CS 6260 Applied Cryptography

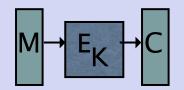
Alexandra (Sasha) Boldyreva

Block ciphers, pseudorandom functions and permutations

Block ciphers

Building blocks for symmetric encryption.

Examples: DES, 3DES, AES...



- A block cipher is a function family E:{0,1}^k×{0,1}ⁿ→{0,1}ⁿ, where k-key length, n-input and output lengths are the parameters
- Notation: for every $K \in \{0,1\}^k$ $E_K(M) = E(K,M)$
- For every $K \in \{0,1\}^k$, $E_K(\cdot)$ is a permutation (one-to-one and onto function). For every $C \in \{0,1\}^n$ there is a single $M \in \{0,1\}^n$ s.t. $C = E_K(M)$
- Thus each block cipher has an inverse for every key: E_K⁻¹(·)
 s.t. E_K(E_K⁻¹(C))=C for all M,C∈{0,1}ⁿ

DES

- Key length k=56, input and output length n=64
- 1973. NBS (National Bureau of Standards) announced a search for a data protection algorithm to be standardized
- 1974. IBM submits a design based on "Lucifer" algorithm
- 1975. The proposed DES is published
- 1976. DES approved as a federal standard
- DES is highly efficient: ≈2.5·10⁷ DES computations per second

Security of block ciphers

 Any block cipher E is subject to exhaustive key-search: given (M1,C1=E(K,M1),...,(Mq,Cq=E(K,Mq)) an adversary can recover K (or another key consistent with the given pairs) as follows:

```
EKS<sub>E</sub>((M1,C1),...(Mq,Cq))
For i=1,...,2<sup>k</sup> do
  if E(Ti,M1)=C1 then //Ti is i-th k-bit string//
    if E(Ti,Mj)=Cj for all 2≤j≤q then return Ti EndIf
    EndIf
EndFor
```

Security of block ciphers

- Exhaustive key search takes 2^k block cipher computations in the worst case.
- On the average: $\sum_{i=1}^{2^k} i \cdot \Pr[K = T_i] = \sum_{i=1}^{2^k} \frac{i}{2^k} = \frac{1}{2^k} \cdot \sum_{i=1}^{2^k} i$

$$= \frac{1}{2^k} \cdot \frac{2^k (2^k + 1)}{2} = \frac{2^k + 1}{2} \approx 2^{k-1}$$

- DES has a property that $DES_K(x) = DES_{\overline{K}}(\overline{x})$, this speeds up exhaustive search by a factor of 2
- For DES (k=56) exhaustive search takes $2^{55}/2.2.5.10^7$ that is about 23 years

Security of DES

- There are more sophisticated attacks known:
 - differential cryptoanalysis: finds the key given about 2⁴⁷ chosen plaintexts and the corresponding ciphertexts
 - linear cryptoanalysis: finds the key given about 2⁴² known plaintext and ciphertext pairs
- These attacks require too many data, hence exhaustive key search is the best known attack. And it can be mounted in parallel!
- A machine for DES exhaustive key search was built for \$250,000. It finds the key in about 56 hours on average.
- A new block cipher was needed....
- Triple-DES: 3DES(K1||K2,M)=DES(K2, DES⁻¹(K1, DES(K2,M)).
 - 3DES's keys are 112-bit long. Good, but needs 3 DES computations

Advanced Encryption Standard (AES)

- 1998. NIST announced a search for a new block cipher.
- 15 algorithms from different countries were submitted
- 2001. NIST announces the winner: an algorithm Rijndael, designed by Joan Daemen and Vincent Rijmen from Belgium.
- AES: block length n=128, key length k is variable: 128, 192 or 256 bits.
- Exhaustive key search is believed infeasible

Limitations of key-recovery based security

- A classical approach to block cipher security: key recovery should be infeasible.
- I.e. given (M1,E(K,M1),...,Mq,E(K,Mq)), where K is chosen at random and M1,...Mq are chosen at random (or by an adversary), the adversary cannot compute K in time t with probability ε.
- Necessary, but is it sufficient?
- Consider E'(K,M1||M2)=E(K,M1)||M2 for some "good"
 E. Key recovery is hard for E' as well, but it does not
 look secure.
- Q. What property of a block cipher as a building block would ensure various security properties of different constructions?

Intuition

- We want that (informally)
 - key search is hard
 - a ciphertext does not leak bits of the plaintext
 - a ciphertext does not leak any function of a plaintexts
 - •
 - there is a "master" property of a block cipher as a building block that enables security analysis of protocols based on block ciphers
- It is good if ciphertexts "look" random

- Pseudorandom functions (PRFs) and permutations (PRPs) are very important tools in cryptography. Let's start with the notion of function families:
- A function family F is a map Keys(F)×Dom(F) → Range(F).
- For any K∈Keys(F) we define F_K=F(K,M), call it an instance of F.
- Notation $f \stackrel{\$}{\leftarrow} F$ is the shorthand for $K \stackrel{\$}{\leftarrow} Keys(F)$; $f \leftarrow F_K$
- Block cipher E is a function family with Dom(E)=Range(E)= {0,1}ⁿ and Keys(K)={0,1}^k

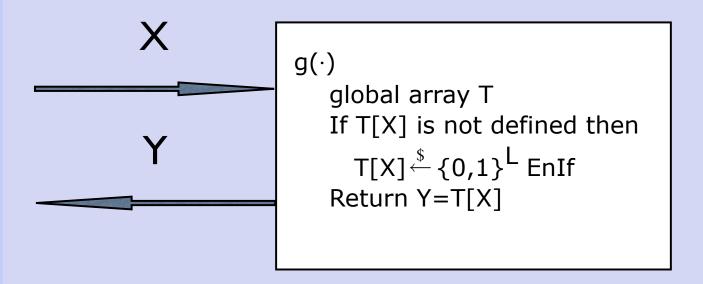
- Let Func(ℓ , L) denote the set of all functions from $\{0,1\}^{\ell}$ to $\{0,1\}^{L}$.
- It's a function family where a key specifying an instance is a description of this instance function.
- Q. How large is the key space?
- A. 2^{L2^6}
- We will often consider the case when ℓ=L
- Let's try to understand how a random function (a random instance f of Func(ℓ,L)) behaves

Random functions

- g ^{\$} F(ℓ,L)
- We are interested in the input-output behavior of a random function. Let's imagine that we have access to a subroutine that implements such a function:

```
g(X\epsilon{0,1}^{\ell})
global array T
If T[X] is not defined then
T[X]^{\stackrel{\$}{\leftarrow}} \{0,1\}^{L} \text{ EndIf}
Return T[X]
```

"Black box" access



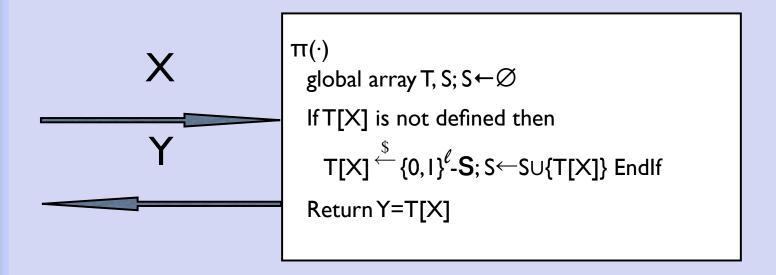
Note that for any $X \in \{0,1\}^{\ell}$ and $Y \in \{0,1\}^{L}$ $Pr[g(X)=Y]=2^{-L}$

Random permutations

- Perm(ℓ) is the set of all permutations on $\{0,1\}^{\ell}$
- Q. How large is the key space?
- <u>A.</u> *l*!
- We are interested in a random instance π^{\$} Perm(ℓ)

```
\pi(X \in \{0,1\}^{\ell}) global array T, S; S \leftarrow \emptyset If T[X] is not defined then T[X] \xrightarrow{\$} \{0,1\}^{\ell}-S; S \leftarrow S \cup \{T[X]\} EndIf
```

"Black box" access



For any
$$X \in \{0,1\}^{\ell}$$
 and $Y \in \{0,1\}^{\ell}$ $Pr[\pi(X)=Y]=2^{-\ell}$

Random functions vs permutations

Fix $X_1, X_2 \in \{0, 1\}^{\ell}$ and $Y_1, Y_2 \in \{0, 1\}^{L}$

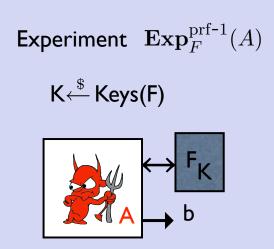
f-random	function	permutation $l = L$
$\Pr[f(X) = Y] =$	$\sim 2^{-L}$	$2^{-\ell}$
$\Pr[f(X_1) = Y_1 \mid f(X_2) = Y_2] =$	$\sim 2^{-L}$	$\begin{cases} \frac{1}{2^{\ell} - 1} & \text{if } Y_1 \neq Y_2\\ 0 & \text{if } Y_1 = Y_2 \end{cases}$
$\Pr[f(X_1) = Y \text{ and } f(X_2) = Y] =$	$\begin{cases} 2^{-2L} & \text{if } X_1 \neq X_2 \\ 2^{-L} & \text{if } X_1 = X_2 \end{cases}$	$\begin{cases} 0 & \text{if } X_1 \neq X_2 \\ 2^{-\ell} & \text{if } X_1 = X_2 \end{cases}$
$\Pr\left[f(X_1) \oplus f(X_2) = Y\right] =$	$\begin{cases} 2^{-L} & \text{if } X_1 \neq X_2 \\ 0 & \text{if } X_1 = X_2 \text{ and } Y \neq 0^L \\ 1 & \text{if } X_1 = X_2 \text{ and } Y = 0^L \end{cases}$	$\begin{cases} \frac{1}{2^{\ell} - 1} & \text{if } X_1 \neq X_2 \text{ and } Y \neq 0^{\ell} \\ 0 & \text{if } X_1 \neq X_2 \text{ and } Y = 0^{\ell} \\ 0 & \text{if } X_1 = X_2 \text{ and } Y \neq 0^{\ell} \\ 1 & \text{if } X_1 = X_2 \text{ and } Y = 0^{\ell} \end{cases}$

Pseudorandom functions (PRFs)

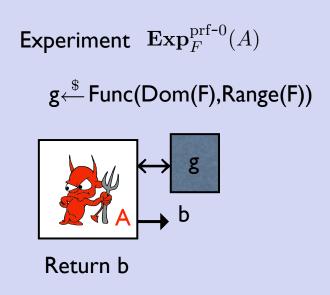
 Informally, a function family F is a PRF if the input-output behavior of its random instance is computationally indistinguishable from that of a random function.

PRFs

Def. Fix a function family F: Keys(F) × Dom(F) → Range(F)



Return b



The prf-advantage of an adversary A is

$$\mathbf{Adv}_F^{\mathrm{prf}}(A) = \Pr\left[\mathbf{Exp}_F^{\mathrm{prf-1}}(A) = 1\right] - \Pr\left[\mathbf{Exp}_F^{\mathrm{prf-0}}(A) = 1\right]$$

F is a secure PRF if for any adversary with "reasonable" resources its prf-advantage is "small".

PRFs

Def. Fix a function family F: Keys(F) × Dom(F) → Range(F)

Experiment
$$\mathbf{Exp}_F^{\mathrm{prf-1}}(A)$$
 | Experiment $\mathbf{Exp}_F^{\mathrm{prf-0}}(A)$ | $K \overset{\$}{\leftarrow} \mathcal{K}$ | $g \overset{\$}{\leftarrow} \mathrm{Func}(D,R)$ | $b \overset{\$}{\leftarrow} A^{F_K}$ | $b \overset{\$}{\leftarrow} A^g$ | Return b

The prf-advantage of an adversary A is

$$\mathbf{Adv}_F^{\mathrm{prf}}(A) = \Pr\left[\mathbf{Exp}_F^{\mathrm{prf-1}}(A) = 1\right] - \Pr\left[\mathbf{Exp}_F^{\mathrm{prf-0}}(A) = 1\right]$$

F is a secure PRF if for any adversary with "reasonable" resources its prf-advantage is "small".

Resources of an adversary

- Time-complexity is measured in some fixed RAM model of computation and includes the maximum of the running-times of A in the experiments, plus the size of the code for A.
- The number of queries A makes.
- The total length of all queries.

Pseudorandom permutations (PRPs)

 Informally, a function family F is a PRP if the input-output behavior of its random instance is computationally indistinguishable from that of a random permutation.

PRPs under chosen-plaintext attacks (CPA)

Def. Fix a function family F: Keys(F) × Dom(F) → Dom(F)

Experiment
$$\mathbf{Exp}_F^{\text{prp-cpa-1}}(A)$$
 | Experiment $\mathbf{Exp}_F^{\text{prp-cpa-0}}(A)$ | $K \overset{\$}{\leftarrow} \mathcal{K}$ | $g \overset{\$}{\leftarrow} \text{Perm}(D)$ | $b \overset{\$}{\leftarrow} A^{F_K}$ | $b \overset{\$}{\leftarrow} A^g$ | Return b | Return b

The prp-cpa-advantage of an adversary A is

$$\mathbf{Adv}_F^{\text{prp-cpa}}(A) = \Pr\left[\mathbf{Exp}_F^{\text{prp-cpa-1}}(A) = 1\right] - \Pr\left[\mathbf{Exp}_F^{\text{prp-cpa-0}}(A) = 1\right]$$

F is a secure PRP under CPA if for any adversary with "reasonable" resources its prf-cpa-advantage is "small".

PRPs under chosen-ciphertext attacks (CCA)

- Since an inverse function is defined for each instance, we can also consider the case when an adversary gets, in addition, an oracle for g⁻¹
- Def. Fix a <u>permutation</u> family F: Keys(F) × Dom(F) → Dom(F)

Experiment
$$\mathbf{Exp}_F^{\text{prp-cca-1}}(A)$$
 | Experiment $\mathbf{Exp}_F^{\text{prp-cca-0}}(A)$ | $K \overset{\$}{\leftarrow} \mathcal{K}$ | $g \overset{\$}{\leftarrow} \text{Perm}(D)$ | $b \overset{\$}{\leftarrow} A^{F_K, F_K^{-1}}$ | $b \overset{\$}{\leftarrow} A^{g, g^{-1}}$ | Return b

The prp-cca-advantage of an adversary A is

$$\mathbf{Adv}_F^{\text{prp-cca}}(A) = \Pr\left[\mathbf{Exp}_F^{\text{prp-cca-1}}(A) = 1\right] - \Pr\left[\mathbf{Exp}_F^{\text{prp-cca-0}}(A) = 1\right]$$

 F is a secure PRP under CCA if for any adversary with "reasonable" resources its prf-cca-advantage is "small".

$PRP-CCA \Rightarrow PRP-CPA$

Theorem. Let F:Keys×D→D be a permutation family. Then
for any adversary A that runs in time t and makes q chosenplaintext queries these totalling μ bits there exists an
adversary B that also runs in time t and makes q chosenplaintext queries these totalling μ bits and no chosenciphertext queries such that

$$\mathbf{Adv}_F^{\text{prp-cca}}(B) \geq \mathbf{Adv}_F^{\text{prp-cpa}}(A)$$

Modeling block ciphers

- Want a "master" property that a block cipher be PRP-CPA or PRP-CCA secure.
- Conjectures:
 - DES and AES are PRP-CCA (thus also PRP-CPA) secure.
 - For any B running time t and making q queries

$$\mathbf{Adv}_{\mathrm{AES}}^{\mathrm{prp-cpa}}(B_{t,q}) \leq c_1 \cdot \frac{t/T_{\mathrm{AES}}}{2^{128}} + c_2 \cdot \frac{q}{2^{128}}$$

$$\mathbf{Adv}_{\mathrm{AES}}^{\mathrm{prf}}(B_{t,q}) \leq c_1 \cdot \frac{t/T_{\mathrm{AES}}}{2^{128}} + \frac{q^2}{2^{128}}$$

The "birthday" attack

• Theorem. For any block cipher E with domain and range $\{0,1\}^{\ell}$ and any A that makes q queries s.t. $2 \le q \le 2^{(\ell+1)/2}$.

$$\mathbf{Adv}_E^{\mathrm{prf}}(A) \geq 0.3 \cdot \frac{q(q-1)}{2^{\ell}}$$

• <u>Lemma</u>. If we throw (at random) q balls into N \geq q bins and if $1 \leq q \leq \sqrt{2N}$ then the probability of a collision

$$C(N,q) \geq 0.3 \cdot \frac{q(q-1)}{N}$$

Proof of the Lemma

$$1 - C(N, q) = 1 \cdot \frac{N-1}{N} \cdot \frac{N-2}{N} \dots \frac{N-q+1}{N}$$
$$= (1 - \frac{1}{N}) \cdot (1 - \frac{2}{N}) \cdot \dots (1 - \frac{q-1}{N})$$

// Using that $1-x \le e^{-x}$

$$\leq e^{-\frac{1}{N}} \cdot \dots e^{-\frac{q-1}{N}} = e^{-\frac{q(q-1)}{N}}$$

// Using that
$$1-e^{-x} \geq (1-e^{-1})x \quad \text{if} \quad \frac{q(q-1)}{2N} \leq 1$$

$$\leq 1 - (1 - \frac{1}{e}) \cdot \frac{q(q-1)}{2N}$$

Thus
$$C(N,q) \geq (1-\frac{1}{e}) \cdot \frac{q(q-1)}{2N} \geq 0.3 \cdot \frac{q(q-1)}{N}$$

Proof of the Theorem

• Adversary A^g For i=1,...q do $y_i \leftarrow g(<x_i>)$ EndFor

If $y_i,...y_q$ are all distinct return 1, else return 0

EndIf

$$\mathbf{Adv}_{E}^{\mathrm{prf}}(A) = \Pr\left[\mathbf{Exp}_{E}^{\mathrm{prf-1}}(A) = 1\right] - \Pr\left[\mathbf{Exp}_{E}^{\mathrm{prf-0}}(A) = 1\right]$$

$$= 1 - [1 - C(N, q)]$$

$$= C(N, q)$$

$$\geq 0.3 \cdot \frac{q(q-1)}{2^{l}}.$$

PRF/PRP switching lemma.

 Theorem. For any block cipher E with domain and range {0,1}ⁿ and any A that makes q queries

$$\left|\Pr[\rho \overset{\$}{\leftarrow} \mathsf{Func}(n): \ A^{\rho} \Rightarrow 1] - \Pr[\pi \overset{\$}{\leftarrow} \mathsf{Perm}(n): \ A^{\pi} \Rightarrow 1]\right| \ \leq \ \frac{q(q-1)}{2^{n+1}}$$

$$\left|\mathbf{Adv}_{E}^{\mathsf{prf}}(A) - \mathbf{Adv}_{E}^{\mathsf{prp}}(A)\right| \ \leq \ \frac{q(q-1)}{2^{n+1}}$$