard practice. We model this for simplicity by asking the adversary to
output public and secret key of corrupted users in key generation algorithm. Alternatively we could
ask the adversary to provide proofs of knowledge so we be able to extract secret keys, however, this
would unnecessary complicate the model. We allow an adversary to corrupt all but one player and
its goal is to “frame” the honest player. We note that such a powerful adversary can always deviate
from the protocol thus preventing generating a valid multisignature. Similarly to [MOR] we do not
focus on the robustness property in this work. We will sketch, however, how our multisignature
scheme can be made robust.

We now formalize the notion of security for multisignatures. It is similar to the one given in
[MOR], however, our definition is more general in that an idividual signer does not have to know
the subgroup of co-signers.

Definition 4.1 An adversary A learns the global info I and a randomly generated public key pk1

corresponding to a single honest player. Wlog we refer to the honest player P1. A generates and
outputs the rest of n− 1 pairs of public and secret keys and is allowed to run multisignature gener-
ation protocol with the honest player on behalf of n− 1 corrupted players on the messages chosen
by the adversary. The advantage of the adversary Advmult

MS,I(A) is defined as the probability of A to
output the valid message–subgroup-signature triple (M,L, σ), such that P1 ∈ L, MV(M,L, σ) = 1
and P1 did not complete the multisignature generation protocol on the input message M .

We say that a multisignature scheme MS is secure against existential forgery under chosen
message attack (or just secure multisignature scheme) if there does not exist a polynomial-time
adversary A with non-negligible advantage Advmult

MS,I(A).

As usual, in order to adjust the above definition to the random oracle model all parties and the
signing oracle are given access to the random hash oracle.

4.4 Security of the MGS multisignature scheme

Theorem 4.2 Let G be a GDH group. Then MGS[G] is a secure multisignature scheme in the
random oracle model.

The proof of the above theorem can be found in Section B.
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5 The Blind GDH Signature Scheme

The syntax of the key generation and verification algorithms BK,BV of a blind signature scheme
BS = (BK,BS,BV) is the same as the one of the corresponding algorithms of a regular signature
scheme. The blind signing algorithm BS is an interactive protocol between a user and a signer,
where the former knows the public key and the latter is given the global info and the secret key.
And the end of the protocol the user outputs a message-signature pair (M,σ). It is required that
if (M,σ) is the output of the blind signing algorithm, then V(pk,M, σ) = 1.

5.1 BGS, the blind GDH signature

We now propose a new blind signature scheme based on GDH signature scheme.
Let G be a GDH group. Let I = (p, g, H) be the global info. Let GS[G] be the GDH sig-

nature scheme of [BLS] we recalled in Section 2 . The blind GDH signature scheme BGS[G] =
(BK,BS,BV) is defined as follows. The algorithms BK,BV are the same as those of GS. The
blind signing protocol BS is defined as follows. The user holds a public key pk = (p, g, H, y). In
order to “blindly” sign a message M ∈ {0, 1}∗ the user picks a random number r

R← Z∗
p , computes

M = H(M) · gr and sends it to the signer. The signer knows I = (p, g, H), sk = x. The signer
computes σ = (M)x and sends it to the user. The latter computes σ ← σ · y−r and outputs (M,σ).

Note that above σ = H(M)x, that is a valid signature on M .

5.2 Security of blind signatures

The notion of security of blind signatures captures two properties. The first property is “blind-
ness”, meaning the signer in the blind signing protocol should not learn any information about the
messages the user obtained signatures on. The second property is a special form of unforgeability,
namely, the user that has been engaged in l runs of the blind signing protocol should not be able
to obtain more than l signatures. The standard notion of unforgeability under chosen-message
attack of digital signatures [GMR] cannot be used as a notion of unforgeability for blind signa-
tures since by their construction a user has to be able to produce a valid signature of a previously
unsigned message. The accepted formalization of security for blind signature is security against
one-more-forgery [PS, PS1].

Definition 5.1 Let S be a signature scheme and let BS = (BK,BS, BV) be the corresponding
blind signature scheme. An adversary A learns the public key pk randomly generated by BK. A is
allowed to play the role of a user in the runs of the blind signing protocol. After interactions with
the signer A outputs some number of message-signature pairs. The advantage of the adversary
Advblind

BS,I(A) is defined as the probability of A to output a set L of valid message-signature pairs,
such that the number of invoked blind signing protocols with the signer is strictly less than the size
of L.

We say that the blind signature scheme BS is secure against one-more forgery under chosen
message attack or just secure blind signature scheme if there does not exist a polynomial-time
adversary A with non-negligible advantage Advblind

BS,I(A).

First we claim that BGS has the blindness property. This is because the signer receives only
random elements in G which are independent of the outputs of the user.
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5.3 Chosen target CDH assumption

Similarly to the proof of security of the Chaum’s RSA-based blind signature scheme [C] given in
[BNPS] we reduce the security in the sense of unforgeability of the blind signature scheme to the
chosen-target version of the appropriate computational assumption. Security of the RSA blind
signature is proven secure assuming hardness of the chosen-target RSA inversion problem [BNPS].
Namely, the assumption states that for a randomly generated RSA key pair pk = (N, e), sk =
(N, d)4 no polynomial time adversary which is given pk, the “target” oracle which outputs ran-
dom target points in Z∗

N and the “helper” RSA inversion oracle (·)d mod N can invert (compute
(·)d mod N) any subset of the target points such that the number of queries to the helper RSA
inversion oracle is strictly less than the number of queries to the target oracle. It is suggested in
[BNPS] that an analogue of this assumption can be formulated for any family of one-way functions.
We propose the following analogous problem and the assumption.

Definition 5.2 [The chosen-target CDH problem and assumption]Let G =< g > be a
group of a prime order p. Let x be a random element of Z∗

p and let y = gx. The adversary B is
given (p, g, y) and has access to the target oracle TG that returns random points zi in G and the
helper oracle (·)x. Let qt, (resp. qh) be the number of queries B made to the target (resp. helper)
oracles. The advantage of the adversary attacking the chosen-target CDH problem Advct−cdh

G (B)
is defined as the probability of B to output a set V of, say, l pairs ((v1, j1), . . . (vl, jl)), where for
all 1 ≤ i ≤ l ∃ 1 ≤ ji ≤ qt such that vi = zx

ji
, all vi are distinct and qh < qt.

The chosen-target CDH assumption states that there is no polynomial-time adversary B with
non-negligible Advct−cdh

G (B).

Note that if the above adversary makes one query to the target oracle then the chosen-target
CDH assumption is equivalent to the standard CDH assumption. We assume that the chosen-target
CDH problem is hard for all groups where CDH problem is hard; this includes GDH groups.

5.4 Security of the BGS blind signature scheme

Theorem 5.3 If the chosen-target CDH assumption is true in G then BGS[G] is secure against
one-more forgery under chosen message attack in the random oracle model.

We provide the proof in Section C.
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A Proof of Theorem 3.2

Proof: We start from the robustness property. The correctness properties of DKG proven in
[GJKR99] are: in the presence of a an adversary that corrupts t < n/2 players all subsets of t + 1
shares define the same unique x that correspond to the unique public key y = gx mod p, x is
uniformly distributed in Z∗

p and thus y is uniformly distributed in G =< g >. This implies that
T K that is DKG completes successfully even in the presence of a corruptive adversary. Now note
that only valid signature shares can pass the verification step of T S since each valid signature
share σi is a valid GS signature corresponding to the public key gxi = Bi and the verification
step of T S is analogous to the signature verification algorithm V of GS[G]. Now assuming the
resulting signature σ is computed as multiplication of t + 1 valid shares of the form H(M)Li·xi due
to Lagrange interpolation σ = H(M)x which means that T S complete successfully.

We now prove the unforgeability property. As shown in [GJKR96] the following implies unforge-
ability of TS = (T K, T S,V): if the underlying signature scheme S = (K,S,V) is secure and if
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TS is simulatable, where the latter condition means that for every probabilistic polynomial-time
adversary A that corrupts up to t players there exists a probabilistic polynomial-time simulator
SIM that on input the public key y and M the signature σ of M can simulate the view for A
that is polynomially indistinguishable from A’s view of a run of T K protocol that outputs y and
the following run of T S that outputs σ. The simulator for a view of a run of T K of an adversary
which corrupts any t < n/2 players is presented in [GJKR99] as their proof of security of DKG.
Wlog [GJKR99] assumes that A corrupts the players with indices 1, . . . , t′ where t′ ≤ t. So will
do we in our discussion. In particular, it is shown in [GJKR99] that SIM knows all the shares xi

but one (wlog assumed to be xn) of the honest players, and the values corresponding to the last
share can be computed using the fixed y and the rest of the shares. All the shares have the right
distribution (note that the last share is not known to SIM , but it is implicitly used in the values
that SIM computes and outputs.) We use a similar approach in order to extend the construction
of SIM to simulate the view of A in the run of T S. SIM can verify the validity of signature
shares output by corrupted parties being honest during the run of T K using knowledge of their
shares. It needs to simulate the signature shares of the uncorrupted parties. Since SIM has all the
shares xt′+1, . . . , xn−1 it can create signature shares as σi = H(M)xi for i = t′ + 1, . . . , n− 1. SIM
creates the signature share corresponding to the player Pn as σn = σ ·Πi∈R(σi)−1. Since as shown
[GJKR99] all the shares used by SIM have the right distribution (including the one corresponding
to the n’s player which SIM implicitly does not know,) then all the signature shares computed by
SIM have the right distribution. This is because all signature shares but σn explicitely use known
corresponding secret shares and by construction σn corresponds to the share xn implicitly used by
SIM .

The above arguments together with Theorem 2.3 imply the statement of the theorem. Note that
random oracle assumption is used only by the proof of security of the base scheme.

B Proof of Theorem 4.2

Proof: Let A be a poly-time adversary for the GDH multisignature scheme MGS[G]. We will con-
struct the adversary B for the GS[G] signature scheme such that Advmult

MGS[G],I(A) = Advsign
GS[G],I(B).

This means that if GS[G] is a secure signature scheme then MGS[G] is a secure multisignature
scheme. Having the result of Theorem 2.3, the statement of the above theorem follows.

The intuition of the proof is that if A manages to frame an honest player by constructing a valid
multisignature on some message without interaction with this honest player, then B can derive a
forgery on the previously unsigned message. We now give the details. B is having a public key y
and access to the random hash oracle and the signing oracle. B will run A simulating for it the
single honest player. First B gives A the public key pk1 = y. Then A outputs the set of n − 1
public and secret key pairs (y2, x2), . . . , (yn, xn), where yi = gxi for 1 < i ≤ n. B simulates A’s
random hash oracle using its own oracle. Whenever A asks the honest player to participate in
multisignature generation protocol on some message M , B forwards the query to its signing oracle
and returns the reply back to A. At some point A outputs an attempted forgery T = (M,L, σL).
Wlog suppose yj1 , . . . , yjl

are the public keys of the players that constitute L. Then B computes
σ = σL · Πj∈J/{1}(H(M)−xj ) and outputs (M,σ). It is easy to see that B simulates for A a valid
experiment, runs in time comparable to running time of A and that it succeeds in forgery whenever
A is successful (in this case σ = H(M)x.)
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C Proof of Theorem 5.3

Proof: Let G be a GDH group. Let A be any poly-time adversary attacking BGS[G] against one-
more forgery under chosen message attack in the random oracle model. Let I = (p, g) be the global
info. Since the proof is in the random oracle model, the global info does not include the description
of H. Instead the adversary is given access to the random oracle. We will present a poly-time
adversary B for the chosen-target CDH problem such that Advblind

BS[G],I(A) = Advct−cdh
G (B). The

statement of the theorem follows.

We note that since the signer in BS protocol of BGS scheme has only one move, it is enough in
the definition of security of Definition 5.1 to give A access to a blind signing oracle (·)x, where x is
a secret input hold by the signer.

We now describe the algorithm of B which will simulate A in order to solve the chosen-target CDH
problem. The adversary B is given (p, g, y) and the target and helper oracles. B first provides
A with the public key pk = (p, g, y). B has to simulate the random hash oracle and the blind
signing oracle for A. Each time A makes a new hash oracle query, that is distinct from the previous
hash queries, B forwards it to its target oracle, returns the reply to A and adds this query and
the reply to the stored list of such pairs. If A makes a hash query that it already made before,
B replies consistently with an old reply. When A makes a query to the blind signing oracle, B
re-sends it to its helper oracle (·)x and forwards the answer to A. At some point A outputs a list
of message-signature pairs ((M1, σ1), . . . , (Ml, σl)). For each 1 ≤ i ≤ l B finds Mi in the list of
stored hash oracle queries and replies. Let ji be the index of the found pair. B returns the list
(σ1, j1), . . . , (σl, jl) as its own output.

It is easy to see that the view of A in the simulated experiment is indistinguishable from its view in
the real experiment and that B is successful only if A is successful. Thus Advblind

BS,I(A) = Advct−cdh
G (B)
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