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Multi-Recipient Encryption Schemes:
Efficient Constructions and their Security

M. BELLARE∗ A. BOLDYREVA† K. KUROSAWA‡ J. STADDON§

Abstract

This paper proposes several new schemes which allow a sender to send encrypted messages to multi-
ple recipients more efficiently (in terms of bandwidth and computation) than by using a standard encryp-
tion scheme. Most of the proposed schemes explore a new natural technique called randomness re-use.
In order to analyze security of our constructions we introduce a new notion of multi-recipient encryption
schemes (MRESs) and provide definitions of security for them. We finally show a way to avoid ad-hoc
analyses by providing a general test that can be applied to a standard encryption scheme to determine
whether the associated randomness re-using MRES is secure. The results and applications cover both
asymmetric and symmetric encryption.
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1 Introduction

1.1 Multi-Recipient Encryption Schemes (MRESs)

Consider a common scenario when a sender needs to encrypt messages for several recipients. A traditional
approach for this task is for a sender to encrypt messages independently using an encryption algorithm of
some standard encryption scheme. Depending on the application the ciphertexts can be sent to the receivers
together via broadcast or separately, possibly over some period of time.

In this paper we propose and analyze the ways to achieve computational and bandwidth savings possible
in this scenario due to batching. Since the setting of standard encryption does not allow to exploit batching
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(because encryption for each receiver is done independently), we first define a new setting of multi-recipient
encryption as follows1. There are n receivers, numbered 1, . . . , n. Each receiver i has generated for it-
self a secret decryption key ski and corresponding public encryption key pki. The sender now applies a
multi-recipient encryption algorithm E to pk1, . . . ,pkn and messages M1, . . . ,Mn to obtain ciphertexts
C1, . . . , Cn. Each receiver i can apply to ski and Ci a decryption algorithm that recovers Mi. We refer
to the primitive enabling this type of encryption as a multi-recipient encryption scheme (MRES). We note
that its syntax differs from that of a standard encryption scheme only in that the encryption algorithm of the
latter is replaced by a multi-recipient encryption algorithm. Key generation and decryption are just like in
a standard scheme. We will also consider a scenario when a MRES is used to encrypt a single message for
all receivers. It can often arise in broadcast applications. We call this subclass of MRESs single-message
MRESs or SM-MRESs.

A common use of a standard encryption we mentioned above can be described by a naive MRES as fol-
lows. For each i let Ci be the result of applying the encryption algorithm E of a standard scheme to pki,Mi.
However, it is possible to exploit batching and construct more efficient MRESs. To exemplify this we sketch
the constructions of several MRESs we propose and discuss the efficiency savings they permit. Further we
discuss the security of proposed schemes. Since most of the schemes we present explore an interesting and
natural technique, which we call randomness re-use, accordingly we start with the description of this idea
and the corresponding subclass of MRESs that exploit randomness re-use.

1.2 Randomness Re-using MRESs

We propose to consider MRESs constructed from the standard encryption schemes by applying what we
call randomness re-use. Namely, we suggest, that re-using random coins when computing ciphertexts for
different receivers may often provide computational and bandwidth savings. Consider a multi-recipient
encryption algorithm that works as follows: given messages M1, . . . ,Mn and keys pk1, . . . ,pkn, it picks at
random coins r for a single application of the encryption algorithm E of an underlying standard encryption
scheme, and then outputs (C1, . . . , Cn), where Ci = Epki

(Mi, r) is the encryption of message Mi under
key pki and coins r (1 ≤ i ≤ n). The corresponding MRES is called the randomness re-using MRES
(RR-MRES) associated to the underlying standard encryption scheme.

1.3 Efficient MRESs

ELGAMAL AND CRAMER SHOUP. Suppose receiver i has secret key xi ∈ Zq and public key gxi , operations
being in some global, fixed group of order q. The naive ElGamal-based MRES is the following: Pick
r1, . . . , rn independently at random from Zq and let Ci = (gri , gxiri ·Mi) for 1 ≤ i ≤ n. Instead, we
suggest that one pick just one r at random from Zq and set Ci = (gr, gxir ·Mi) for 1 ≤ i ≤ n. In other
words we propose the ElGamal-based RR-MRES.

The associated RR-MRES is of interest because compared to the naive one it permits reductions in
both computation and broadcast ciphertext size. First, it results in bandwidth reduction in the case that the
ciphertexts are being broadcast or multi-cast by the sender, since in that case the transmission would be
C = (gr, gx1r ·M1, . . . , g

xnr ·Mn), which is about half as many bits as required to transmit the ciphertexts
computed by the naive method. Second, the suggested scheme (approximately) halves the computational
cost (number of exponentiations) for encryption as compared to the naive method. We also suggest that
the RR-MRES derived in a similar way from the Cramer-Shoup encryption scheme [CrSh], permits similar
computational savings.

1 Let us restrict our attention for the moment to asymmetric-key setting. We turn to symmetric-key setting later.
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DHIES. This is a Diffie-Hellman-based asymmetric encryption scheme proposed in [ABR] and adopted
by draft standards ANSI X9.63EC and IEEE P1363a. It has ElGamal-like cost in public-key operations.
Unlike ElGamal and Cramer-Shoup it does not assume the plaintext is a group element, but handles arbitrary
plaintext strings via a hybrid construction involving a symmetric encryption scheme. Randomness re-use
for this scheme is attractive since it results in bandwidth and computational savings in various applications
just as for the ElGamal scheme.

CBC. We also consider the symmetric setting. We consider popular CBC encryption with random IV,
based on a given block cipher. The IV is the randomness underlying the encryption. Randomness re-use
is interesting in this context because it means that CBC encrypted ciphertexts to different receivers can use
the same IV, thereby yielding savings in bandwidth for broadcast. If the message is one block long then the
CBC-based RR-MRES allows to reduce the length of the broadcast ciphertext by 50%.

HYBRID ENCRYPTION. In practice asymmetric and symmetric encryption schemes are usually used to-
gether in the following “hybrid” manner. A sender uses an asymmetric encryption scheme to encrypt a
random “session” symmetric key under the receiver’s public key and then uses a symmetric encryption
scheme to encrypt a message under the symmetric key.

Now consider a scenario when a sender uses a hybrid encryption scheme to encrypt a single message
under public keys of several recipients, and send, possibly via broadcast, the resulting ciphertexts to the
receivers. A naive SM-MRES would ask a sender to use fresh random coins each time it encrypts a message.
This includes picking a new symmetric key for each recipient. However, we propose a sender to use the
same session symmetric key for all receivers. This is attractive since when a single symmetric key is used
the symmetric ciphertext is the same for all receivers and can be sent (broadcast) only once, thus providing
bandwidth savings. Moreover, the random coins can possibly be re-used when encrypting the symmetric
key thereby providing additional savings.

We note that security results for the above schemes do not follow from any previously known results.
We need to specifically address security of the above schemes and MRESs in general.

1.4 Security Notions for MRESs

The above examples shows that there are MRESs that are more efficient than the naive one. But are they
secure? The first step towards answering this important question is to ask what “secure” means in this
context. That is, we need appropriate models and definitions of security, in particular extensions of standard
definitions such as IND-CPA and IND-CCA to the MRES context.

We envision a very powerful adversary. As usually, we consider the standard chosen-plaintext (resp.
chosen-ciphertext) attacks. In addition, we take into account a scenario where the adversary is one of the
recipients, enabling it to mount what we call insider attacks. As a legitimate recipient it could decrypt
a received ciphertext, and might then obtain the coins underlying that ciphertext. This is not a concern
if, as in the multi-user setting of [BBM, BPS], encryptions to other recipients use independent coins, but
ciphertexts created by a multi-recipient encryption algorithm might be based on related coins. So in the
latter case, possession of the coins underlying a ciphertext sent to one recipient might enable the adversary
to compromise the security of ciphertexts sent to other, legitimate recipients. Our model takes this into
account by allowing the adversary to corrupt some fraction of the users and thereby come into possession of
their decryption keys.

A stronger form of insider attack that one could consider is to allow the adversary to specify the (public)
encryption keys of the corrupted recipients. (In such a rogue-key attack, it would register public keys created
as a function of public keys of other, legitimate users or would register “invalid” public keys that cannot
normally be output by the key-generation algorithm.) Such attacks can be extremely damaging, as we
illustrate in Section 4 with a rogue-key attack that breaks the above-mentioned ElGamal-based MRES. It
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is important to be aware of such attacks, but it is for such reasons that certification authorities require (or
should require in certain scenarios) that a user registering a public encryption key prove knowledge of
the corresponding secret decryption key and “validity” of the public key. This can be done by the user
proving knowledge of the random coins used in the key-generation algorithm. (In that case, our attack fails.)
Accordingly, our model does allow rogue-key attacks, but does not give the adversary complete freedom
in specifying encryption keys of corrupted recipients. Rather, we require that it may do so only if it also
provides coins that are used by the key-generation algorithm to output a pair of a public and secret keys.

SECURITY OF SINGLE-MESSAGE MRESS. We also consider a definition of security for SM-MRESs,
which is special case of a more general security definition for MRESs. The difference is that in the case
of SM-MRESs insider attacks are not a threat since all users receive a single message. Accordingly, the
adversary is not allowed to corrupt recipients.

1.5 The Reproducibility Theorem for Randomness Re-using MRESs

Many RR-MRESs offer performance benefits, but not all are secure. (We illustrate the latter in Section 5 by
showing how Håstad’s attacks [Hå] can be exploited to break RR-MRESs based on RSA-OAEP [BR].) We
are interested in determining which RR-MRESs are secure MRESs. Direct case by case analyses of different
schemes is possible but would be prohibitive. Instead, we introduce a paradigm based on which one can
determine whether a standard encryption scheme permits secure randomness re-use (meaning the associated
RR-MRES is a secure MRES) based on existing security results about the underlying (base) standard en-
cryption scheme. It takes two parts: definition of a property of encryption schemes called reproducibility,
and a theorem, called the reproducibility theorem. The latter says that if a standard encryption scheme is
reproducible and is IND-CPA (resp. IND-CCA) in the standard, single-receiver setting, then the correspond-
ing RR-MRES is also IND-CPA (resp. IND-CCA) with respect to our notions of security for such schemes.
It is usually easy to check whether a given encryption scheme is reproducible, so numerous applications
follow. The approach and result hold for both asymmetric and symmetric encryption.

Reproducibility itself is quite simply explained. Considering first the case where the standard encryption
scheme is asymmetric, let pk1,pk2 be public encryption keys, and let C1 = Epk1

(M1, r) be a ciphertext
of a message M1 created under key pk1 based on random string r. We say that the encryption scheme
is reproducible if, given pk1,pk2, C1, any message M2, and the secret decryption key sk2 corresponding
to pk2, there is a polynomial time reproduction algorithm that returns the ciphertext C2 = Epk2

(M2, r).
The symmetric case is analogous except that the reproduction algorithm is denied the first encryption key
because this is also the decryption key.

1.6 Security of the Proposed MRESs

We now discuss security of the MRESs we discussed before.

ELGAMAL AND CRAMER-SHOUP. We show that the base ElGamal and Cramer-Shoup schemes are both
reproducible. Our reproducibility theorem together with known results stating that under the DDH assump-
tion ElGamal is IND-CPA secure Cramer-Shoup is IND-CCA secure [CrSh], imply that under the same
assumption the ElGamal RR-MRES is IND-CPA secure and the Cramer-Shoup based one is IND-CCA
secure.

We then extend these results by providing reductions of improved concrete security. These improve-
ments do not use the reproducibility theorem, instead directly exploiting the reproducibility property of the
base schemes and, as in [BBM], using self-reducibility properties of the DDH problem [St, NR, Sh].

DHIES. Our analysis exploits both asymmetric and symmetric reproducibility. We show that if the underly-
ing symmetric scheme is reproducible then so is the resulting (asymmetric) DHIES scheme. In particular, if
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the symmetric encryption scheme is CBC (the most popular choice in practice) then DHIES is reproducible.
DHIES achieves Cramer-Shoup-like security (IND-CCA), although the proof [ABR] relies on significantly
stronger assumptions than the DDH assumption used in [CrSh]. As usual, our reproducibility theorem then
implies that the corresponding randomness re-using multi-recipient scheme is IND-CCA under the assump-
tions used to establish that DHIES is IND-CCA.

CBC ENCRYPTION. We show that the base CBC encryption scheme is reproducible. Since it is known to be
IND-CPA assuming the block cipher is a pseudorandom permutation [BDJR], the reproducibility theorem
implies that the randomness re-using CBC MRES is IND-CPA under the same assumption.

HYBRID ENCRYPTION. It is well known that if the asymmetric and symmetric schemes are both IND-CPA
(resp. IND-CCA) secure, then the standard hybrid scheme is also IND-CPA (resp. IND-CCA) secure. The
results of [BBM] imply that if the hybrid scheme is IND-CPA (resp. IND-CCA) secure, then it is also IND-
CPA (resp. IND-CCA) secure in the multi-user setting. But this assumes that a sender uses fresh random
coins each time it encrypts a message including picking a new symmetric key for each recipient. Thus the
results of [BBM] do not imply that the hybrid SM-MRES we proposed is secure. Our results (see Section 10)
imply that if the asymmetric and symmetric schemes are both IND-CPA (resp. IND-CCA) secure, then the
corresponding hybrid SM-MRES is also IND-CPA (resp. IND-CCA) secure. More precisely, we construct a
hybrid SM-MRES using any symmetric encryption scheme and an asymmetric SM-MRES. We show that if
the symmetric scheme is IND-CPA (resp. IND-CCA) security and the SM-MRES is IND-CPA (resp. IND-
CCA) secure, then the corresponding hybrid SM-MRES is IND-CPA (resp. IND-CCA) secure 2. We note
that since not all hybrid SM-MRESs fall into a subclass of RR-MRESs (savings can be achieved even when
the coins used to encrypt the symmetric keys are not re-used) we do not apply the reducibility theorem in
our analysis. However our results imply that if the underlying SM-MRES is a secure RR-MRES, all random
coins can be re-used in the encryption algorithm of the hybrid SM-MRES.

1.7 Minimal assumptions for secure randomness re-use

A basic theoretical question is: under what assumptions can one prove the existence of a standard encryp-
tion scheme whose associated RR-MRES is a secure MRES? We determine minimal assumptions. We show
that there exists a standard encryption scheme whose associated RR-MRES is IND-CPA (resp. IND-CCA)
secure if and only if there exists a standard IND-CPA (resp. IND-CCA) secure encryption scheme. These
results, detailed in Section 8, are obtained by transforming a given standard encryption scheme into another
standard encryption scheme that permits secure randomness re-use. The transformation uses a pseudoran-
dom function and is simple and efficient. However, one should note that the resulting RR-MRES does not
yield savings in bandwidth for broadcast encryption.

1.8 Discussion and related work

ON RE-USING RANDOMNESS. At first glance, re-using coins for different encryptions sounds quite danger-
ous. This is because of the well-known fact that privacy in the sense of IND-CPA is not met if two messages
are encrypted using the same coins under the same key. (An attacker can tell whether or not the messages
are the same by seeing whether or not the ciphertexts are the same.) However, in a RR-MRES, the different
encryptions, although using the same coins, are under different keys. Our results indicate that in this case,
security is possible. We consider this an interesting facet of the role of randomness in encryption.

A very recent paper [BKS] shows how to utilize re-using randomness to achieve even better efficiency
for some schemes. They consider stateful encryption that generalizes MRES, and show that batching can

2In fact, similarly to the case of regular hybrid encryption schemes, the symmetric scheme can satisfy a weaker security defini-
tion. We provide the details in Section 10
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also be exploited when multiple messages are sent to receivers (multiple or single.)

USING PRGS. A natural question is, instead of re-using randomness, why not use pseudorandom bit gener-
ators? Indeed, randomness generation costs for encryption can be reduced by picking a single, short random
seed s and applying a pseudorandom bit generator G to obtain a sequence r1, r2, . . . of strings to play the
role of coins for successive encryptions. If G is cryptographically secure in the sense of [BM, Y], then it
is easy to see that the resulting encryption preserves semantic security, not only for encryption to different
receivers, but even for multiple encryptions to a single receiver.

However, randomness re-use permits applications that usage of pseudorandomness does not permit. A
case in point is the efficiency improvements discussed above. Furthermore, randomness re-use is attractive
even in the absence of such applications because it is simple and efficient. A hardware implementation,
for example, would benefit from not having to spend real-estate on implementation of a pseudorandom bit
generator.

RELATION TO BROADCAST ENCRYPTION. MRESs and broadcast encryption schemes (BESs) [FN] differ
as follows:

• In a BES, the key generation process may be executed by the sender and yields a sequence of possibly
related encryption keys, one per recipient, while in a MRES, key generation is like that of a standard
scheme, meaning each recipient produces (and registers) its own encryption keys for its own use.

• In a BES, the encryption process takes as input a sequence of encryption keys and a single message and
produces a single ciphertext C called a broadcast ciphertext, while in a general MRES, the encryption
process takes as input a sequence of encryption keys and a sequence of messages, and produces a
corresponding sequence of ciphertexts (C[1], . . . ,C[n]) one for each recipient.

Perhaps more succinctly, an MRES is simply a way to mimic, or duplicate, the functionality of a standard
encryption scheme while attempting to use batching to obtain some cost benefits, while broadcast encryption
has a different goal. However, any MRES can be transformed into a natural associated BES as follows. Re-
cipients are given independently generated keys, and message M is encrypted by running the multi-recipient
encryption algorithm with all messages set to M to yield a vector which plays the role of the broadcast ci-
phertext and is sent to all recipients. Each recipient extracts the component of the vector pertinent to it and
decrypts this to obtain the broadcast message.

2 Preliminaries

2.1 Notation

Let N = {1, 2, 3, . . .}. For k ∈ N let Zk denote the ring of integers modulo k. We denote by {0, 1}∗ the set of
all binary strings of finite length. If X is string then |X| denotes its length in bits and if X, Y are strings then

X‖Y denotes the concatenation of X and Y . If S is a set then X
$← S denotes that X is selected uniformly

at random from S. For convinience for any k ∈ N we will often write X1, X2, . . . , Xk
$← S as a shorhand

for X1
$← S;X2

$← S; . . . ;Xn
$← S. If k ∈ N then 1k denotes the string consisting of k consecutive “1”

bits. If A is a randomized algorithm and k ∈ N, then the notation X
$← A(X1, X2, . . . , Xk) denotes that X

is assigned the outcome of the experiment of running A on inputs X1, X2, . . . , Xk. If A is deterministic, we
might drop the dollar sign above the arrow. When describing algorithms, X ← Y denotes that X is assigned
the value Y . “RPT” (resp. “PT”) stands for “randomized, polynomial-time,” (resp. “polynomial-time”) and
“RPTA” (resp. “PTA”) for “RPT algorithm” (resp. “PT algorithm”).

Everywhere in text k ∈ N is the security parameter and n(·) is a polynomial that denotes the number of
recipients of encrypted messages.
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2.2 Definitions

A function f : N → [0, 1] is called negligible if it approaches zero faster than the reciprocal of any polyno-
mial, i.e., for any polynomial p, there exists np ∈ N such that for all n ≥ np, f(n) ≤ 1/p(n). ASYMMETRIC

ENCRYPTION SCHEMES. We recall the standard definitions, following [BBM] in extending the usual syn-
tax to allow a ”common key generation” algorithm. Thus an asymmetric (public-key) encryption scheme
AE = (G,K, E , D) consists of four algorithms:

• The RPT common-key generation algorithm G takes as input 1k, where k ∈ N is a security parameter
and returns a common key I .

• The RPT key-generation algorithm K takes as input a common key I and returns a pair (pk, sk) con-
sisting of a public key and a corresponding secret key.

• The RPT encryption algorithm E takes input a common key I , a public key pk and a plaintext M and
returns a ciphertext.

• The PT decryption algorithm D takes a common key I , a secret key sk and a plaintext M and returns
the corresponding plaintext or a special symbol ⊥ indicating that the ciphertext was invalid.

Associated to each common key I is a message space MsgSp(I) from which M is allowed to be drawn. We
require that the following experiment returns 1 with probability 1:

I
$← G(1k) ; (pk, sk) $← K(I) ; M

$← MsgSp(I)
If DI,sk(EI,pk(M)) = M then return 1 else return 0

We will use the terms “plaintext” and “message” interchangeably.
In our context it is important to make explicit the random choices underlying the randomized key-

generation and encryption algorithmsK, E . The notation (pk, sk) $← K(I) is a shorthand for r
$← CoinsK(I);

(pk, sk) $← K(I, r) and the notation C
$← EI,pk(M) is thus shorthand for r

$← CoinsE(I) ; C ←
EI,pk(M, r), where CoinsK(I), CoinsE(I) are set from which K, E respectively draw their coins. As the
notation indicates, these sets can depend on I .

As an example to illustrate the addition of a common-key generation algorithm to the usual syntax,
consider a Diffie-Hellman based scheme. Here the common key I could include a description of a group
and a generator for this group. Different parties may have different keys, but the algorithms are all in the
same group.

SECURITY OF ASYMMETRIC ENCRYPTION. We recall the standard notion of security of asymmetric
encryption schemes in the sense of indistinguishability. We consider both chosen-plaintext and chosen-
ciphertext attacks. The ideas are from [GoMi, MRS, RS].

Definition 2.1 [Indistinguishability of ciphertexts] Let AE = (G,K, E ,D) be a public-key encryption
scheme. Let Acpa, Acca be adversaries which run in two stages and in both stages the latter has access to an
oracle. For b = 0, 1 define the experiments

Experiment Expcpa−b
AE,Acpa

(k)

I
$← G(1k) ; (pk, sk) $← K(I)

(M0,M1, st)
$← Acpa(find, I,pk)

C
$← EI,pk(Mb)

d
$← Acpa(guess, C, st)

Return d

Experiment Expcca−b
AE,Acca

(k)

I
$← G(1k) ; (pk, sk) $← K(I)

(M0,M1, st)
$← A

DI,sk(·)
cca (find, I, pk)

C
$← EI,pk(Mb)

d
$← A

DI,sk(·)
cca (guess, C, st)

Return d
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Above st denotes the state information the adversary wants to preserve. It is mandated that |M0| =
|M1|,M0,M1 ∈ MsgSp(I) and Acca does not make oracle query C in the guess stage. For atk ∈ {cpa, cca}
we define the advantages of the adversaries as follows:

Advatk
AE,Aatk

(k) = Pr
[
Expatk−0

AE,Aatk
(k) = 0

]
− Pr

[
Expatk−1

AE,Aatk
(k) = 0

]
.

The scheme AE is said to be IND-CPA secure (resp. IND-CCA secure) if the function Advcpa
AE,Acpa

(·)
(resp. Advcca

AE,Acca
(·)) is negligible for any RPT adversary.

The concrete-security considerations we will enter at some points in this paper are facilitated by adopting
some conventions. Namely the “time-complexity” of the adversary above is the worst case execution time
of the associated experiment plus the size of the code of the adversary, in some fixed RAM model of com-
putation. (Note that the execution time refers to the entire experiment, not just the adversary. In particular, it
includes the time for key generation, challenge generation, and computation of responses to oracle queries,
if any.) The same convention is used for all other definitions in this paper.

3 Multi-Recipient Asymmetric Encryption Schemes

3.1 Syntax

An asymmetric multi-recipient encryption scheme (MRES) AE = (G,K, E ,D) consists of four algorithms.
The common-key generation algorithm G, key generation algorithm K and decryption algorithm D are
just like those of an ordinary asymmetric encryption scheme. The RPT multi-encryption algorithm E
takes input a common key I , a public-key vector pk = (pk[1], . . . ,pk[n]) and a plaintext vector M =
(M[1], . . . ,M[n]) and returns a ciphertext vector C = (C[1], . . ., C[n]). Associated to each common key
I is a message space MsgSp(I) from which the components of M are allowed to be drawn. We require that
the following experiment returns 1 with probability 1:

I
$← G(1k) ; For i = 1, . . . , n do (pk[i], sk[i]) $← K(I) EndFor;

M
$← MsgSp(I) ; C $← EI,pk(M)

j
$← {1, . . . , n} ; If DI,sk[j](C[j]) = M[i] then return 1 else return 0

We do not specify how C[i] is communicated to user i. It could be that the whole ciphertext vector C is sent
via a broadcast or multi-cast channel and, if all C[i] have a common part due to a randomness re-use, this
part can be sent only once. It could also be that C[i] is sent to party i directly. This issue depends on the
specific application and is not relevant for security of the scheme.

SENDING A SINGLE MESSAGE USING MRESS. In a Single-Message Multi-Recipient Encryption Schemes
(SM-MRESs), also called a broadcast encryption scheme, the encryption algorithm takes input a single
message M (rather than a vector of messages) and returns a vector of ciphertexts. Formally, we say that
AE = (G,K, E1,D) is a single-message multi-recipient encryption scheme (SM-MRES) if there exists a
multi-encryption algorithm E such that (G,K, E ,D) is a MRES as defined above and E1 is defined by

E1
I,pk(M)

Let n be the number of components of pk
For i = 1, . . . n do M[i]←M EndFor

C[i] $← Epk(M, r)
Return C
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3.2 Randomness Re-using MRESs

Construction 3.1 The randomness-re-using MRES (RR-MRES) associated to a given asymmetric encryp-
tion scheme AE = (G,K, E ,D) is the multi-recipient encryption scheme AE = (G,K, E ,D) in which
the common key generation, key generation algorithms and decryption algorithms are that of AE and the
multi-recipient encryption algorithm is defined as follows:

EI,pk(M)
Let n be the number of components of M [ and also of pk]
r

$← CoinsE(I) For i = 1, . . . n do C[i]← Epk[i](M[i], r) EndFor
Return C.

We refer to AE as the base scheme of AE .

For examples of RR-MRESs see Section 7.

4 Security of Asymmetric Multi-Recipient Schemes

We provide the definition and follow it with a discussion illustrating how it takes into account the various
security issues mentioned in the introduction.

MODEL AND DEFINITION. LetAE = (G,K, E ,D) be an asymmetric MRES. (We are particularly interested
in the case where this is an RR-MRES scheme, but the definition is not restricted to this case.) Let B be an
adversary attackingAE . B runs in three stages. In the select stage the adversary is given the number of users
and an initial information string and outputs a state information st and an integer l such that 1 ≤ l ≤ n(k),
which indicates that it wants to corrupt n(k) − l users, assumed without loss of generality to be users
l + 1, . . . , n(k). In the find stage the adversary is given the common key I , st and the public keys of the
honest users 1, . . . , l. It outputs two l-vectors of messages corresponding to choices for the honest users;
one (n(k) − l)-vector of messages corresponding to choices for the corrupted users; a (n(k) − l)-vector
of random coins which are is later used in the key-generation algorithm to create keys for the corrupted
users (see the discussion below.) Based on a challenge bit b, one of the two l-vectors is selected, and the
components of the (n(k) − l)-vector of messages are appended to yield a challenge n-vector of messages
M. The latter is encrypted via the multi-encryption algorithm to yield a challenge ciphertext C that is
returned to the adversary, now in its guess stage. Finally B returns a bit d as its guess of the challenge bit
b. In each stage the adversary will output state information that is returned to it in the next stage. In case of
chosen-ciphertext attacks in the find and guess stages B is given l decryption oracles corresponding to the
secret keys of the honest users. We now provide a formal definition.

Definition 4.1 Let AE = (G,K, E ,D) be a multi-receiver asymmetric encryption scheme. For atk ∈
{cpa, cca} and b ∈ {0, 1} consider the experiments:

9



Experiment Expmr-atk-b
AE,B,n(·)(k)

(1) I
$← G(1k) ; (1l, st) $← B(select, n(k), I) [ 1 ≤ l ≤ n(k)]

(2) For i = 1, . . . , l do (pk[i], sk[i]) $← K(I) EndFor

(3) (M0,M1,M, coins, st) $← BO1(·),...,Ol(·)(find,pk, st)
[ |M0| = |M1| = l ; |M| = n(k)− l]
[ |pk| = l ; |coins| = n(k)− l]

(4) For i = l + 1, . . . , n(k) do (pk′[i], sk′[i]) $← K(I, coins[i]) EndFor
(5) pk← (pk[1], . . . ,pk[l],pk′[l + 1], . . . ,pk′[n(k)])
(6) M← (Mb[1], . . . ,Mb[l],M[1], . . . ,M[n(k)− l])

(7) C $← EI,pk(M)

(8) d
$← BO1(·),...,Ol(·)(guess,C, st)

(9) Return d

Above, the oracles for 1 ≤ i ≤ l are defined as follows: If atk = cpa then Oi(·) = ε and if atk = cca
then Oi(·) = DI,sk[i](·). It is mandated that for all 1 ≤ i ≤ l we have |M0[i]| = |M1[i]| and all message
vector componenets are in the scheme’s message space, and also that if atk = cca then the adversary B
does not query Oi(·) on C[i]. The restriction on decryption oracle queries is necessary since otherwise the
adversary can decrypt the corresponding part of the challenge ciphertext vector and therefore distinguish
which plaintext vector was encrypted.

The ind-atk advantage of an adversary B is

Advmr-atk
AE,B,n(·)(k) = Pr

[
Expmr-atk-0

AE,B,n(·)(k) = 0
]
− Pr

[
Expmr-atk-1

AE,B,n(·)(k) = 0
]

.

We will say that MRES AE is IND-CPA (resp. IND-CCA) secure if the function Advmr-cpa

AE,B,n(·)(·) (respec-
tively Advmr-cca

AE,B,n(·)(·)) is negligible for any RPTA B and any polynomial n.

SECURITY OF SM-MRESS. In order to define security for a SM-MRES AE for atk = {cpa, cca} we
define Expsmmr-atk-b

AE,B,n(·) (k) similarly to Expmr-atk-b
AE,B,n(·)(k) defined in Section 4.1, except now the adversary is

not allowed to corrupt users. Below we specify the lines of the experiment description that are different
from those of Expmr-atk-b

AE,B,n(·)(k), the rest of the description is identical:

Experiment Expsmmr-atk-b
AE,B,n(·) (k)

(1) I
$← G(1k) ; (1l, st) $← B(select, n(k), I) [ l = n(k)]

. . .

(3) (M0,M1)
$← BO1(·),...,Ol(·)(find,pk)

[ |M0| = |M1| = n(k) ; M0[i] = M0[j] ; M1[i] = M1[j] ∀ 1 ≤ i, j ≤ n(k)]
. . .

Let AE = (G,K, E ,D) be a single-message multi-recipient encryption scheme. The ind-atk advantage
of an adversary B is

Advsmmr-atk
AE,B,n(·)(k) = Pr

[
Expsmmr-atk-0

AE,B,n(·) (k) = 0
]
− Pr

[
Expsmmr-atk-1

AE,B,n(·) (k) = 0
]

.

We say that SM-MRES AE is IND-CPA (resp. IND-CCA) secure if the function Advsmmr-cpa

AE,B,n(·)(·)
(respectively Adv-smmr-cca

AE,B,n(·) (·)) is negligible for any RPTA B and any polynomial n.
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ASYMMETRIC SCHEMES YIELDING SECURE RR-MRESS. It is convenient to introduce a notion of security
for base encryption schemes based on the security of the corresponding RR-MRES. We stress that the
following is a notion of security for (standard) asymmetric encryption schemes, not for MRESs.

Definition 4.2 Let AE be an asymmetric encryption scheme. We say that it is RR-IND-CPA (resp. RR-
IND-CCA, RR) secure if the RR-MRES AE associated to AE is IND-CPA (resp. IND-CCA, IND-CPA or
IND-CCA) secure.

DISCUSSION. The previous works on the multi-user setting [BBM, BPS] only considered outsider attacks,
meaning the adversary was not one of the receivers. However, in the multi-recipient setting it is necessary to
consider insider attacks. The adversary should be allowed to corrupt some fraction of the users and choose
secret and public keys for them.

To justify this claim consider the RR-MRES associated to the ElGamal scheme. It can be shown to be
wIND-CPA (a notion similar to our IND-CPA, but that does not take into account insider attacks, rf. [Ku]).
Now consider a modified encryption scheme which differs from ElGamal in that its encryption algorithm
when invoked on one particular public key (e.g. g3) in addition to the ciphertext returns the randomness used
to compute it. When this scheme used in a multi-recipient setting with randomness re-use the adversary can
register this public key and later after receiving a ciphertext can obtain the random string used to compute
the ciphertexts of other users and thus break the scheme. Under our model the advantage of such adversary
in breaking this scheme will be 1. Even though the modified scheme is contrived, this simple example shows
an example of insider attacks.

Consider another example which shows the importance of the stronger model. Let AE ′ = (G′,K′, E ′,
D′) be some IND-CPA secure encryption scheme. Consider a multi-recipient scheme AE = (G,K′, E ,D),
where G runs G′ to get I ′ and outputs I ′ and also a description of a group of prime order q and a generator g,
K runsK′ to get (pk′, sk′), picks a random element of Zq and outputs ((gx,pk′)(x, sk′). Let us also assume
that the message space of AE ′ includes Zq. Let the encryption algorithm of AE ′ be as follows.

Algorithm EI,pk(M)

r
$← Zq

For i = 1, . . . , n do

C′[i] $← E ′
pk′i

(r) ; Yi ← gr ; Wi ← (gxi)rM [i] ; C[i]← (Yi,Wi,C′[i])
EndFor
Return C

We omit the description of D. We claim that AE is wIND-CPA secure while it is is insecure in our model.
We first prove the latter claim by presenting a practical attack. An adversary A “corrupts” the first user and
chooses pk1 = (gx1 ,pk′1) in normal way so that it knows x1, sk

′
1. When A receives a ciphertext vector C

it decrypts C′[1] using sk′1 and obtains r. Now A can compute M[i] as Wi(gxi)−r. Under our model of
security A would have advantage 1. We now show thatAE is secure under the weaker notion (wIND-CPA).
Let B be an adversary attacking wIND-CPA security of AE . Then it is possible to construct an adversary
D which attacks ElGamal RR-MRES. D simply provides the common key and all the public keys it is
given to B and outputs message vectors that B outputs. D then receives a challenge ciphertext vector CD,
picks a random r′ and computes a challenge CB for B such that CB[i] = (CD[i], E ′

I,pk′i
(r′)). Since AE ′

is IND-CPA then the view of B in the simulated experiment is indistinguishable from the real experiment.
Therefore the advantage of B is at most the advantage of D. But it is proven in [Ku] that the latter scheme
is wIND-CPA, so this would imply that AE is also wIND-CPA.

Moreover, for analyses of multi-recepient schemes it is important to take into account the possibility of
rogue-key attack. This can be particularly damaging in the context of random-string re-use. For example,

11



suppose the adversary registers public keys (gx)2 = g2x and (gx)3 = g3x where gx is the key of a legitimate
user. Suppose that messages M1,M, M are ElGamal encrypted with the same randomness r under public
keys gx, g2x, g3x and broadcast to the users. Thus the adversary sees the three corresponding ciphertexts
(gr, grx ·M1), (gr, g2rx ·M), (gr, g3rx ·M). From them it can compute M1 = [grx ·M1] · [g2rx ·M ] ·
[g3rx ·M ]−1 and obtain the message addressed the legitimate user.

As we mentioned in the introduction, to prevent attacks of this type we put some limitation on the
adversary in this regard, in particular to disallow it from creating public keys whose corresponding secret
keys it does not know. The model incorporates this by requiring the adversary to supply a list of random
coins that are later used in the key-registration algorithm to create the public and secret keys for the corrupted
users. This models the effect of appropriate proofs of knowledge of the random coins used in the key-
generation algorithm that are assumed to be done as part of the key certification process. The alternative is
to explicitly consider the certification process in the model, and then, in proofs of security, use the extractors,
guaranteed by the proof of knowledge property [BG], to extract the secret keys from the adversary. This
being quite a complication of the model, we have chosen to build in the intended effects of the proofs of
knowledge.

5 Not Every RR-MRES Scheme is Secure

We consider general embedding schemes which first apply a randomized invertible transform to a message
and then apply a trapdoor permutation to the result. An example of such a scheme is RSA-OAEP [BR] that
has been proven to be IND-CCA secure (in the random oracle model) [FOPS] and hence is also IND-CCA
secure in a multi-user setting [BBM, BPS]. Nonetheless, the associated RR-MRES scheme is insecure. The
attack is as follows. Assume all users use public moduli of equal length and have encryption exponent 3.
Let Ni be the public modulus of user i. Suppose the sender wants to send a single message M to three
receivers, namely M = (M,M,M). Under the RR-MRES scheme, it will pick a random string r, using
M and a random r will compute a transform x, which with high probability will be in Z∗

N for all i, set
C[i] = x3 mod Ni, and send C[i] to i. An adversary given C can use Håstad’s attack [Hå] (based on the
fact that the modulii are relatively prime) to recover x, and them recover M by inverting the transform. The
same attack applies regardless of embedding method, since the latter must be an invertible transform.

This indicates that secure randomness re-use is not possible for all base encryption schemes: there exist
base encryption schemes that are secure, yet the associated RR-MRES is not secure. In fact, no encryption
scheme where the random string used by the encryption algorithm can be obtained by the legitimate receiver
who performs the decryption, can be a base of a secure RR-MRES. However, there are large classes of base
encryption schemes for which the associated RR-MRES scheme are secure.

6 Reproducibility Test and Theorem

We provide a condition under which a given encryption scheme can be a base of a secure RR-MRES.
Informally speaking, the condition is satisfied for those encryption schemes for which it is possible, using a
public key and ciphertext of a random message, to create ciphertexts for arbitrary messages under arbitrary
keys, such that all ciphertexts employ the same random string as that of the given ciphertext.

Definition 6.1 Fix a public-key encryption schemeAE = (G,K, E ,D). Let R be an algorithm that takes as
input a common and a public keys and ciphertext of a random message, another random message together
with a public-secret key pair, and returns a ciphertext. Consider the following experiment.

12



Experiment Exprepr
AE,R(k)

I
$← G(1k) ; (pk, sk) $← K(I) ; M

$← MsgSp(I) ; r
$← CoinsE(I)

C
$← EI,pk(M, r) ; (pk′, sk′) $← K(I) ; M ′ $← MsgSp(I)

If Epk′(M ′, r) = R(I, pk, C, M ′,pk′, sk′) then return 1 else return 0 EndIf

We say that AE is reproducible if for any k there exists a RPTA R called the reproduction algorithm such
that Exprepr

AE,R(k) outputs 1 with the probability 1.

Later we will show that many popular discrete-log-based encryption schemes are reproducible. It is an open
question whether there exist reproducible asymmetric encryption schemes of other types.

We now state the main reproducibility theorem. It implies that if an encryption scheme is reproducible
and is IND-CPA (resp. IND-CCA) secure, then it is also RR-IND-CPA (resp. RR-IND-CCA) secure.

Theorem 6.2 Fix a public-key encryption scheme AE = (G,K, E ,D) and a polynomial n. Let AE =
(G,K, E ,D) be the associated RR-MRES. If AE is reproducible then for any RPTA Batk, there exists an
RPTA Aatk, where atk = {cpa, cca}, such that for any k

Advmr-atk
AE,Batk,n(·)(k) ≤ n(k)Advatk

AE,Aatk
(k).

The proof is Appendix A.

7 Analysis of Specific Schemes

In this section we show that many popular encryption schemes are reproducible. Using the known results
about security of these schemes and the result of Theorem 6.2 this would imply that these schemes are also
RR secure.

The security of the schemes we consider here is based on the hardness of the Decisional Diffie-Hellman
(DDH) problem for appropriate prime-order-group generators. Accordingly we begin with definitions for
the latter.

A prime-order-group generator is a RPTA that on input 1k, where k ∈ N is the security parameter,
returns a tuple (1k, G̃, q, g), where q is a prime with 2k−1 < q < 2k, G̃ is a description of a group G of
order q, and g is a generator of G. There can be numerous such prime-order-group generators. We will
not specify a particular one but will use it as a parameter to the computational problems we consider. The
description of a group should specify the algorithms for group operations (multiplication and inverse), the
algorithm for testing group membership, and also the random group element sampling algorithm. All of
these algorithms are assumed to be PTAs. Here and further in the paper we assume that the group elements
are uniquely encoded as strings. We let 1̂ denote the identity element of G. Let T exp

q denote the worst time
needed to perform an exponentiation operation with respect to a base element in G and an exponent in Zq,
for any G̃, q, g output of G(1k). This operation is assumed to be polynomial in k.

Definition 7.1 [DDH] Let G be a prime-order-group generator. Let D be an adversary that on input G̃, q, g
and three elements X, Y, T ∈ G returns a bit. We consider the following experiments

Experiment Expddh-real
G,D (k)

(1k, G̃, q, g) $← G(1k)

x
$← Zq ; X ← gx ; y

$← Zq ; Y ← gy

T ← gxy

d
$← D(1k, G̃, q, g, X, Y, T )

Return d

Experiment Expddh-rand
G,D (k)

(1k, G̃, q, g) $← G(1k)

x
$← Zq ; X ← gx ; y

$← Zq ; Y ← gy

T
$← G

d
$← D(1k, G̃, q, g,X, Y, T )

Return d
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The advantage of D in solving the Decisional Diffie-Hellman (DDH) problem for G is the function of the
security parameter defined by

Advddh
G,D(k) = Pr

[
Expddh-real

G,D (k) = 1
]
− Pr

[
Expddh-rand

G,D (k) = 1
]

.

We say that the DDH problem is hard for G if the function Advddh
G,D(·) is negligible for every RPTA D.

We will refer to (g,X, Y, T ) as to a valid Diffie-Hellman tuple if logg X = logY T , and as to a random
Diffie-Hellman tuple otherwise.

A common case is that G is a subgroup of order q of Z∗
p where p is a prime such that q divides p −

1. Another example is when G is an appropriate elliptic curve group. Our setting is general enough to
encompass both these cases.

7.1 ElGamal

The ElGamal scheme in a group of prime order is known to be IND-CPA under the assumption that the
decision Diffie-Hellman (DDH) problem is hard. (This is noted in [C, NR, CrSh, TY].) We will look at
the IND-CPA security of the corresponding RR-MRES constructed as per Construction 3.1. We recall the
ElGamal scheme EG = (G,K, E ,D). The common-key generation algorithm G on input 1k, where k ∈ N
is the security parameter, returns a tuple (1k, G̃, q, g), where q is a prime with 2k−1 < q < 2k, G̃ is a
description of a group G of order q, and g is a generator of G. The rest of the algorithms are as follows:

K((1k, G̃, q, g)):

x
$← Zq ; X ← gx

pk ← X ; sk ← x
Return (pk, sk)

E(1k,G̃,q,g),X(M):

r
$← Zq ; Y ← gr

T ← Xr ; W ← TM
Return (Y,W )

D(1k,G̃,q,g),x((Y, W )):

T ← Y x

M ←WT−1

Return M

The message space associated to a common key (q, g) is the group G itself. Note that a generator g is
the output of the common key generation algorithm, which means we fix g for all keys.

Lemma 7.2 The ElGamal encryption scheme EG = (G,K, E ,D) is reproducible.

Proof: On input (I, pk, X, (gr, grx ·M),M ′,pk′, sk′), where I = (1k, G̃, q, g),pk = gx,pk′ = gx′ , sk′ =
x′, a PTA R returns (gr, (gr)x′ ·M ′). It is easy to see that R always outputs a valid ciphertext which is
created using the same random string as the given ciphertext and therefore the experiment Exprepr

EG,R(1k)
always outputs 1.

The fact that the ElGamal scheme in a group of prime order is known to be IND-CPA under the assump-
tion that the DDH problem is hard, Theorem 6.2 and Lemma 7.2 imply that the ElGamal scheme is also
RR-IND-CPA or, equivalently, EG is IND-CPA secure. However, according to Theorem 6.2 the security
degrades linearly as the number of users n(k) increases. The following theorem shows that it is possible
to obtain a tighter relation than the one implied by Theorem 6.2. It means that re-using randomness while
encrypting messgages for different receivers almost does not comprise security and, as we discussed in the
introduction, reduces bandwidth and computational costs by about 50%.

Theorem 7.3 Let G be a prime-order-group generator, EG = (G,K, E ,D) the associated ElGamal en-
cryption scheme, and EG = (G,K, E ,D) the associated RR-MRES as per Construction 3.1. Then for any
adversary B there exists a adversary D such that for any k

Advmr-cpa

EG,B,n(·)(k) ≤ 2 ·Advddh
G,D(k) +

1
2k−2

,

where the running time of D is one of B plus O(n(k) · k3).

The proof of the above theorem is in Appendix B.
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G(1k):

(1k, G̃, q, g1)
$← G

g2
$← G/{1̂}

K
$← GH(1k)

I ← (1k, G̃, q, g1, g2,K)
Return I

EI,pk(M):

Parse I as (1k, G̃, g1, g2,K)
Parse pk as (c, d, h)

r
$← Zq

u1 ← gr
1 ; u2 ← gr

2

e← hrM
α← EHK(u1, u2, e)
v ← crdrα

Return (u1, u2, e, v)

K((1k, G̃, q, g1, g2,K)):

x1, x2, y1, y2, z1, z2
$← Zq

c← gx1
1 gx2

2

d← gy1
1 gy2

2

h← gz1
1 gz2

2

pk ← (c, d, h)
sk ← (x1, x2, y1, y2, z1, z2)
Return (pk, sk)

DI,sk(u1, u2, e, v):

Parse I as (1k, G̃, g1, g2,K)
Parse sk as (x1, x2, y1, y2, z1, z2)
α← EHK(u1, u2, e)

(D1) If v 6= u1
x1+y1αu2

x2+y2α

Then return ⊥ kwfontEndIf
(D2) f ← uz1

1 uz2
2

(D3) M ← e/f
Return M

Figure 1: Cramer-Shoup scheme

7.2 Cramer-Shoup

We now consider an RR-MRES based on the Cramer-Shoup scheme [CrSh, CrSh2] in order to get cost and
bandwidth efficiency and IND-CCA security properties. We first recall the Cramer-Shoup scheme. The
scheme uses a family of hash functions H = (GH, EH) defined by a probabilistic generator algorithm GH
—which takes as input 1k, where k ∈ N is a security parameter and returns a key K, and a determin-
istic evaluation algorithm EH which takes as input the key K and a string X ∈ G3 and returns a string
EHK(X) ∈ {0, 1}k−1. Without loss of generality we assume that K ∈ {0, 1}k. Let G be a prime-order-
group generator. The algorithms of the associated Cramer-Shoup scheme CS = (G,K, E ,D) are depicted
in Figure 1 [CrSh2, Sec.6.1]. The message space associated to a common key (1k, G̃, q, g1, g2,K) is G.

Lemma 7.4 The Cramer-Shoup encryption scheme CS = (G,K, E ,D) is reproducible.

Proof: We present a PTA R which takes as input a common and a public key and a ciphertext of a random
message under this key, another random message and a public-secret key pair and returns a ciphertext.

Algorithm R(I, pk, C, M ′,pk′, sk′)
Parse I as (1k, G̃, g1, g2,K)
Parse pk as (c, d, h); Parse C as (u1, u2, e, v)
Parse pk′ as (c′, d′, h′); Parse sk′ as (x′1, x

′
2, y

′
1, y

′
2, z

′
1, z

′
2)

e′ ← u
z′1
1 u

z′2
2 M ′ ; α′ ← EHK(u1, u2, e

′) ; v′ ← u
x′1+y′1α′

1 u
x′2+y′2α′

2

Return (u1, u2, e
′, v′)

Let us denote the random string used in a challenge ciphertext C as r. First we note that first two elements
u1 = gr

1, u2 = gr
2 of the output ciphertext are equal to the first two elements of a challenge ciphertext C as

they should due to a fact that r is fixed. Next we note that e′ = u
z′1
1 u

z′2
2 M ′ = g

rz′1
1 g

rz′2
2 M ′ = (h′)rM ′. This

means that e′ and thus α′ are of the right form. Similarly v′ = u
x′1+y′1α′

1 u
x′2+y′2α′

2 = g
r(x′1+y′1α′)
1 g

r(x′2+y′2α′)
2 =
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(c′)r(d′)rα, which is valid computation. Therefore, R always outputs a valid ciphertext which is created
using the same random string as a given ciphertext and therefore Pr

[
Exprepr

CS,R(1k) = 1
]

= 1.

Before we analyze the scheme let us recall the definition of collision resistance of hash function families,
since it will be used in our analysis.

COLLISION-RESISTANT HASH FUNCTIONS. A family of hash functions H = (GH, EH) is defined by a
probabilistic generator algorithm GH, which takes as input 1k, where k ∈ N is the security parameter, and
returns a key K, and a deterministic evaluation algorithm EH, which takes as input the key K and a string
X ∈ G3 and returns a string EHK(X) ∈ {0, 1}k−1.

Definition 7.5 Let H = (GH, EH) be a family of hash functions and let C be an adversary that on input a
key K and a string X0, returns a string X1. Now, we consider the following experiment:

Experiment Expcr
H,C(k)

K
$← GH(1k), X0

$← G3 ; X1 ← C(K, X0)
If (X0 6= X1) and EHK(X0) = EHK(X1) then return 1 else return 0

We define the advantage of adversary C via

Advtcr
H,C(k) = Pr

[
Expcr

H,C(k) = 1
]

.

We say that the family of hash functionsH is target-collision-resistant if Advtcr
H,C(k) is negligible for every

RPTA C.

The notion of target-collision-resistant family of hash functions was shown by Cramer and Shoup [CrSh2].
It is a special case of universal one-way hash function UOWH family introduced by Naor and Yung [NY],
where a UOWH family can be built from arbitrary one-way functions [NY, Rom].

If the DDH problem is hard for G and if H is target-collision-resistant then CS is IND-CCA secure
[CrSh, CrSh2]. This fact, Theorem 6.2 and Lemma 7.4 imply that it is also RR-IND-CCA or, equivalently,
CS is IND-CCA secure. As for the ElGamal scheme, the security of the associated RR-MRES degrades
linarly with the number of users. We get a better security result than the one implied by Theorem 6.2, and
the following theorem states our improvement.

Theorem 7.6 Let G be a prime-order-group generator, CS = (G,K, E ,D) the associated Cramer-Shoup
encryption scheme and CS = (G,K, E ,D) the associated RR-MRES as per Construction 3.1. Let n(·) be
a polynomial. Then for any adversary B, which makes Q(·) decryption oracle queries in total, there exists
probabilistic algorithms D and C such that

Advmr-cca
CS,B,n(·)(k) ≤ 2Advddh

G,D(k) + 2n(k) ·Advtcr
H,C(k) +

4(Q(k) + n(k) + 3)
2k

,

where the running times of D and C are essentially the same as that of B.

Note that the security of CS is tightly related to the security of DDH. The proof of the above theorem is in
Appendix C.

7.3 DHIES

We consider the other DDH-based encryption scheme DHIES [ABR] which is in several draft standards. It
combines asymmetric and symmetric key encryption methods, a message authentication code and a hash
function and provides security against chosen-ciphertext attacks. Let SE = (SK,SE ,SD) be a symmetric
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EI,pk(M):
Parse pk as (q, g,X)

r
$← Zq ; Y ← gr ; W ← H(Xr)

Let skm be the first ml bits of W
Let ske be the last kl bits of W

C
$← SE ske

(M) ; T ← Tskm
(C)

Return (Y, C, T )

DI,sk((Y, C, T )):
Parse sk as (q, g, x)
W ← H(Y x)
Let skm be the first ml bits of W
Let ske be the last kl bits of W
M ← SDske(C)
If Vskm

(M,T ) = 1 then Return M
else Return ⊥ EndIf

Figure 2: DHIES

encryption scheme3 with key length kl. Let MAC = (T ,V) be a message authentication code with key
length ml, where T is a tagging algorithm taking input the random key and a message and returning the
tag, and V is a verification algorithm taking input the random key, a message and a tag and returning the
1 (if the tag is valid) and 0, otherwise. Let H: {0, 1}gl → {0, 1}ml+kl be a function. We assume MAC is
deterministic. The common key and key generation algorithms of DHIES[SE ,H, MAC] = (G,K, E ,D)
are the same as the ones of ElGamal encryption scheme. The rest of the algorithms are presented in Figure 2.

Below we use the notion of reproducibility for symmetric encryption and the corresponding repro-
ducibility theorem; please refer to Section 9 where we properly describe how the notions and results of
this paper related to asymmetric multi-recipient schemes can be naturally extended for a case of symmetric
encryption schemes.

Lemma 7.7 DHIES[SE ,H, MAC] = (G,K, E ,D) is reproducible if SE is reproducible.

Proof: Since SE is reproducible then there exists an RPTA reproduction algorithm R′ for SE which takes
a ciphertext and a random message and a secret key and outputs a ciphertext of this message under this
secret key such that it is created using the same random coins as the given ciphertext. We present an RPT
reproduction algorithm R for DHIES which uses R′.

Algorithm R(I, pk, (gr, C, T ),M ′, X ′, x′)
Parse I as (1k, G̃, q, g)
K ← H((gr)x′)
Let skm be the first ml bits of K ; let ske be the last kl bits of K

C ′ $← R′(C,M ′, ske) ; T ′ $← Tskm(C ′)
Return (gr, C ′, T ′)

Note that R first computes symmetric keys for SE and MAC using given gr and then uses R′ to output
a valid symmetric ciphertext which is created using the same random coins as the given ciphertext C and
therefore the whole output (gr, C ′, T ′) is always a valid ciphertext computed using the same coins as the
original ciphertext (gr, C, T ).

DHIES[SE ,H, MAC] is proven to be IND-CCA secure if SE is IND-CPA, MAC is strongly universally-
unforgeable under chosen-message attack and the Oracle Diffie-Hellman assumption4 is hard for G and H .
This fact, Theorem 6.2 and Lemma 7.7 imply that it is also RR-IND-CCA or, equivalently, the corresponding
MRES is IND-CCA secure, under the same assumptions.

3We recall the syntax of symmetric encryption schemes in Section 9.1.
4See [ABR] for details.
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8 From IND-CPA (IND-CCA) to RR-IND-CPA (RR-IND-CCA)

As Section 5 and Section 7 show, some practical encryption schemes such as ElGamal and Cramer-Shoup
are RR secure, while some, e.g. RSA-OAEP are not. We now provide a simple method for an efficient
transformation of any encryption scheme which meets the standard notion of security into RR secure one.
The construction will use a pseudorandom function family; accordingly we first recall the notion of pseudo-
randomness.

PSEUDORANDOM FUNCTION FAMILIES. Let kl: N→ N, il: N→ N, ol: N→ N be polynomially bounded,
polynomial-time computable functions and let k ∈ N be a security parameter. A family of functions F is a
map {0, 1}kl × {0, 1}il → {0, 1}ol which takes a key K ∈ {0, 1}kl and an input x ∈ {0, 1}il and returns

a string y = F (K, M) where y ∈ {0, 1}ol. The notation g
$← F is a shorthand for K

$← {0, 1}kl ; g ←
F (K, ·). We call g a random instance of F . Let R denote the family of all functions of {0, 1}il to {0, 1}ol

so that g
$← R denotes the operation of selecting at random a function of {0, 1}il to {0, 1}ol. We call g a

random function. An adversary D takes as input 1k, whre k ∈ N is the security parameter, and has access
to an oracle for a function g : {0, 1}il → {0, 1}ol and outputs a bit.

Definition 8.1 Let F,R be as above, let D be a adversary. Define the advantage of D as

Advprf
F,D(k) = Pr

[
Dg(·)(1k) = 1 : g

$← F
]
− Pr

[
Dg(·)(1k) = 1 : g

$← R
]

.

The function family F is said to be pseudorandom if Advprf
F,D(·) is negligible for any RPT adversary.

We now describe the transformation.

Construction 8.2 Fix an asymmetric encryption scheme AE = (G,K, E ,D) and let k be a security param-
eter. Let (I, pk) denote a string containing I and pk. We assume that there exist polynomially bounded,
polynomial-time computable functions il: N → N, ol: N → N such that for all k |(I, pk)| = il and
Coins(I) = {0, 1}ol for all I generated by G(1k) and all pk generated by K(1k). Fix a polynomially
bounded, polynomial-time computable function kl: N→ N and fix a function family F : {0, 1}kl×{0, 1}il →
{0, 1}ol. Then a transformed asymmetric encryption schemeAE ′[F ] = (G,K, E ′,D) has the same common-
key-generation, key-generation and decryption algorithms as AE and the encryption algorithm is defined as
follows:

Algorithm E ′I,pk(M, r′)

r ← F (r′, (I, pk)) ; C
$← EI,pk(M, r)

Return C

In practice a block cipher such as AES can be often used in place F (if its fixed key, input and output lengths
satisfy the assumptions described above). Hence, the cost of the transform is negligible.

Theorem 8.3 Fix an asymmetric encryption schemeAE . Assume that there exist functions il: N→ N, ol: N→
N satisfying the conditions defined above. LetAE ′[F ] be a transformed encryption scheme as per Construction 8.2.
Let it be a base scheme for the RR-MRES AE ′[F ] which is defined as per Construction 3.1. Then if AE is
IND-CPA (IND-CCA) secure and F is a pseudorandom function family thenAE ′[F ] is RR-IND-CPA (resp.
RR-IND-CCA) secure, or, equivalently, AE ′[F ] is IND-CPA (resp. IND-CCA) secure.

The above theorem states the asymptotic security result. In Appendix D we prove the concrete security
result and the statement of the theorem follows.

The above results show that one can efficiently modify any RSA embedding encryption scheme, e.g.
RSA-OAEP, which is IND-CCA secure (in the random oracle model), by adding one application of a block
cipher such that the resulting scheme becomes RR-IND-CCA.
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Corollary 8.4 The existence of IND-CPA (IND-CCA) secure asymmetric encryption scheme is a necessary
and sufficient condition for the existence of RR-IND-CPA (resp. RR-IND-CCA) encryption scheme.

Proof: It follows from Construction 8.2 and Theorem 8.3 that the existence of IND-CPA schemes and the
existence of PRF function families imply the existence of RR-IND-CPA schemes. It is known that the
existence of IND-CPA schemes implies the existence of one-way functions [IL] and the existence of one-
way functions implies the existence of pseudorandom generators [HILL] which in turn implies the existence
of PRFs [GGM]. Therefore the existence of IND-CPA schemes implies the existence of RR-IND-CPA
schemes. Similarly, for the case of IND-CCA schemes. Another direction of the corollary is trivial.

9 Multi-Recipient Symmetric Encryption Schemes

The results of this paper for the asymmetric-key setting can be easily adjusted to the symmetric-key setting.
We first recall syntax for symmetric encryption schemes and the corresponding notion of security under a
chosen-plaintext attack.

9.1 Symmetric Encryption Schemes

SYNTAX. Following [BDJR], a symmetric encryption scheme SE = (SK,SE ,SD) consists of three algo-
rithms.

• An RPT key generation algorithm SK takes a security parameter k and returns a key sk.

• An RPT encryption algorithm SE takes sk and a message M ∈ MsgSp(k) to return a ciphertext C.

• A PT decryption algorithm D takes sk and a ciphertext C and returns a message M .

We require that for all k ∈ N, SDsk(SEsk(M)) = M for all M ∈ MsgSp(k).

SECURITY. Following [BDJR] we recall the security of a symmetric-key encryption scheme under chosen-
plaintext and chosen-ciphertext attacks. An adversary attacking the encryption scheme is given an encryp-
tion oracle SEK(·) which returns an encryption of an input plaintext. An adversary wins if it can find two
equal-length messages and is given a challenge ciphertext that is an encryption of one of the messages. The
adversary wins if it correctly guesses which plaintext goes with the challenge ciphertext. In the case of
chosen-ciphertext attacks the adversary is also given a decryption oracle, which decrypts input ciphertexts
except the challenge ciphertext.

Definition 9.1 Let SE = (SK,SE ,SD) be a symmetric-key encryption scheme. Let Acpa, Acca be adver-
saries which run in two stages and in both stages the former has access to an oracle and the latter has access
to two oraces. For b = 0, 1 define the experiments

Experiment Expcpa−b
SE,Acpa

(k)

sk
$← K(1k)

(M0,M1, st)
$← Acpa

SEsk(·)(find, k)

C
$← SEsk(Mb)

d
$← Acpa

SEsk(·)(guess, C, st)
Return d

Experiment Expcca−b
SE,Acca

(k)

sk
$← K(1k)

(M0,M1, st)
$← Acca

SEsk(·),SD(·)(find, k)

C
$← SEsk(Mb)

d
$← Acca

SEsk(·),SD(·)(guess, C, st)
Return d
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Above st denotes the state information the adversary wants to preserve. It is mandated that |M0| = |M1|
and M0,M1 ∈ MsgSp(k) above. We require that Acca does not make oracle query C in the guess stage.
For atk ∈ {cpa, cca} we define the advantages of the adversaries as follows:

Advatk
SE,Aatk

(k) = Pr
[
Expatk−0

SE,Aatk
(k) = 0

]
− Pr

[
Expatk−1

SE,Aatk
(k) = 0

]
The scheme SE is said to be IND-CPA secure (resp. IND-CCA secure) if the function Advcpa

SE,Acpa
(k)

(resp. Advcca
SE,Acca

(k)) is negligible for any RPT adversary.

We will also use weaker definitions of security for symmetric encryption schemes, wIND-CPA and
wIND-CCA. The only difference with the above standard definitions is that an adversary is not given the
encryption oracles.

Obviously any symmetric encryption scheme that is IND-CPA secure (resp. IND-CCA secure) is also
weakly IND-CPA secure (resp. weakly IND-CCA secure). We remark that the latter weak definition of
security is called Find-Guess (FG) security definition in [FO].

9.2 Symmetric-Key MRESs

We now consider MRESs in the symmetric-key setting. Syntax for such schemes SE = (SK,SE ,SD)
can be defined similarly to syntax of asymmetric MRESs defined in Section 2.2. The only difference is
that in the symmetric-key case we do not consider a common-key generation algorithm and instead of a
public/secret key pairs there are symmetric keys.

Again, we are interested in RR-MRESs. We can define them in a symmetric-key setting similarly to
Definition 3.1 for a public-key setting. The only changes are as mentioned above.

SECURITY. Unlike the public-key environment, in the symmetric-key setting the possibility of a common
randomness being learned by a receiver after performing decryption is not a threat for a symmetric-key
RR-MRES since it cannot help a user to get any information about non-legitimate messages. Moreover, for
many symmetric encryption schemes the random string used in an encryption algorithm is often public and a
part of a ciphertext. Nevertheless we still allow the model to consider insider attacks. The reason is that it is
reasonable to assume that secret keys could be chosen by users and are not always random and independent.
The definition is analogous to the one for asymmetric setting, but now the adversary is given an encryption
oracle which takes as input a message vector and outputs a ciphertext vector.

The adversary runs in two stages. In both stages it is given an encryption oracle which takes as input
n(k) messages and outputs a ciphertext vector. At the end of the find stage the adversary outputs two
vectors of n messages. In the guess stage the adversary gets as input a challenge ciphertext vector which is
a ciphertext vector corresponding to a random choice of two vectors, and outputs its guess. We now provide
a formal definition.

Definition 9.2 Let SE = (SK,SE ,SD) be a symmetric-key MRES. Let B be an adversary. B has access
to an oracle which takes a vector. For b ∈ {0, 1} and a polynomial n define the experiments:
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Experiment Expmr-cpa-b
SE,B,n(·)(k)

(1l, sk′, st) $← B(select, k, n(·)) ; [ 1 ≤ l ≤ n(k) ; |sk′| = n(k)− l]
For i = 1, . . . , l do sk[i] $← K(1k) EndFor
sk← sk||sk′

(M0,M1,M, st) $← BSEsk(·)(find, st)
[ |M0| = |M1| = l ; |M| = n(k)− l]

M← (Mb[1], . . . ,Mb[l],M[l + 1], . . . ,M[n(k)])

C $← SEsk(M)

d
$← BSEsk(·)(guess,C, st)

Return d

It is required that |M0[i]| = |M1[i]|, and are in MsgSp(k) for all 1 ≤ i ≤ n(k). We define the advantage
Advmr-cpa

SE,B
() of the adversary, IND-CPA security of the symmetric MRES analogously to the definitions

for the asymmetric case described in Section 4.

REPRODUCTIVITY OF SYMMETRIC-KEY ENCRYPTION SCHEMES. The definition of reproducible schemes
defined in Definition 6.1 can be naturally lifted for the symmetric-key setting.

Definition 9.3 Fix a symmetric-key encryption scheme SE = (SK,SE ,SD). Let R be an algorithm that
takes as input a ciphertext of a random message, another random message and a secret key, and returns a
ciphertext. Consider the following experiment.

Experiment Exprepr
SE,R(k)

sk
$← SK(1k) ; M

$← MsgSp(k) ; r
$← CoinsSE(k) ; C

$← SEsk(M, r)

sk′
$← SK(1k) ; M ′ $← MsgSp(k)

If SEsk′(M ′, r) = R(C,M ′, sk′) then return 1 else return 0 EndIf

We say that SE is reproducible if for any k there exists an RPTA R such that Exprepr
SE,R(k) outputs 1

with probability 1.

The analog of Theorem 6.2 also holds for a symmetric-key setting. It implies that if SE is reproducible and
IND-CPA then it is also RR-IND-CPA.

Theorem 9.4 Fix a symmetric-key encryption scheme SE = (SK,SE ,SD). Let SE = (SK,SE ,SD) be
the corresponding RR-MRES. If SE is reproducible then for any RPTA B, there exists an RPTA A, such
that

Advmr-cpa

SE,B,n(·)(k) ≤ n(k)Advcpa
SE,A(k)

The proof follows the proof of Theorem 6.2, presenting the adversary A which tries to break a symmetric
encryption scheme and uses the adversary B which attacks the associated symmetric key RR-MRES. The
main difference is that in this case A has to answer B’s encryption oracle queries. The problem is that A
does not know one secret key corresponding to it’s own challenge. But A has access to an encryption oracle
corresponding to this key. So it can query this oracle and then use the reproduction algorithm to get the rest
of the ciphertexts to form a ciphertext vector as an answer to B’s query. The rest of the proof in analogous.

CBC-BASES MRES. We recall CBC encryption scheme. The message space is a set of all strings whose
length is multiple of s bits. The scheme uses a family of permutations F : {0, 1}s×{0, 1}k → {0, 1}s. F−1
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denotes the inverse permutation. A key-generation algorithm of CBC[F ] = (SK,SE ,SD) simply outputs a
random k-bit string sk, which specifies a function F (sk, ·) with a domain and range {0, 1}s. Usually F is a
block cipher such as AES and k = 128. The encryption and decryption algorithms are defined as follows:

SEsk(M)
Parse M as M1, . . . ,Mp,

[ s.t. |Mi| = s for 1 ≤ i ≤ p ]
C0

$← {0, 1}s
For i = 1, . . . , p do

Ci ← F (sk, Ci−1 ⊕Mi)
EndFor
Return C0‖C1‖ . . . ‖Cp

SDsk(C)
Parse C as C0, . . . , Cp,

[ s.t. |Mi| = s for 0 ≤ i ≤ p ]
For i = 1, . . . , p do

Mi ← F−1(sk, Ci)⊕ Ci−1

EndFor
M ←M1‖ . . . ‖Mp

Return M

C0 is often called the initial vector (IV).

Lemma 9.5 CBC encryption scheme CBC[F ] = (SK,SE ,SD) is reproducible for any F .

Proof: An RPTA R takes as input R(C0‖C1‖ . . . ‖Cp,M
′, sk′) and returns C ′ = SEsk′(M ′, C0). It is easy

to see that R always outputs a valid ciphertext which is created using the same random string C0 as a given
ciphertext and therefore Exprepr

CBC[F ],R(k) will always output 1.

The result of [BDJR] states that if F is a pseudorandom function family then CBC[F ] is IND-CPA. It
follows from this result and form the reproduction theorem and Lemma 9.5 that CBC[F ] is RR-IND-CPA.

10 Secure Hybrid SM-MRES

Construction 10.1 Let AE = (G,K, E ,D) be an asymmetric MRES and let SE = (SK,SE ,SD) be
a symmetric encryption scheme. The single-message multi-recipient hybrid encryption scheme HS =
(G,K,HE ,HD) is an asymmetric SM-MRES encryption scheme and its common key generation and key
generation algoriths are the same as those of AE . The rest of algorithms are as follows.

HEI,pk(M)

K
$← SK(1k)

For i = 1, . . . , n(k) do K[i]← K EndFor

C′ $← Epk(I,K) ; C ′′ $← SEK[1](M[1])
For i = 1, . . . , n(k) do C[i]← C′[i]‖C ′′ EndFor
Return C

HDI,sk(C)
Parse C as C ′‖C ′′

K ← DI,sk(C ′)
M ← SDK[1](C ′′)
Return M

Note that the second part of C[i] for all 1 ≤ i ≤ n(k) is the same and can be sent only once thus permitting
bandwidth savings. The following theorem states that the above SM-MRES is secure given thatAE and SE
meet the corresponding notions of security.

Theorem 10.2 LetAE = (G,K, E ,D) be an asymmetric MRES and let SE = (SK,SE ,SD) be a symmet-
ric encryption scheme. Let HS = (G,K,HE ,HD) be a SM-MRES constructed as per Construction 10.1.
Then for any RPTA A there exist RPTAs B,C such that for atk ∈ {cpa, cca}

Advsmmr-atk
HS,A,n(·)(k) ≤ 2Advsmmr-atk

AE,B,n(·)(k) + Advw-atk
SE,C (k) .

The proof is in Appendix E.
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the case of chosen-ciphertext attacks. Let B be an adversary attacking the RR-MRES AE . We will design
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an adversary A attacking the scheme AE so that

Advcpa
AE,A(k) ≥ 1

n(k)
Advmr-cpa

AE,B,n(·)(k) .

This implies the statement of the Theorem 6.2. We begin by describing some hybrid experiments associated
to B and AE . It is convenient to parameterize the hybrids via an integer j, where j is ranging from 0 to
n(k).

Experiment ExpHj(k) [ 0 ≤ j ≤ n(k)]
I

$← G(1k) ; (1l, st) $← B(select, n(k), I)

For i = 1, . . . , l do (pk[i], sk[i]) $← K(I) EndFor

(M0,M1,M, coins, st) $← BO1(·),...,Ol(·)(find,pk, st)

For i = l + 1, . . . , n(k) do (pk[i], sk[i]) $← K(I, coinsK(I)[i]) EndFor
pk← (pk[1], . . . ,pk[n(k)])
If j ≤ l

then M← (M0[1], . . . ,M0[j],M1[j + 1], . . . ,M1[l],M[l + 1], . . . ,M[n(k)])
else M← (M1[0], . . . ,M0[l],M[l + 1], . . . ,M[n(k)])

EndIf

C $← EI,pk(M)

d
$← B(guess,C, st)

Return d

Let Pj
def= Pr

[
ExpHj(k) = 0

]
for j = 0, 1, . . . , n(k). Now we claim that

Advmr-cpa

AE,B,n(·)(k) = Pn(k) − P0 . (1)

This is justified as follows. We claim that

Pr
[
Expmr-cpa-0

AE,B,n(·)(1
k) = 0

]
= Pn(k) and Pr

[
Expmr-cpa-1

AE,B,n(·)(1
k) = 0

]
= P0 ,

and after subtraction Equation (1) follows. We now justify the two equations above. In experiment ExpHn(k)(k)
we have j = n(k) and a challenge ciphertext C is computed by encrypting the “left” vector of messages
M0 under l different public keys plus the encryptions of the rest n(k)− l messages, so that the B’s “view”
is the same as in experiment Expmr-cpa-0

AE,B,n(·)(1
k). On the other hand in experiment ExpH0(k) we have j = 0

, and a challenge ciphertext C consists of l encryptions of messages from a “right” vector of messages under
l different public keys, plus the encryptions of the rest n(k)− l messages, so that B’s “view” is the same as
in experiment Expmr-cpa-1

AE,B,n(·)(1
k).

Now we turn to the description of A.

Adversary A(find, I,pk)

(1l, st′) $← B(select, n(k), I) ; j
$← {1, . . . , n(k)}

If j ≤ l then For i ∈ {1, . . . , j − 1, j + 1, . . . , l} do (pk[i], sk[i]) $← K(I) ; pk[j]← pk EndFor

else For i = 1, . . . l do (pk[i], sk[i]) $← K(I) EndFor
EndIf

(M0,M1,M, coins, st′) $← B(find, I,pk, st′)

For i = l + 1, . . . , n(k) do (pk[i], sk[i]) $← K(I, coins[i]) EndFor
If j > l then M0[j]←M[j] ; M1[j]←M[j] EndIf
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st← (j, l,pk, sk,M0,M1,M, st)
Return (M0[j],M1[j], st)

Adversary A(guess, C, st)
For i ∈ {1, . . . , j − 1, j + 1, . . . , n(k)} do

If i ≤ j then M ′ ←M0[i] else M ′ ←M1[i] EndIf
C[i]← R(I, pk, C, M ′,pk[i], sk[i])

EndFor
C′ ← (C[1], . . . ,C[j − 1], C,C[j + 1], . . . ,C[n(k)])

d
$← B(guess,C′, st′)

Return d

We claim that

Pr
[
Expcpa−0

AE,A (k) = 0
]

=
1

n(k)
·
n(k)∑
j=1

Pj and Pr
[
Expcpa−1

AE,A (k) = 0
]

=
1

n(k)
·
n(k)∑
j=1

Pj−1 . (2)

Subtracting and exploiting the collapse of the sums we get

Advcpa
AE,A(k) =

1
n(k)

·
n(k)∑
j=1

Pj − Pj−1 =
1

n(k)
· [Pn(k) − P0] =

1
n(k)

·Advmr-cpa

AE,B,n(·)(k) .

The statement of the theorem follows, so it remains to justify Equations (2). Each value of j in {1, . . . , n(k)}
is equally likely for A. The j’s ciphertext in B’s challenge ciphertext vector is a A’s challenge ciphertext.
And reproductivity of AE guarantees that all n(k) ciphertexts in a challenge ciphertext are computed using
the same random string. It is easy to see that the experiment Expcpa−0

AE,A (k) is the same as ExpHj(k).
Similarly, the experiment Expcpa−1

AE,A (k) is the same as ExpHj−1(k).
The running time of A is one of B plus one of R plus the time to pick a number j ≤ n(k) at random.
We provide a sketch of how to extend the proof to the case of chosen-ciphertext attacks. The definition

of the hybrid experiments is the same with regard to how the inputs to B are computed. Decryption queries
are however answered truthfully, using the correct secret key. The adversary A is given also the decryption
oracle DI,sk(·) where sk is the secret key corresponding to its input public key pk. It proceeds as before.
The novel elements is to provide answers to decryption oracle queries. When the query is to DI,ski

(·) for
1 ≤ i ≤ l, i 6= j, algorithm A can easily provide the answer since it is in possession of ski. When i = j it
provides the answer by invoking its own given decryption oracle. The analysis proceeds as before.

B Proof of Theorem 7.3

Let A be an adversary attacking EG scheme. We will design an adversary D for the DDH problem which
we recalled in Definition 7.1 so that

Advddh
G,D(k) ≥ 1

2
·Advmr-cpa

EG,B,n(·)(k)− 1
2k−1

. (3)

This implies the statement of Theorem 7.3. So it remains to specify D. We present the code for D in
Figure 3.

We now proceed to analyze D. First consider Expddh-real
G,D (k). In this case, the inputs X, Y, T to D above

satisfy T = gxy where X = gx and Y = gy for some x, y in Zq. Using DDH random self-reducibility and
its analysis done in [St, NR, Sh, BBM] we claim that for all i ∈ 2, . . . l the triples (Xi, Y, Ti) computed by
D are also valid Diffie-Hellman triples and Xi, Ti are all uniformly and independently distributed over Gq.
Thus X1, . . . , Xl have the proper distribution of public keys. Since the second triple elements are equal all
ciphertexts are computed using the same random string. Thus, the challenge vector of l ciphertexts together

26



Adversary D(1k, G̃, q, g,X, Y, T )
X1 ← X ; T1 ← T ; I ← (G̃, 1k, q, g) ; pk1 ← X1

(l, st) $← B(select, n(·), I)
For i = 2, . . . l do

vi
$← Zq ; wi

$← Zq ; Xi ← (X1)wi · gvi ; Ti ← Twi
1 · Y vi

pki ← Xi

EndFor
(M1,0,M2,0, . . . ,Ml,0,M1,1,M2,1, . . . ,Ml,1,Ml+1, . . . ,Mn(k),

pkl+1, skl+1, . . . ,pkn(k), skn(k), st)
$← B(find,pk1, . . . ,pkl, st)

b
$← {0, 1}

For i = 1, . . . l do
C[i]← (Y, Ti ·Mi,b)

EndFor
For i = l + 1, . . . n(k) do

C[i]← (Y, Y ski ·Mi)
EndFor
C← C[1], . . . ,C[n]
Run A(guess,C, st)
Eventually A halts
If it outputs a bit d and b = d then return 1 else return 0

Figure 3: Adversary D for the proof of Theorem 7.3

with the n − l ciphertexts are distributed exactly like a ciphertext in RR-MRES ElGamal scheme under
public keys pk1, . . . pkn. We use it to see that for any k

Pr
[
Expddh-real

G,D (k) = 1
]

=
1
2
· Pr

[
Expmr-cpa-0

EG,B,n(·)(1
k) = 0

]
+

1
2
·
(
1− Pr

[
Expmr-cpa-0

EG,B,n(·)(1
k) = 0

])
=

1
2

+
1
2
·Advmr-cpa

EG,B,n(·)(k) . (4)

Now consider Expddh-rand
G,D (k). In this case, the inputs X, Y, T to D above are all uniformly distributed over

Gq. Clearly, for 1 ≤ i ≤ l Xi, Ti are all uniformly and independently distributed over Gq. Again, we have
a proper distribution public keys for the ElGamal cryptosystem. But now T1, . . . , Tl are random elements in
Gq and are independent of anything else. The rest n− l ciphertexts cannot give any additional information
to the adversary since A could compute them itself using Y and xl+1, . . . , xn. This means that the challenge
ciphertext gives B no information about b, in an information-theoretic sense. We have

Pr
[
Expddh-rand

G,D (k) = 1
]
≤ 1

2
+

1
2k−1

. (5)

The last term accounts for the maximum probability that random inputs to D happen to have the distribution
of a valid Diffie-Hellman triple. For any q this probability is less then 1

2k−1 since 2k−1 < q < 2k. Subtracting
Equations 4 and 5 we get

Advddh
G,D(k) = Pr

[
Expddh-real

G,D (k) = 1
]
− Pr

[
Expddh-rand

G,D (k) = 1
]
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≥ 1
2
·Advmr-cpa

EG,B,n(·)(k)− 1
2k−1

,

which is Equation (3).
It remains to specify D’s running time. The overhead for D is that of performing at most 2n exponentia-

tion operations with respect to a base element in Gq and an exponent in Zq and 2n multiplication operations
of the elements in Gq, which we can bound by O(n(k)k3), and that’s the added cost in time of D.

C Proof of Theorem 7.6

The proof is very similar to that of the Cramer-Shoup scheme [CrSh2, Theorem 1]. We first change (6) and
(9) of Expmr-cca-b

AE,B,n(·)(k) as follows (see Def. 4.1).

(6’) b
$← {0, 1}, M← (Mb[1], . . . ,Mb[l],M[1], . . . ,M[n(k)− l])

(9’) Return d′ = d⊕ b.

This experiment is denoted by Exp2mr−cca
AE,B,n(·)(k). The advantage of an adversary B is defined as

Adv2mr−cca
AE,B,n(·)(k) = Pr[Exp2mr−cca

AE,B,n(·)(k) = 0]− 1/2.

It is easy to see that
Advmr−cca

AE,B,n(·)(k) = 2Adv2mr−cca
AE,B,n(·)(k).

More concretely, Exp2mr−cca
CS,B,n(·)(k) is described as follows.

Exp2mr−cca
CS,B,n(·)(k)

(1) I
$← G(1k), where I = (1k, G̃, q, g1, g2,K) ;

(1l, st) $← B(select, n(k), I) [ 1 ≤ l ≤ n(k)]

(2) For i = 1, . . . , l do (pk[i], sk[i]) $← K(I) EndFor

(3) (M0,M1,M, coins, st) $← BO1(·),...,Ol(·)(find,pk, st)
[ |M0| = |M1| = l ; |M| = n(k)− l]
[ |pk| = l ; |coins| = n(k)− l]

(4) For i = l + 1, . . . , n(k) do (pk[i], sk[i]) $← K(I, coins[i]) EndFor
(5) pk← (pk[1], . . . ,pk[l],pk[l + 1], . . . ,pk[n(k)])

(6) b
$← {0, 1}, M← (Mb[1], . . . ,Mb[l],M[1], . . . ,M[n(k)− l])

(7) C $← EI,pk(M)

(8) d
$← BO1(·),...,Ol(·)(guess,C, st)

(9) Return d′ = d⊕ b,

where EI,pk(M) can be written as
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Parse I as (1k, G̃, g1, g2,K)

(E1) r
$← Zq

(E2) u∗1 ← gr
1 ; u∗2 ← gr

2

Parse M as (M1, · · · ,Mn).
For i = 1, · · · , n(k), do:

Parse pk[i] as (ci, di, hi)
(E3) f∗i ← hr

i

(E4) e∗i ← f∗i Mi

(E5) α∗i ← EHK(u∗1, u
∗
2, e

∗
i )

(E6) v∗i ← (c∗i )
r(d∗i )

rα∗i

Return (u∗1, u
∗
2, e

∗
1, v

∗
1, · · · , e∗n, v∗n)

In the above, we let pk[i] = (ci, di, hi) for 1 ≤ i ≤ n(k). Similarly, let sk[i] = (x1,i, x2,i, y1,i, y2,i, z1,i, z2,i)
for 1 ≤ i ≤ n(k). Let w be such that g2 = gw

1 .
Let G0 be Exp2mr−cca

AE,B,n(·)(k), and let T0 be the event that G0 = 0, so that

Adv2mr−cca
AE,B,n(·)(k) = Pr[T0]− 1/2.

We shall define a sequence G0,G1, · · · ,G5 of modefied experiments, and let Ti be the event that Gi = 0
for 1 ≤ i ≤ 5.

In G1, we modify the encryption algorithm slightly in such a way that steps E3 and E6 are replaced by
the corresponding part of the decryption algorithm:

(E3’) f∗i ← (u∗1)
z1,i(u∗2)

z2,i .

(E6’) v∗i ← (u∗1)
x1,i+y1,iw(u∗2)

x2,i+y2,iw.

This change is purely conceptual. It is clear that

Pr[T1] = Pr[T0]. (6)

In G2, we further modify steps E1 and E2:

(E1’) r1
$← Zq, r2

$← Zq \ {r1}.

(E2’) u∗1 ← gr1
1 ; u∗2 ← gr2

2 .

Under the DDH assumption, B cannot distinguish G2 from G1. More precisely, we have

Lemma C.1 There exists a probabilistic algorithm D, whose running time is essentially the same as that of
the adversary B, such that

|Pr[T2]− Pr[T1]| ≤ Advddh
G,D(k) + 3/q. (7)

Proof: The proof is the same as that of [CrSh2, Lemma 5]. We show a distinguisher D for the DDH problem.
D takes as an input (1k, G̃, q, g,X, Y, T ), where X = gw, Y = gr1 , T = gwr2 for some w, r1, r2. Our D
executes the experiment Exp2mr−cca

CS,B,n(·)(k) with the following modification of step (1) and step (E2’) using
(g,X, Y, T ).
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(1’) Let I = (1k, G̃, q, g1, g2,K) be such that g1 = g, g2 = X .

(E2”) u∗1 ← Y ; u∗2 ← T .

Finally, D outputs d′ of step (9) of the experiment.

It is easy to see that the above experiment is the same as G1 if (g,X, Y, T ) is a DDH-tuple because r2 = r1

in this case. Hence we have
Pr

[
Expddh-real

G,D (k) = 0
]

= Pr[T1].

On the other hand, the above experiment is the same as G2 if (g,X, Y, T ) is a random tuple such that
r2 6= r1. Hence we have

Pr
[
Expddh-rand

G,D (k) = 0 | r2 6= r1

]
= Pr[T2].

Therefore, we have

|Pr[T2]− Pr[T1]| =
∣∣∣Pr

[
Expddh-rand

G,D (k) = 0 | r2 6= r1

]
− Pr

[
Expddh-real

G,D (k) = 0
]∣∣∣

≤
∣∣∣Pr

[
Expddh-rand

G,D (k) = 0
]
− Pr

[
Expddh-real

G,D (k) = 0
]∣∣∣ + 3/q

= Advddh
G,D(k) + 3/q,

where the last inequality comes from [CrSh2, Lemma 1].

In G3, we modify the decryption oracles in G2. We replace steps D1 and D2 with:

(D1’) Test if u2 = uw
1 and v = u1

x+yα; return ⊥ and halt if this is not the case.

(D2’) f ← uz
1,

where x = x1 + x2w, y = y1 + y2w, z = z1 + z2w.

Lemma C.2 Suppose that the adversary B makes Q(k) decryption oracle queries in total. Then there exists
a RPTA C, whose running time is essentially the same as that of B, such that

|Pr[T3]− Pr[T2]| ≤ n(k)(Advtcr
H,C(k) + 1/q) + Q(k)/q. (8)

The proof is almost the same as that of [CrSh2], and it is given in the next subsection.

In G4, we modify the encryption oracle in G3 slightly. We replace step E4 with:

(E4’) si
$← Zq, e∗i

$← gsi
1 .

It is clear that
Pr[T4] = 1/2. (9)

Lemma C.3
Pr[T4] = Pr[T3]. (10)
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Proof: In G3, before the challenge ciphertext C is given, all the information that B knows on (z1,i, z2,i) is
hi = g

z1,i

1 g
z2,i

2 for each i. At step (E3’), f∗i is computed as f∗i = (u∗1)
z1,i(u∗2)

z2,i . ¿From these equations,
we have

logg1
hi = z1,i + wz2,i

logg1
f∗i = r1z1,i + r2wz2,i

The above two equations are linearly independent because r1 6= r2. Hence there exists a bijection be-
tween f∗i and a solution (z1,i, z2,i). This implies that f∗i is random because (z1,i, z2,i) is randomly chosen.
Therefore, e∗i = f∗i Mi is also random. This means that Pr[T4] = Pr[T3].

¿From Equations (6) - (10), we obtain that

Adv2mr−cca
AE,B,n(·)(k) ≤ Advddh

G,D(k) + n(k)Advtcr
H,C(k) + (Q(k) + n(k) + 3)/q.

Therefore,

Advmr−cca
AE,B,n(·)(k) ≤ 2Advddh

G,D(k) + 2n(k)Advtcr
H,C(k) + 2(Q(k) + n(k) + 3)/q

≤ 2Advddh
G,D(k) + 2n(k)Advtcr

H,C(k) + 4(Q(k) + n(k) + 3)/2k.

C.1 Proof of Lemma C.2

Proposition C.4 [CrSh2, Lemma 4.] Let U1, U2 and F be events defined on some probability space. Sup-
pose that the event U1 ∧ ¬F occurs if and only if U2 ∧ ¬F occurs. Then

|Pr[U1]− Pr[U2]| ≤ Pr[F ].

Let R3 be the event that in G3, the adversary B queries a ciphertext Ci = (u1, u2, e, v) to some decryp-
tion oracle Oi such that Ci is rejected at step D1’ but that would pass the test in step D1 of the decryption
algorithm. It happens if and only if u1 = gr1

1 , u2 = gr2
2 with r1 6= r2 and

v = u
x1,i+y1,iα
1 u

x2,i+y2,iα
2 ,

where α = EHK(u1, u2, e). It is clear that G2 and G3 proceed identically until event R3 occurs. In
particular, the events T2 ∧ ¬R3 and T3 ∧ ¬R3 are identical. So by Proposition C.4, we have

|Pr[T3]− Pr[T2]| ≤ Pr[R3]. (11)

So it suffices to bound Pr[R3] in order to prove Lemma C.2.

In G4, define the event R4 in the same way as the event R3 in G3. Then it is easy to see that

Pr[R4] = Pr[R3] (12)

because G3 and G4 are identical as shown in the proof of Lemma C.3.
We next introduce G5, where G5 is the same as G4 except for the following special rejection rule. After

step (7), if B queries a ciphertext Ci = (u1, u2, e, v) to some decryption oracle Oi such that (u1, u2, e) 6=
(u∗1, u

∗
2, e

∗
i ) but v = v∗i , then the decryption oracle immediately outputs reject and halts (before executing

step D1’).
In G5, we define an event R5 in the same way as R3 in G3. We also define C5 as an event such that

some decryption oracle rejects a ciphertext using the above special rejection rule.
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It is clear that G4 and G5 proceed identically until event C5 occurs. In particular, the events R4 ∧ ¬C5

and R5 ∧ ¬C5 are identical. So by Proposition C.4, we have

|Pr[R5]− Pr[R4]| ≤ Pr[C5]. (13)

Lemma C.5 There exists a probabilistic algorithm D, whose running time is essentially the same as that of
the adversary B, such that

Pr[C5]/n(k) ≤ Advtcr
H,D(k) + 1/q. (14)

Proof: The proof is almost the same as that of [CrSh2, Lemma 7]. We show an algorithm D which breaks
the target collision resistance of H. D takes as input a key K of H and a string X0 = (a∗, b∗, e∗) ∈ G3.
Then our D executes Exp2mr−cca

CS,B,n(·)(k) with the following modification of step (E2’) and (E4’) using X0 =
(a∗, b∗, e∗).

E2”’ Let u∗1 ← a∗ and u∗2 ← b∗.

E4” This step is the same as (E4’) except for the following modification. Choose 1 ≤ i ≤ n(k) randomly,
and let e∗i ← e∗ for this i.

If the decryption oracle Oi (with the above index i) invokes the special rejection rule for a ciphertext Ci =
(u1, u2, e, v), then D immediately outputs X1 = (u1, u2, e) and halts. Otherwise, D the aborts.

It is easy to see that if (a∗, b∗, e∗) is sampled randomly in such a way that logg1
a∗ 6= logg1

b∗, then
D succeeds in finding a collision with probability Pr[C5]/n(k). On the other hand, in the definition of
Advtcr

H,D(k), the input is sampled from the uniform distribution over G3. Eq.(14) follows from this statisti-
cal difference.

Lemma C.6 Suppose that the adversary makes Q(k) decryption queries in total. Then we have

Pr[R5] ≤ Q(k)/q. (15)

Proof: The proof is obtained in the say way as that of [CrSh2, Lemma 8]. This is because the above prob-
ability is essentially taken over sk[i] = (x1,i, x2,i, y1,i, y2,i) for all i, and sk[i] is independently chosen for
each i. Hence we can apply the proof technique of [CrSh2, Lemma 8] to each sk[i] = (x1,i, x2,i, y1,i, y2,i)
independently.

Inequality (8) now follows immediately from Equations (11) - (15).

D Proof of Theorem 8.3

We prove that for any RPTA Aatk, there exist an RPTA Batk, where atk ∈ {cpa, cca} and a RPT adversary
D, such that for any k ∈ N

Advmr-atk
AE ′[F ],Aatk,n(·)(k) ≤ n(k) ·Advatk

AE,Batk
(k) + 2 ·Advprf

F,D(k)

The statement of Theorem 8.3 is implied by this result. We first prove it for the case of chosen-plaintext
attacks and then show how the proof can be extended for the case of chosen-ciphertext attacks. Let R be
a family of all functions of {0, 1}il → {0, 1}ol. Let A be an RPTA adversary attacking the security of the
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multi-recipient scheme AE ′[F ]. We will construct a RPT adversary D which attacks F as a pseudorandom
function family and an adversary B which attacks the security of AE such that

Advprf
F,D(k) =

1
2
· (Advmr-cpa

AE ′[F ],A,n(·)
(k)−Advmr-cpa

AE ′[R],A,n(·)
(k)) (16)

Advcpa
AE,B,n(·)(k) ≥ 1

n(k)
·Advmr-cpa

AE ′[R],A,n(·)
(k) (17)

whereAE ′[R] denotes the encryption scheme which uses a random function in place of the random instance
of the pseudorandom function family. This implies the statement of the theorem. It remains to specify the
strategies of D and B. The adversary D takes k and has access to an oracle g: {0, 1}il → {0, 1}ol. Here is
the algorithm for D.

Adversary Dg(·)(1k)

b
$← {0, 1}

I
$← G(1k) ; (1l, st) $← A(select, n(k), I) [ 1 ≤ l ≤ n(k)]

For i = 1, . . . , l do (pk[i], sk[i]) $← K(I) EndFor

(M0,M1,M, coins, st) $← A(find,pk, st)
[ |M0| = |M1| = l ; |M| = n(k)− l]
[ |pk| = l ; |coins| = n(k)− l]

For i = l + 1, . . . , n(k) do (pk′[i], sk′[i]) $← K(I, coins[i]) EndFor
pk← (pk[1], . . . ,pk[l],pk′[l + 1], . . . ,pk′[n(k)])
M← (Mb[1], . . . ,Mb[l],M[1], . . . ,M[n(k)− l])

C $← E ′g(·)
pk (M)

d
$← A(guess,C, st)

If b = d then return 1 else return 0

Above E ′g(·)
pk denotes the procedure which substitutes all applications of F (r′, ·) in E ′pk(·)with an applica-

tion of g(·).
We now analyze the adversary. We claim that

Pr
[

Dg(·)(k) = 1 : g
$← F

]
= Pr

[
b = d : g

$← F
]

=
1
2

+
1
2
·Advmr-cpa

AE ′[F ],A,n(·)
(k)

Pr
[

Dg(·)(k) = 1 : g
$← R

]
= Pr

[
b = d : g

$← R
]

=
1
2

+
1
2
·Advmr-cpa

AE ′[R],A,n(·)
(k)

The above equations are justified as follows. If g is an instance of F then A’s view in the simulated experi-
ment is indistinguishable from its view in Expmr-cpa-b

AE ′[F ],A,n(·)
(k). This is true since in the real experiment the

challenge ciphertext vector for A’s guess stage is computed using an instance of the function family F spec-
ified by the key, which is the random string used by the encryption algorithm. In the simulated experiment
D uses its oracle which is also a random instance of the function family F . Similarly, if g is an instance
of R then A’s view in the simulated experiment is indistinguishable from it’s view in Expmr-cpa-b

AE ′[R],A,n(·)
(k).

After subtraction we get Equation (16).
We now prove Equation (17). Let A be an adversary which attacks the security of AE ′[R]. We will use

the hybrid experiments ExpHj(k) for 0 ≤ j ≤ n(k) we defined in the proof of Theorem 6.2, which are as-

sociated to A and the encryption schemeAE ′[R] . Let Pj
def= Pr

[
ExpHj(k) = 0

]
for j = 0, 1, . . . , n(k).
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Similarly to the proof of Theorem 6.2 we claim that

Advmr-cpa

AE ′[R],A,n(·)
(k) = Pn(k) − P0 . (18)

We now present the adversary B which attacks the security of AE . It will use A. Here is the code for B:

Adversary B(find, I, pk)

(l, st′) $← A(select, n(k), I) ; j
$← {1, . . . , n(k)}

If j ≤ l then For i ∈ {1, . . . , j − 1, j + 1, . . . , l} do (pk[i], sk[i]) $← K(I) ; pk[j]← pk EndFor

else For i = 1, . . . l do (pk[i], sk[i]) $← K(I) EndFor EndIf

(M0,M1,M, coins, st) $← A(find,pk, st)
For i = l + 1, . . . , n(k) do M0[i]←M[i] ; M1[i]←M[i] EndFor
st← (I, j, l ; pk, sk,M0,M1 ; st′)
Return (M0[j],M1[j], st)

Adversary B(guess, C, st)
For i ∈ {1, . . . , j − 1, j + 1, . . . , n(k)} do

If pk[i] = pk then M ← DI,ski
(C); If M = M0[j] then Return 0 else Return 1

Else

If ∃p: 1 ≤ p < i,pk[p] = pk[i] then ri ← rp; Else ri
$← CoinsE(I) EndIf

EndIf
EndFor
For i = 1, . . . , j − 1 do C[i]← EI,pk[i](M0[i], ri)
For i = j + 1, . . . , n do C[i]← Epk[i](M1[i], ri)

Cj ← C ; d
$← A(guess,C, st′)

Return d

We now analyze the adversary B. All values of j in {1, . . . n(k)} are equally likely for B, so we focus
on one particular value of j. If all the public keys created by B and those which are output by A are
different from B’s “challenge” public key pk, then we claim that the view of A in the experiment simulated
by B is indistinguishable from A’s view in the experiment ExpHj(k). This is true since the only potential
difference among these experiments from A’s view is how the values ri used as coin tosses for EI,pki

are
computed. In the experiment ExpHj(k) the values ri are computed as the output of a random function and
B computes ri by dynamically simulating a random function.

If at least one of the public keys created by B or one of those which are output by A happens to be
the same as B’s “challenge” public key pk, then A’s view in the simulated experiment is different from
its view in the experiment ExpHj(k), since for them to be the same B should compute the component of
C corresponding to this public key using the same randomness as was used to compute its own challenge
ciphertext C (since this randomness is the output of the random function invoked on the same inputs), but
B has no way of learning this randomness. However, in this case B learns the challenge secret key and can
always win its game by decrypting the challenge ciphertext. Thus we claim that

Pr
[
Expcpa−0

AE,B (1k) = 0
]
≥ 1

n(k)
·

n(k)∑
j=1

Pj and Pr
[
Expcpa−1

AE,B (1k) = 0
]
≤ 1

n(k)
·

n(k)∑
j=1

Pj−1 .

(19)
Subtracting and exploiting the collapse of the sums we get

Advcpa
AE,A(k) ≥ 1

n
·

n(k)∑
j=1

[Pj − Pj−1] =
1

n(k)
· [Pn(k) − P0] =

1
n(k)

·Advmr-cpa

AE ′[R],A,n(·)
(k) .
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The above implies Equation (17).
We now sketch out how to extend the proof to the case of chosen-ciphertext attacks. Both D and B now

have to answer A’s decryption oracle queries, which can be made to Dski
for 1 ≤ i ≤ l. D can easily do so

since it possesses all the secret keys sk1, . . . , skl. B knows all but one secret key, it does not know skj but it
has access to a decryption oracle which corresponds to this key. When A makes a query to Dskj

B provides
an answer by invoking its own decryption oracle. The definition of hybrid experiments remains the same,
except that A can ask decryption oracle queries, which are answered truthfully, using the correct secret key.
The rest of the analysis is as before.

It remains to specify running times of D and B. The running time of B is one of A plus the time to pick
a number j ≤ n(k) at random. The running time of D is one of A.

E Proof of Theorem 10.2

Let Aatk be an adversary attacking SM-MRESHS. We first define the following four experiments:

Experiment ExpHm-atk
HS,Aatk

(k) [ m ∈ {1, 2, 3, 4} ; atk ∈ {cpa, cca}]

I
$← G(1k) ; For i = 1, . . . , n(k) do (pk[i], sk[i]) $← K(I) EndFor

(1l, st) $← Aatk(select, n(k), I) ; If l 6= n(k) then abort EndIf

(M0,M1, st)
$← Aatk(find,pk, st)

If ∃ 1 ≤ i, j ≤ n(·) such that M0[i] 6= M0[j] or M1[i] 6= M1[j] then abort EndIf

K
$← SK(k) ; K ′ $← SK(k)

If l = 1 or l = 2 then C1
$← SEK(M0[1]) EndIf

If l = 3 or l = 4 then C1
$← SEK(M1[1]) EndIf

For i = 1, . . . , n(k) do

If m = 1 or m = 4 then C0
$← EI,pk(K) EndIf

If m = 2 or m = 3 then C0
$← EI,pk(K ′) EndIf

C← C0[i]‖C1

EndFor
If atk = cca and Acca during find stage makes a decryption oracle query C′ to oracleHDI,ski

(·)
M ← HDI,sk(C′[1]) EndIf
return M to Acca

EndIf

d
$← Aatk(guess,C, st)

If atk = cca and Acca during guess stage makes a decryption oracle query C′ to oracleHDI,ski
(·):

If m = 1 or m = 4 then M ← HDI,sk(C′[1]) EndIf
If m = 2 or m = 3 then parse C′[1] as C ′

0‖C ′
1

If C ′
0 = C0[1] then M ← SDK(C ′

1) else M ← HDI,sk(C′[1]) EndIf
EndIf
return M to Acca

EndIf
Return d

Let P atk
m

def= Pr
[
ExpHm-atk

HS,Aatk
(k) = 0

]
for m ∈ {1, 2, 3, 4}. It is not difficult to see that

Advsmmr-atk
HS,A,n(·)(k) = P atk

4 − P atk
1 = (P atk

4 − P atk
3 ) + (P atk

3 − P atk
2 ) + (P atk

2 − P atk
1 ) . (20)
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Adversary B1(select, n(·), I)
(1l, st′)← Acca(select, n(·), I) ; If l 6= n(k) then abort EndIf
Return (n(k), st′)

Adversary B
Dsk1

(·),...,Dskn(k)
(·)

1 (find,pk, st)

K
$← SK(k) ; K ′ $← SK(k)

Run Acca
HDsk1

(·)...HDskn(k)
(·)(find,pk, st′)

When Acca makes a query C ′ to its decryption oracleHDI,ski
(·) [ 1 ≤ i ≤ n(k) ]

parse C ′ as C ′
0‖C ′

1 ; K ′′ ← DI,ski
(C ′

0) ; M ← SDK′′(C ′
1)

Return M to Acca

Until Acca outputs (M0,M1, st
′)

If ∃ 1 ≤ i, j ≤ n(·) such that M0[i] 6= M0[j] or M1[i] 6= M1[j] then abort EndIf

C1
$← SEK(M0[1]) ; st← (pk,K,K ′, C1, st

′)
Return (K, K ′, st)

Adversary B
Dsk1

(·),...,Dskn(k)
(·)

1 (guess,C0, st)
Parse st as (pk,K,K ′, C1, st

′)
For i = 1 . . . n(k) do C[i]← C0[i]‖C1 EndFor

Run Acca
HDsk1

(·),...,HDskn(k)
(·)(find,C, st′) as follows

When Acca makes a query C ′ to its decryption oracleHDI,ski
(·) [ 1 ≤ i ≤ n(k) ]

parse C ′ as C ′
0‖C ′

1

If C ′
0 6= C0[1] then K ′′ ← DI,ski

(C ′
0) ; M ← SDK′′(C ′

1) else M ← SDK(C ′
1) EndIf

Return M to Acca

When Acca outputs d, return d

Figure 4: The adversary for the proof of Claim E.1

We now claim that

Claim E.1 For any k ∈ N there exists an RPTA B1 such that

P atk
4 − P atk

3 ≤ Advsmmr-atk
AE,B1,n(·)(k) .

Claim E.2 For any k ∈ N there exists an RPTA C such that

P atk
3 − P atk

2 ≤ Advw-atk
SE,C (k) .

Claim E.3 For any k ∈ N there exists an RPTA B2 such that

P atk
2 − P atk

1 ≤ Advsmmr-atk
AE,B2,n(·)(k) .

For a fixed k ∈ N, if Advsmmr-atk
AE,B1,n(·)(k) ≥ Advsmmr-atk

AE,B2,n(·)(k) then define an adversary B = B1 and B =
B2 otherwise. Then the statement of the theorem follows from Equation (20) and Claim E.1, Claim E.2,
Claim E.3. It remains to prove the latter claims.

Proof of Claim E.1: We consider a more general case of chosen-ciphertext attacks and then specify the
changes pertaining to the case of chosen-plaintext attacks. We present a pseudocode for an adversary B1 in
Figure E.

We comment on how B1 answers Acca’s decryption oracle queries. If the first (asymmetric) part of the
ciphertext queried by Acca is different from the elements of B1’s challenge ciphertext (which are all equal)
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Adversary CSDK(·)(find, k)

I
$← G(1k) ; For i = 1 . . . n(k) do (pk[i], sk[i]) $← K(I) EndFor

K ′ $← SK(k) ; (1l, st′) $← Acca(select, I)
If l 6= n(k) then abort EndIf

(M0,M1, st
′) $← Acca

HDsk1
(·)...HDskn(k)

(·)(find,pk, st′) [ B1 answers Acca’s decryption queries
using sk1, . . . , skn(k)]

If ∃ 1 ≤ i, j ≤ n(·) such that M0[i] 6= M0[j] or M1[i] 6= M1[j] then abort EndIf

C0
$← Epk(M) ; C1

$← SEK(M0[1]) ; st← (pk,C0,K
′, st′)

Return (M0[1],M1[1], st)
Adversary CDsk(·)(guess, C1, st)

Parse st as (pk,C0,K
′, st′)

For i = 1 . . . n(k) do C[i]← C0[i]‖C1 EndFor
Run Acca(find,C, st′) as follows
When Acca makes a query C ′ to its decryption oracleHDI,ski

(·) [ 1 ≤ i ≤ n(k) ]
parse C ′ as C ′

0‖C ′
1

If C ′
0 6= C0[1] then K ′′ ← DI,ski

(C ′
0) ; M ← SDK′′(C ′

1) else M ← SDK(C ′
1) EndIf

Return M to Acca

When Acca outputs d, return d

Figure 5: The adversary for the proof of Claim E.2

or if the challenge ciphertext is not yet known to B1 , then B1 can answer Acca’s decryption query by using
the corresponding decryption oracle on the asymmetric part of the ciphertext to compute the symmetric
key and then use the latter to decrypt the symmetric part of the ciphertext. If the asymmetric part of the
ciphertext queried by Acca is the same as the elements of B1’s challenge ciphertext, then B1 cannot use its
decryption oracles, but in this case B1 knows the symmetric key K and can just decrypt the symmetric part
of the queried ciphertext.

For the case of chosen-plaintext attacks, B1 and Acpa are not given the decryption oracles, hence B1 would
not need to answer Acpa’s decryption queries.

Analyzing the adversary we claim that

Advsmmr-atk
AE,B1,n(·)(k) = Pr

[
Expsmmr-atk-0

AE,B1,n(·) (k) = 0
]
− Pr

[
Expsmmr-atk-1

AE,B1,n(·) (k) = 0
]

≤ Pr
[
ExpH4-atk

HS,Aatk
(k)

]
− Pr

[
ExpH3-atk

HS,Aatk
(k)

]
= P atk

4 − P atk
3 ,

and that B1 runs in polynomial time.

Proof of Claim E.2: Again we consider a more general case of chosen-ciphertext attacks and then specify
the changes pertaining to the case of chosen-plaintext attacks. We present a pseudocode for an adversary C
in Figure E.

We comment on how C answers Acca’s decryption oracle queries. If the first (asymmetric) part of the cipher-
text queried by Acca is different from C’s challenge ciphertext (which are all equal) or when the challenge
ciphertext is not known to C yet, then C can answer Acca’s decryption query by using the asymmetric secret
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keys. If the asymmetric part of the ciphertext queried by Acca is the same as C’s challenge ciphertext, then
C can just decrypt the symmetric part of the queried ciphertext by querying it to its own decryption oracle.

For the case of chosen-plaintext attacks, C and Acpa are not given the decryption oracles, hence C would
not need to answer Acpa’s decryption queries. Thus we have

Advw-atk
SE,C (k) ≤ P atk

3 − P atk
2 ,

and that C runs in polynomial time.

Proof of Claim E.3: The proof is similar to the proof of Claim E.1. The main difference is that B2 will
output (K ′,K) at the end of its find stage, when B2 the proof of Claim E.1 outputs (K ′,K).
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