
Chapter 9

Digital signatures

In the public key setting, the primitive used to provide data integrity is a digital
signature scheme. In this chapter we look at security notions and constructions for
this primitive.

9.1 Digital signature schemes

A digital signature scheme is just like a message authentication scheme except for
an asymmetry in the key structure. The key sk used to generate signatures (in this
setting the tags are often called signatures) is different from the key pk used to
verify signatures. Furthermore pk is public, in the sense that the adversary knows
it too. So while only a signer in possession of the secret key can generate signatures,
anyone in possession of the corresponding public key can verify the signatures.

Definition 9.1 A digital signature scheme DS = (K, Sign,VF) consists of three
algorithms, as follows:

• The randomized key generation algorithm K (takes no inputs and) returns a
pair (pk, sk) of keys, the public key and matching secret key, respectively. We

write (pk, sk) $←K for the operation of executing K and letting (pk, sk) be the
pair of keys returned.

• The signing algorithm Sign takes the secret key sk and a messageM to return
a signature or tag σ ∈ {0, 1}∗ ∪ {⊥}. The algorithm may be randomized or

stateful. We write σ $← Signsk(M) or σ
$← Sign(sk,M) for the operation of

running Sign on inputs sk,M and letting σ be the signature returned.

• The deterministic verification algorithm VF takes a public key pk, a mes-
sage M , and a candidate signature σ for M to return a bit. We write d ←
VFpk(M,σ) or d ← VF(pk,M, σ) to denote the operation of running VF on
inputs pk,M, σ and letting d be the bit returned.

1



2 DIGITAL SIGNATURES

We require that VFpk(M,σ) = 1 for any key-pair (pk, sk) that might be output by
K,any message M , and any σ 6= ⊥ that might be output by Signsk(M). If Sign is
stateless then we associate to each public key a message space Messages(pk) which
is the set of all M for which Signsk(M) never returns ⊥.

Let S be an entity that wants to have a digital signature capability. The first step is
key generation: S runs K to generate a pair of keys (pk, sk) for itself. Note the key
generation algorithm is run locally by S. Now, S can produce a digital signature on
some document M ∈ Messages(pk) by running Signsk(M) to return a signature σ.
The pair (M,σ) is then the authenticated version of the document. Upon receiving
a document M ′ and tag σ′ purporting to be from S, a receiver B in possession
of pk verifies the authenticity of the signature by using the specified verification
procedure, which depends on the message, signature, and public key. Namely he
computes VFpk(M

′, σ′), whose value is a bit. If this value is 1, it is read as saying
the data is authentic, and so B accepts it as coming from S. Else it discards the
data as unauthentic.
Note that an entity wishing to verify S’s signatures must be in possession of

S’s public key pk, and must be assured that the public key is authentic, meaning
really is S’s key and not someone else’s key. We will look later into mechanisms for
assuring this state of knowledge. But the key management processes are not part
of the digital signature scheme itself. In constructing and analyzing the security of
digital signature schemes, we make the assumption that any prospective verifier is
in possession of an authentic copy of the public key of the signer. This assumption
is made in what follows.
A viable scheme of course requires some security properties. But these are not

our concern now. First we want to pin down what constitutes a specification of a
scheme, so that we know what are the kinds of objects whose security we want to
assess.
The key usage is the “mirror-image” of the key usage in an asymmetric encryp-

tion scheme. In a digital signature scheme, the holder of the secret key is a sender,
using the secret key to tag its own messages so that the tags can be verified by oth-
ers. In an asymmetric encryption scheme, the holder of the secret key is a receiver,
using the secret key to decrypt ciphertexts sent to it by others.
The signature algorithm might be randomized, meaning internally flip coins and

use these coins to determine its output. In this case, there may be many correct
tags associated to a single message M . The algorithm might also be stateful, for
example making use of a counter that is maintained by the sender. In that case
the signature algorithm will access the counter as a global variable, updating it as
necessary. The algorithm might even be both randomized and stateful. However,
unlike encryption schemes, whose encryption algorithms must be either randomized
or stateful for the scheme to be secure, a deterministic, stateless signature algorithm
is not only possible, but common.
The signing algorithm might only be willing to sign certain messages and not

others. It indicates its unwillingness to sign a message by returning ⊥. If the scheme



Bellare and Rogaway 3

is stateless, the message space, which can depend on the public key, is the set of
all messages for which the probability that the signing algorithm returns ⊥ is zero.
If the scheme is stateful we do not talk of such a space since whether or not the
signing algorithm returns ⊥ can depend not only on the message but on its state.

The last part of the definition says that signatures that were correctly generated
will pass the verification test. This simply ensures that authentic data will be
accepted by the receiver. In the case of a sateful scheme, the requirement holds for
any state of the signing algorithm.

9.2 A notion of security

Digital signatures aim to provide the same security property as message authenti-
cation schemes; the only change is the more flexible key structure. Accordingly, we
can build on our past work in understanding and pinning down a notion of security
for message authentication; the one for digital signatures differs only in that the
adversary has access to the public key.

The goal of the adversary F is forgery: It wants to produce document M and
tag σ such that VFpk(M,σ) = 1, but M did not originate with the sender S. The
adversary is allowed a chosen-message attack in the process of trying to produce
forgeries, and the scheme is secure if even after such an attack the adversary has
low probability of producing forgeries.

Let DS = (K, Sign,VF) be an arbitrary digital signature scheme. Our goal is
to formalize a measure of insecurity against forgery under chosen-message attack
for this scheme. The adversary’s actions are viewed as divided into two phases.
The first is a “learning” phase in which it is given oracle access to Signsk(·), where
(pk, sk) was a priori chosen at random according to K. It can query this oracle up
to q times, in any manner it pleases, as long as all the queries are messages in the
underlying message space Messages(pk) associated to this key. Once this phase is
over, it enters a “forgery” phases, in which it outputs a pair (M,σ). The adversary
is declared successful ifM ∈ Messages(pk), VFpk(M,σ) = 1 andM was not a query
made by the adversary to the signing oracle. Associated to any adversary F is thus
a success probability called its advantage. (The probability is over the choice of
keys, any probabilistic choices that Sign might make, and the probabilistic choices,
if any, that F makes.) The advantage of the scheme is the success probability of the
“cleverest” possible adversary, amongst all adversaries restricted in their resources
to some fixed amount. We choose as resources the running time of the adversary,
the number of queries it makes, and the total bit-length of all queries combined plus
the bit-length of the output message M in the forgery.

Definition 9.2 Let DS = (K, Sign,VF) be a digital signature scheme, and let A be
an algorithm that has access to an oracle and returns a pair of strings. We consider
the following experiment:



4 DIGITAL SIGNATURES

Experiment Expuf-cma
DS (A)

(pk, sk) $←K

(M,σ)← ASignsk(·)(pk)
If the following are true return 1 else return 0:
– VFpk(M,σ) = 1
– M ∈ Messages(pk)
– M was not a query of A to its oracle

The uf-cma-advantage of A is defined as

Advuf-cma
DS (A) = Pr

[

Expuf-cma
DS (A) = 1

]

.

In the case of message authentication schemes, we provided the adversary not only
with an oracle for producing tags, but also with an oracle for verifying them. Above,
there is no verification oracle. This is because verification of a digital signature does
not depend on any quantity that is secret from the adversary. Since the adversary
has the public key and knows the algorithm VF, it can verify as much as it pleases
by running the latter.

When we talk of the time-complexity of an adversary, we mean the worst case
total execution time of the entire experiment. This means the adversary complexity,
defined as the worst case execution time ofA plus the size of the code of the adversary
A, in some fixed RAM model of computation (worst case means the maximum over
A’s coins or the answers returned in response to A’s oracle queries), plus the time for
other operations in the experiment, including the time for key generation and the
computation of answers to oracle queries via execution of the encryption algorithm.

As adversary resources, we will consider this time complexity, the message length
µ, and the number of queries q to the sign oracle. We define µ as the sum of the
lengths of the oracle queries plus the length of the message in the forgery output
by the adversary. In practice, the queries correspond to messages signed by the
legitimate sender, and it would make sense that getting these examples is more
expensive than just computing on one’s own. That is, we would expect q to be
smaller than t. That is why q, µ are resources separate from t.

9.3 RSA based signatures

The RSA trapdoor permutation is widely used as the basis for digital signature
schemes. Let us see how.

9.3.1 Key generation for RSA systems

We will consider various methods for generating digital signatures using the RSA
functions. While these methods differ in how the signature and verification algo-
rithms operate, they share a common key-setup. Namely the public key of a user
is a modulus N and an encryption exponent e, where N = pq is the product of two



Bellare and Rogaway 5

distinct primes, and e ∈ Z∗
ϕ(N). The corresponding secret contains the decryption

exponent d ∈ Z∗
ϕ(N) (and possibly other stuff too) where ed ≡ 1 (mod ϕ(N)).

How are these parameters generated? We refer back to Definition ??, where we
had introduced the notion of an RSA generator. This is a randomized algorithm
having an associated security parameter and returning a pair ((N, e), (N, p, q, d))
satisfying the various conditions listed in the definition. The key-generation algo-
rithm of the digital signature scheme is simply such a generator, meaning the user’s
public key is (N, e) and its secret key is (N, p, q, d).
Note N is not really secret. Still, it turns out to be convenient to put it in

the secret key. Also, the descriptions we provide of the signing process will usually
depend only on N, d and not p, q, so it may not be clear why p, q are in the secret key.
But in practice it is good to keep them there because their use speeds up signing
via the Chinese Remainder theorem and algorithm.
Recall that the map RSAN,e(·) = (·)

e mod N is a permutation on Z∗
N with inverse

RSAN,d(·) = (·)
d mod N .

Below we will consider various signature schemes all of which use the above key
generation algorithm and try to build in different ways on the one-wayness of RSA
in order to securely sign.

9.3.2 Trapdoor signatures

Trapdoor signatures represent the most direct way in which to attempt to build
on the one-wayness of RSA in order to sign. We believe that the signer, being in
possession of the secret key N, d, is the only one who can compute the inverse RSA
function RSA−1

N,e = RSAN,d. For anyone else, knowing only the public key N, e,
this task is computationally infeasible. Accordingly, the signer signs a message by
performing on it this “hard” operation. This requires that the message be a member
of Z∗

N , which, for convenience, is assumed. It is possible to verify a signature by
performing the “easy” operation of computing RSAN,e on the claimed signature and
seeing if we get back the message.
More precisely, let Krsa be an RSA generator with associated security param-

eter k, as per Definition ??. We consider the digital signature scheme DS =
(Krsa, Sign,VF) whose signing and verifying algorithms are as follows:

Algorithm SignN,p,q,d(M)

If M 6∈ Z∗
N then return ⊥

x←Md mod N
Return x

Algorithm VFN,e(M,x)
If (M 6∈ Z∗

N or x 6∈ Z
∗
N ) then return 0

If M = xe mod N then return 1 else return 0

This is a deterministic stateless scheme, and the message space for public key (N, e)
is Messages(N, e) = Z∗

N , meaning the only messages that the signer signs are those
which are elements of the group Z∗

N . In this scheme we have denoted the signature
of M by x. The signing algorithm simply applies RSAN,d to the message to get
the signature, and the verifying algorithm applies RSAN,e to the signature and tests
whether the result equals the message.



6 DIGITAL SIGNATURES

The first thing to check is that signatures generated by the signing algorithm
pass the verification test. This is true because of Proposition ??, which tells us that
if x =Md mod N then xe =M mod N .

Now, how secure is this scheme? As we said above, the intuition behind it
is that the signing operation should be something only the signer can perform,
since computing RSA−1

N,e(M) is hard without knowledge of d. However, what one
should remember is that the formal assumed hardness property of RSA, namely
one-wayness under known-exponent attack (we call it just one-wayness henceforth)
as specified in Definition ??, is under a very different model and setting than that
of security for signatures. One-wayness tells us that if we select M at random and
then feed it to an adversary (who knows N, e but not d) and ask the latter to find
x = RSA−1

N,e(M), then the adversary will have a hard time succeeding. But the
adversary in a signature scheme is not given a random messageM on which to forge
a signature. Rather, its goal is to create a pair (M,x) such that VFN,e(M,x) = 1.
It does not have to try to imitate the signing algorithm; it must only do something
that satisfies the verification algorithm. In particular it is allowed to choose M
rather than having to sign a given or random M . It is also allowed to obtain a valid
signature on any message other than the M it eventually outputs, via the signing
oracle, corresponding in this case to having an oracle for RSA−1

N,e(·). These features
make it easy for an adversary to forge signatures.

A couple of simple forging strategies are illustrated below. The first is to simply
output the forgery in which the message and signature are both set to 1. The second
is to first pick at random a value that will play the role of the signature, and then
compute the message based on it:

Forger F
SignN,p,q,d(·)
1 (N, e)

Return (1, 1)

Forger F
SignN,p,q,d(·)
2 (N, e)

x $← Z∗
N ; M ← xe mod N

Return (M,x)

These forgers makes no queries to their signing oracles. We note that 1e ≡ 1
(mod N), and hence the uf-cma-advantage of F1 is 1. Similarly, the value (M,x)
returned by the second forger satisfies xe mod N = M and hence it has uf-cma-
advantage 1 too. The time-complexity in both cases is very low. (In the second
case, the forger uses the O(k3) time to do its exponentiation modulo N .) So these
attacks indicate the scheme is totally insecure.

The message M whose signature the above forger managed to forge is random.
This is enough to break the scheme as per our definition of security, because we
made a very strong definition of security. Actually for this scheme it is possible to
even forge the signature of a given message M , but this time one has to use the
signing oracle. The attack relies on the multiplicativity of the RSA function.

Forger F SignN,e(·)(N, e)

M1
$← Z∗

N − {1,M} ; M2 ←MM−1
1 mod N

x1 ← SignN,e(M1) ; x2 ← SignN,e(M2)



Bellare and Rogaway 7

x← x1x2 mod N
Return (M,x)

Given M the forger wants to compute a valid signature x for M . It creates M1,M2

as shown, and obtains their signatures x1, x2. It then sets x = x1x2 mod N . Now
the verification algorithm will check whether xe mod N =M . But note that

xe ≡ (x1x2)
e ≡ xe

1x
e
2 ≡M1M2 ≡M (mod N) .

Here we used the multiplicativity of the RSA function and the fact that xi is a valid
signature of Mi for i = 1, 2. This means that x is a valid signature of M . Since M1

is chosen to not be 1 or M , the same is true of M2, and thus M was not an oracle
query of F . So F succeeds with probability one.

These attacks indicate that there is more to signatures than one-wayness of the
underlying function.

9.3.3 The hash-then-invert paradigm

Real-world RSA based signature schemes need to surmount the above attacks, and
also attend to other impracticalities of the trapdoor setting. In particular, messages
are not usually group elements; they are possibly long files, meaning bit strings of
arbitrary lengths. Both issues are typically dealt with by pre-processing the given
message M via a hash function to yield a point y in the range of RSAN,e, and then
applying RSA−1

N,e to y to obtain the signature. The hash function is public, meaning
its description is known, and anyone can compute it.

To make this more precise, let Krsa be an RSA generator with associated security
parameter k and let Keys be the set of all modulli N that have positive probability
to be output by Krsa. Let Hash be a family of functions whose key-space is Keys and
such that HashN : {0, 1}

∗ → Z∗
N for every N ∈ Keys. Let DS = (Krsa, Sign,VF) be

the digital signature scheme whose signing and verifying algorithms are as follows:

Algorithm SignN,p,q,d(M)

y ← HashN (M)
x← yd mod N
Return x

Algorithm VFN,e(M,x)
y ← HashN (M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

Let us see why this might help resolve the weaknesses of trapdoor signatures, and
what requirements security imposes on the hash function.

Let us return to the attacks presented on the trapdoor signature scheme above.
Begin with the first forger we presented, who simply output (1, 1). Is this an attack
on our new scheme? To tell, we see what happens when the above verification
algorithm is invoked on input 1, 1. We see that it returns 1 only if HashN (1) ≡ 1

e

(mod N). Thus, to prevent this attack it suffices to ensure that HashN (1) 6= 1.
The second forger we had previously set M to xe mod N for some random x ∈ Z∗

N .
What is the success probability of this strategy under the hash-then-invert scheme?
The forger wins if xe mod N = Hash(M) (rather than merely xe mod N = M as



8 DIGITAL SIGNATURES

before). The hope is that with a “good” hash function, it is very unlikely that
xe mod N = HashN (M). Consider now the third attack we presented above, which
relied on the multiplicativity of the RSA function. For this attack to work under
the hash-then-invert scheme, it would have to be true that

HashN (M1) · HashN (M2) ≡ HashN (M) (mod N) . (9.1)

Again, with a “good” hash function, we would hope that this is unlikely to be true.

The hash function is thus supposed to “destroy” the algebraic structure that
makes attacks like the above possible. How we might find one that does this is
something we have not addressed.

While the hash function might prevent some attacks that worked on the trapdoor
scheme, its use leads to a new line of attack, based on collisions in the hash function.
If an adversary can find two distinct messages M1,M2 that hash to the same value,
meaning HashN (M1) = HashN (M2), then it can easily forge signatures, as follows:

Forger F SignN,p,q,d(·)(N, e)
x1 ← SignN,p,q,d(M1)

Return (M2, x1)

This works because M1,M2 have the same signature. Namely because x1 is a valid
signature of M1, and because M1,M2 have the same hash value, we have

xe
1 ≡ HashN (M1) ≡ HashN (M2) (mod N) ,

and this means the verification procedure will accept x1 as a signature ofM2. Thus,
a necessary requirement on the hash function Hash is that it be CR2-KK, meaning
given N it should be computationally infeasible to find distinct values M,M ′ such
that HashN (M) = HashN (M

′).

Below we will go on to more concrete instantiations of the hash-then-invert
paradigm. But before we do that, it is important to try to assess what we have
done so far. Above, we have pin-pointed some features of the hash function that
are necessary for the security of the signature scheme. Collision-resistance is one.
The other requirement is not so well formulated, but roughly we want to destroy
algebraic structure in such a way that Equation (9.1), for example, should fail with
high probability. Classical design focuses on these attacks and associated features
of the hash function, and aims to implement suitable hash functions. But if you
have been understanding the approaches and viewpoints we have been endeavoring
to develop in this class and notes, you should have a more critical perspective. The
key point to note is that what we need is not really to pin-point necessary features
of the hash function to prevent certain attacks, but rather to pin-point sufficient
features of the hash function, namely features sufficient to prevent all attacks, even
ones that have not yet been conceived. And we have not done this. Of course,
pinning down necessary features of the hash function is useful to gather intuition
about what sufficient features might be, but it is only that, and we must be careful



Bellare and Rogaway 9

to not be seduced into thinking that it is enough, that we have identified all the
concerns. Practice proves this complacence wrong again and again.

How can we hope to do better? Return to the basic philosophy of provable secu-
rity. We want assurance that the signature scheme is secure under the assumption
that its underlying primitives are secure. Thus we must try to tie the security of the
signature scheme to the security of RSA as a one-way function, and some security
condition on the hash function. With this in mind, let us proceed to examine some
suggested solutions.

9.3.4 The PKCS #1 scheme

RSA corporation has been one of the main sources of software and standards for
RSA based cryptography. RSA Labs (now a part of Security Dynamics Corporation)
has created a set of standards called PKCS (Public Key Cryptography Standards).
PKCS #1 is about signature (and encryption) schemes based on the RSA function.
This standard is in wide use, and accordingly it will be illustrative to see what they
do.

The standard uses the hash-then-invert paradigm, instantiating Hash via a par-
ticular hash function PKCS-Hash which we now describe. Recall we have already
discussed collision-resistant hash functions. Let us fix a function h: {0, 1}∗ → {0, 1}l

where l ≥ 128 and which is “collision-resistant” in the sense that nobody knows how
to find any pair of distinct points M,M ′ such that h(M) = h(M ′). Currently the
role tends to be played by SHA-1, so that l = 160. Prior to that it was MD5, which
has l = 128. The RSA PKCS #1 standard defines

PKCS-HashN (M) = 00 01 FF FF · · · FF FF 00 ‖ h(M) .

Here ‖ denotes concatenation, and enough FF-bytes are inserted that the length of
PKCS-HashN (M) is equal to k bits. Note the the first four bits of the hash output
are zero, meaning as an integer it is certainly at most N , and thus most likely
in Z∗

N , since most numbers between 1 and N are in Z∗
N . Also note that finding

collisions in PKCS-Hash is no easier than finding collisions in h, so if the latter is
collision-resistant then so is the former.

Recall that the signature scheme is exactly that of the hash-then-invert paradigm.
For concreteness, let us rewrite the signing and verifying algorithms:

Algorithm SignN,p,q,d(M)

y ← PKCS-HashN (M)
x← yd mod N
Return x

Algorithm VFN,e(M,x)
y ← PKCS-HashN (M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

Now what about the security of this signature scheme? Our first concern is the kinds
of algebraic attacks we saw on trapdoor signatures. As discussed in Section 9.3.3,
we would like that relations like Equation (9.1) fail. This we appear to get; it is hard
to imagine how PKCS-HashN (M1) ·PKCS-HashN (M2) mod N could have the specific



10 DIGITAL SIGNATURES

structure required to make it look like the PKCS-hash of some message. This isn’t
a proof that the attack is impossible, of course, but at least it is not evident.
This is the point where our approach departs from the classical attack-based

design one. Under the latter, the above scheme is acceptable because known attacks
fail. But looking deeper there is cause for concern. The approach we want to take
is to see how the desired security of the signature scheme relates to the assumed or
understood security of the underlying primitive, in this case the RSA function.
We are assuming RSA is one-way, meaning it is computationally infeasible to

compute RSA−1
N,e(y) for a randomly chosen point y ∈ Z∗

N . On the other hand,

the points to which RSA−1
N,e is applied in the signature scheme are those in the set

SN = { PKCS-HashN (M) : M ∈ {0, 1}∗ }. The size of SN is at most 2l since h
outputs l bits and the other bits of PKCS-HashN (·) are fixed. With SHA-1 this
means |SN | ≤ 2

160. This may seem like quite a big set, but within the RSA domain
Z∗

N it is tiny. For example when k = 1024, which is a recommended value of the
security parameter these days, we have

|SN |

|Z∗
N |
≤
2160

21023
=

1

2863
.

This is the probability with which a point chosen randomly from Z∗
N lands in SN .

For all practical purposes, it is zero. So RSA could very well be one-way and still
be easy to invert on SN , since the chance of a random point landing in SN is
so tiny. So the security of the PKCS scheme cannot be guaranteed solely under
the standard one-wayness assumption on RSA. Note this is true no matter how
“good” is the underlying hash function h (in this case SHA-1) which forms the basis
for PKCS-Hash. The problem is the design of PKCS-Hash itself, in particular the
padding.
The security of the PKCS signature scheme would require the assumption that

RSA is hard to invert on the set SN , a miniscule fraction of its full range. (And
even this would be only a necessary, but not sufficient condition for the security of
the signature scheme.)
Let us try to clarify and emphasize the view taken here. We are not saying that

we know how to attack the PKCS scheme. But we are saying that an absence of
known attacks should not be deemed a good reason to be satisfied with the scheme.
We can identify “design flaws,” such as the way the scheme uses RSA, which is not
in accordance with our understanding of the security of RSA as a one-way function.
And this is cause for concern.

9.3.5 The FDH scheme

From the above we see that if the hash-then-invert paradigm is to yield a signature
scheme whose security can be based on the one-wayness of the RSA function, it must
be that the points y on which RSA−1

N,e is applied in the scheme are random ones. In
other words, the output of the hash function must always “look random”. Yet, even
this only highlights a necessary condition, not (as far as we know) a sufficient one.



Bellare and Rogaway 11

We now ask ourselves the following question. Suppose we had a “perfect” hash
function Hash. In that case, at least, is the hash-then-invert signature scheme secure?
To address this we must first decide what is a “perfect” hash function. The answer
is quite natural: one that is random, namely returns a random answer to any query
except for being consistent with respect to past queries. (We will explain more
how this “random oracle” works later, but for the moment let us continue.) So our
question becomes: in a model where Hash is perfect, can we prove that the signature
scheme is secure if RSA is one-way?

This is a basic question indeed. If the hash-then-invert paradigm is in any way
viable, we really must be able to prove security in the case the hash function is
perfect. Were it not possible to prove security in this model it would be extremely
inadvisable to adopt the hash-then-invert paradigm; if it doesn’t work for a perfect
hash function, how can we expect it to work in any real world setting?

Accordingly, we now focus on this “thought experiment” involving the use of the
signature scheme with a perfect hash function. It is a thought experiment because
no specific hash function is perfect. Our “hash function” is no longer fixed, it is
just a box that flips coins. Yet, this thought experiment has something important
to say about the security of our signing paradigm. It is not only a key step in our
understanding but will lead us to better concrete schemes as we will see later.

Now let us say more about perfect hash functions. We assume that Hash returns
a random member of Z∗

N every time it is invoked, except that if twice invoked on
the same message, it returns the same thing both times. In other words, it is an
instance of a random function with domain {0, 1}∗ and range Z∗

N . We have seen
such objects before, when we studied pseudorandomness: remember that we defined
pseudorandom functions by considering experiments involving random functions. So
the concept is not new. We call Hash a random oracle, and denote it by H in this
context. It is accessible to all parties, signer, verifiers and adversary, but as an
oracle. This means it is only accessible across a specified interface. To compute
H(M) a party must make an oracle call. This means it outputs M together with
some indication that it wants H(M) back, and an appropriate value is returned.
Specifically it can output a pair (hash,M), the first component being merely a
formal symbol used to indicate that this is a hash-oracle query. Having output this,
the calling algorithm waits for the answer. Once the value H(M) is returned, it
continues its execution.

The best way to think about H is as a dynamic process which maintains a table
of input-output pairs. Every time a query (hash,M) is made, the process first checks
if its table contains a pair of the form (M,y) for some y, and if so, returns y. Else
it picks a random y in Z∗

N , puts (M,y) into the table, and returns y as the answer
to the oracle query.

We consider the above hash-then-invert signature scheme in the model where the
hash function Hash is a random oracleH. This is called the Full Domain Hash (FDH)
scheme. More precisely, let Krsa be an RSA generator with associated security
parameter k. The FDH-RSA signature scheme associated to Krsa is the digital



12 DIGITAL SIGNATURES

signature scheme DS = (Krsa, Sign,VF) whose signing and verifying algorithms are
as follows:

Algorithm Sign
H(·)
N,p,q,d(M)

y ← H(M)
x← yd mod N
Return x

Algorithm VF
H(·)
N,e (M,x)

y ← H(M)
y′ ← xe mod N
If y = y′ then return 1 else return 0

The only change with respect to the way we wrote the algorithms for the generic
hash-then-invert scheme of Section 9.3.3 is notational: we write H as a superscript
to indicate that it is an oracle accessible only via the specified oracle interface. The
instruction y ← H(M) is implemented by making the query (hash,M) and letting
y denote the answer returned, as discussed above.
We now ask ourselves whether the above signature scheme is secure under the

assumption that RSA is one-way. To consider this question we first need to extend
our definitions to encompass the new model. The key difference is that the success
probability of an adversary is taken over the random choice of H in addition to
the random choices previously considered. The forger F as before has access to a
signing oracle, but now also has access to H. Furthermore, Sign and VF now have
access to H. Let us first write the experiment that measures the success of forger
F and then discuss it more.

Experiment Expuf-cma
DS (F )

((N, e), (N, p, q, d)) $←Krsa

H $← Func({0, 1}∗,Z∗
N )

(M,x) $← FH(·),Sign
H(·)
N,p,q,d

(·)(N, e)

If the following are true return 1 else return 0:

– VFH
pk(M,σ) = 1

– M was not a query of A to its oracle

Note that the forger is given oracle access to H in addition to the usual access
to the sign oracle that models a chosen-message attack. After querying its oracles
some number of times the forger outputs a message M and candidate signature x
for it. We say that F is successful if the verification process would accept M,x, but
F never asked the signing oracle to sign M . (F is certainly allowed to make hash
query M , and indeed it is hard to imagine how it might hope to succeed in forgery
otherwise, but it is not allowed to make sign query M .) The uf-cma-advantage of
A is defined as

Advuf-cma
DS (A) = Pr

[

Expuf-cma
DS (A) = 1

]

.

We will want to consider adversaries with time-complexity at most t, making at most
qsig sign oracle queries and at most qhash hash oracle queries, and with total query
message length µ. Resources refer again to those of the entire experiment. We first



Bellare and Rogaway 13

define the execution time as the time taken by the entire experiment Expuf-cma
DS (F ).

This means it includes the time to compute answers to oracle queries, to generate
the keys, and even to verify the forgery. Then the time-complexity t is supposed to
upper bound the execution time plus the size of the code of F . In counting hash
queries we again look at the entire experiment and ask that the total number of
queries to H here be at most qhash. Included in the count are the direct hash queries
of F , the indirect hash queries made by the signing oracle, and even the hash query
made by the verification algorithm in the last step. This latter means that qhash

is always at least the number of hash queries required for a verification, which for
FDH-RSA is one. In fact for FDH-RSA we will have qhash ≥ qsig + 1, something to
be kept in mind when interpreting later results. Finally µ is the sum of the lengths
of all messages in sign queries plus the length of the final output message M .
However, there is one point that needs to be clarified here, namely that if time-

complexity refers to that of the entire experiment, how do we measure the time to
pick H at random? It is an infinite object and thus cannot be actually chosen in
finite time. The answer is that although we write H as being chosen at random
upfront in the experiment, this is not how it is implemented. Instead, imagine
H as being chosen dynamically. Think of the process implementing the table we
described, so that random choices are made only at the time the H oracle is called,
and the cost is that of maintaining and updating a table that holds the values of H
on inputs queried so far. Namely when a query M is made to H, we charge the cost
of looking up the table, checking whether H(M) was already defined and returning
it if so, else picking a random point from Z∗

N , putting it in the table with index M ,
and returning it as well.
In this setting we claim that the FDH-RSA scheme is secure. The following

theorem upper bounds its uf-cma-advantage solely in terms of the ow-kea advantage
of the underlying RSA generator.

Theorem 9.3 Let Krsa be an RSA generator with associated security parameter
k, and let DS be the FDH-RSA scheme associated to Krsa. Let F be an adversary
making at most qhash queries to its hash oracle and at most qsig queries to its signing
oracle where qhash ≥ 1 + qsig. Then there exists an adversary I such that

Advuf-cma
DS (F ) ≤ qhash ·Adv

ow-kea
Krsa

(I) . (9.2)

and I, F are of comparable resources.

The theorem says that the only way to forge signatures in the FDH-RSA scheme is
to try to invert the RSA function on random points. There is some loss in security:
it might be that the chance of breaking the signature scheme is larger than that of
inverting RSA in comparable time, by a factor of the number of hash queries made
in the forging experiment. But we can make Advow-kea

Krsa
(t′) small enough that even

qhash ·Adv
ow-kea
Krsa

(t′) is small, by choosing a larger modulus size k.
One must remember the caveat: this is in a model where the hash function

is random. Yet, even this tells us something, namely that the hash-then-invert



14 DIGITAL SIGNATURES

paradigm itself is sound, at least for “perfect” hash functions. This puts us in a
better position to explore concrete instantiations of the paradigm.

Let us now proceed to the proof of Theorem 9.3. Remember that inverter I takes
as input (N, e), describing RSAN,e, and also a point y ∈ Z∗

N . Its job is to try to
output RSA−1

N,e(y) = yd mod N , where d is the decryption exponent corresponding to
encryption exponent e. Of course, neither d nor the factorization of N are available
to I. The success of I is measured under a random choice of ((N, e), (N, p, q, d)) as
given by Krsa, and also a random choice of y from Z∗

N . In order to accomplish its
task, I will run F as a subroutine, on input public key (N, e), hoping somehow to
use F ’s ability to forge signatures to find RSA−1

N,e(y). Before we discuss how I might
hope to use the forger to determine the inverse of point y, we need to take a closer
look at what it means to run F as a subroutine.

Recall that F has access to two oracles, and makes calls to them. At any point
in its execution it might output (hash,M). It will then wait for a return value,
which it interprets as H(M). Once this is received, it continues its execution.
Similarly it might output (sign,M) and then wait to receive a value it interprets

as Sign
H(·)
N,p,q,d(M). Having got this value, it continues. The important thing to

understand is that F , as an algorithm, merely communicates with oracles via an
interface. It does not control what these oracles return. You might think of an
oracle query like a system call. Think of F as writing an oracle query M at some
specific prescribed place in memory. Some process is expected to put in another
prescribed place a value that F will take as the answer. F reads what is there, and
goes on.

When I executes F , no oracles are actually present. F does not know that. It
will at some point make an oracle query, assuming the oracles are present, say query
(hash,M). It then waits for an answer. If I wants to run F to completion, it is
up to I to provide some answer to F as the answer to this oracle query. F will
take whatever it is given and go on executing. If I cannot provide an answer, F
will not continue running; it will just sit there, waiting. We have seen this idea of
“simulation” before in several proofs: I is creating a “virtual reality” under which
F can believe itself to be in its usual environment.

The strategy of I will be to take advantage of its control over responses to oracle
queries. It will choose them in strange ways, not quite the way they were chosen
in Experiment Expuf-cma

DS (F ). Since F is just an algorithm, it processes whatever it
receives, and eventually will halt with some output, a claimed forgery (M,x). By
clever choices of replies to oracle queries, I will ensure that F is fooled into not
knowing that it is not really in Expuf-cma

DS (F ), and furthermore x will be the desired
inverse of y. Not always, though; I has to be lucky. But it will be lucky often
enough.

We begin by consider the case of a very simple forger F . It makes no sign queries
and exactly one hash query (hash,M). It then outputs a pair (M,x) as the claimed
forgery, the message M being the same in the hash query and the forgery. (In this
case we have qsig = 0 and qhash = 2, the last due to the hash query of F and the



Bellare and Rogaway 15

final verification query in the experiment.) Now if F is successful then x is a valid
signature of M , meaning xe ≡ H(M) mod N , or, equivalently, x ≡ H(M)d mod N .
Somehow, F has found the inverse of H(M), the value returned to it as the response
to oracle query M . Now remember that I’s goal had been to compute yd mod N
where y was its given input. A natural thought suggests itself: If F can invert
RSAN,e at H(M), then I will “set” H(M) to y, and thereby obtain the inverse of y
under RSAN,e. I can set H(M) in this way because it controls the answers to oracle
queries. When F makes query (hash,M), the inverter I will simply return y as the
response. If F then outputs a valid forgery (M,x), we have x = yd mod N , and I
can output x, its job done.

But why would F return a valid forgery when it got y as its response to hash
query M? Maybe it will refuse this, saying it will not work on points supplied by
an inverter I. But this will not happen. F is simply an algorithm and works on
whatever it is given. What is important is solely the distribution of the response.
In Experiment Expuf-cma

DS (F ) the response to (hash,M) is a random element of Z∗
N .

But y has exactly the same distribution, because that is how it is chosen in the
experiment defining the success of I in breaking RSA as a one-way function. So F
cannot behave any differently in this virtual reality than it could in its real world; its
probability of returning a valid forgery is still Advuf-cma

DS (F ). Thus for this simple
F the success probability of the inverter in finding yd mod N is exactly the same as
the success probability of F in forging signatures. Equation (9.2) claims less, so we
certainly satisfy it.

However, most forgers will not be so obliging as to make no sign queries, and
just one hash query consisting of the very message in their forgery. I must be able
to handle any forger.

Inverter I will define a pair of subroutines, H -Sim (called the hash oracle sim-
ulator) and Sign-Sim (called the sign oracle simulator) to play the role of the hash
and sign oracles respectively. Namely, whenever F makes a query (hash,M) the in-
verter I will return H -Sim(M) to F as the answer, and whenever F makes a query
(sign,M) the inverter I will return Sign-Sim(M) to F as the answer. (The Sign-Sim
routine will additionally invoke H -Sim.) As it executes, I will build up various ta-
bles (arrays) that “define” H. For j = 1, . . . , qhash, the j-th string on which H is
called in the experiment (either directly due to a hash query by F , indirectly due to
a sign query by F , or due to the final verification query) will be recorded as Msg [j];
the response returned by the hash oracle simulator to Msg [j] is stored as Y [j]; and
if Msg [j] is a sign query then the response returned to F as the “signature” is X[j].
Now the question is how I defines all these values.

Suppose the j-th hash query in the experiment arises indirectly, as a result of
a sign query (sign,Msg [j]) by F . In Experiment Expuf-cma

DS (F ) the forger will be
returned H(Msg [j])d mod N . If I wants to keep F running it must return something
plausible. What could I do? It could attempt to directly mimic the signing process,
setting Y [j] to a random value (remember Y [j] plays the role of H(Msg [j])) and
returning (Y [j])d mod N . But it won’t be able to compute the latter since it is not



16 DIGITAL SIGNATURES

in possesion of the secret signing exponent d. The trick, instead, is that I first picks
a value X[j] at random in Z∗

N and sets Y [j] = (X[j])e mod N . Now it can return
X[j] as the answer to the sign query, and this answer is accurate in the sense that the
verification relation (which F might check) holds: we have Y [j] ≡ (X[j])e mod N .
This leaves a couple of loose ends. One is that we assumed above that I has

the liberty of defining Y [j] at the point the sign query was made. But perhaps
Msg [j] = Msg [l] for some l < j due to there having been a hash query involving
this same message in the past. Then the hash value Y [j] is already defined, as Y [l],
and cannot be changed. This can be addressed quite simply however: for any hash
query Msg [l], the hash simulator can follow the above strategy of setting the reply
Y [l] = (X[l])e mod N at the time the hash query is made, meaning it prepares itself
ahead of time for the possibility that Msg [l] is later a sign query. Maybe it will not
be, but nothing is lost.
Well, almost. Something is lost, actually. A reader who has managed to stay

awake so far may notice that we have solved two problems: how to use F to find
yd mod N where y is the input to I, and how to simulate answers to sign and hash
queries of F , but that these processes are in conflict. The way we got yd mod N
was by returning y as the answer to query (hash,M) where M is the message in
the forgery. However, we do not know beforehand which message in a hash query
will be the one in the forgery. So it is difficult to know how to answer a hash query
Msg [j]; do we return y, or do we return (X[j])e mod N for some X[j]? If we do the
first, we will not be able to answer a sign query with message Msg [j]; if we do the
second, and if Msg [j] equals the message in the forgery, we will not find the inverse
of y. The answer is to take a guess as to which to do. There is some chance that
this guess is right, and I succeeds in that case.
Specifically, notice that Msg [qhash] = M is the message in the forgery by defi-

nition since Msg [qhash] is the message in the final verification query. The message
M might occur more than once in the list, but it occurs at least once. Now I will
choose a random i in the range 1 ≤ i ≤ qhash and respond by y to hash query
(hash,Msg [i]). To all other queries j it will respond by first picking X[j] at random
in Z∗

N and setting H(Msg [j]) = (X[j])e mod N . The forged message M will equal
Msg [i] with probability at least 1/qhash and this will imply Equation (9.2). Below
we summarize these ideas as a proof of Theorem 9.3.
It is tempting from the above description to suggest that we always choose

i = qhash, since Msg [qhash] = M by definition. Why won’t that work? Because M
might also have been equal to Msg [j] for some j < qhash, and if we had set i = qhash

then at the time we want to return y as the answer to M we find we have already
defined H(M) as something else and it is too late to change our minds.

Proof of Theorem 9.3: We first decribe I in terms of two subroutines: a hash
oracle simulator H -Sim(·) and a sign oracle simulator Sign-Sim(·). It takes inputs
N, e, y where y ∈ Z∗

N and maintains three tables, Msg , X and Y , each an array with
index in the range from 1 to qhash. It picks a random index i. All these are global
variables which will be used also be the subroutines. The intended meaning of the



Bellare and Rogaway 17

array entries is the following, for j = 1, . . . , qhash–

Msg [j] – The j-th hash query in the experiment

Y [j] – The reply of the hash oracle simulator to the above, meaning
the value playing the role of H(Msg [j]). For j = i it is y.

X[j] – For j 6= i, the response to sign query Msg [j], meaning it satisfies
(X[j])e ≡ Y [j] (mod N). For j = i it is undefined.

The code for the inverter is below.

Inverter I(N, e, y)
Initialize arrays Msg [1 . . . qhash], X[1 . . . qhash], Y [1 . . . qhash] to empty

j ← 0 ; i $←{1, . . . , qhash}
Run F on input (N, e)
If F makes oracle query (hash,M)
then h← H -Sim(M) ; return h to F as the answer

If F makes oracle query (sign,M)
then x← Sign-Sim(M) ; return x to F as the answer

Until F halts with output (M,x)
y′ ← H -Sim(M)
Return x

The inverter responds to oracle queries by using the appropriate subroutines. Once
it has the claimed forgery, it makes the corresponding hash query and then returns
the signature x.

We now describe the hash oracle simulator. It makes reference to the global variables
instantiated in in the main code of I. It takes as argument a value v which is simply
some message whose hash is requested either directly by F or by the sign simulator
below when the latter is invoked by F .

We will make use of a subroutine Find that given an array A, a value v and index
m, returns 0 if v 6∈ {A[1], . . . , A[m]}, and else returns the smallest index l such that
v = A[l].

Subroutine H -Sim(v)
l← Find(Msg , v, j) ; j ← j + 1 ; Msg [j]← v
If l = 0 then
If j = i then Y [j]← y

Else X[j] $← Z∗
N ; Y [j]← (X[j])

e mod N
EndIf
Return Y [j]

Else
If j = i then abort
Else X[j]← X[l] ; Y [j]← Y [l] ; Return Y [j]



18 DIGITAL SIGNATURES

EndIf
EndIf

The manner in which the hash queries are answered enables the following sign sim-
ulator.

Subroutine Sign-Sim(M)
h← H -Sim(M)
If j = i then abort
Else return X[j]
EndIf

Inverter I might abort execution due to the “abort” instruction in either subroutine.
The first such situation is that the hash oracle simulator is unable to return y as
the response to the i-th hash query because this query equals a previously replied
to query. The second case is that F asks for the signature of the message which is
the i-th hash query, and I cannot provide that since it is hoping the i-th message is
the one in the forgery and has returned y as the hash oracle response.

Now we need to lower bound the ow-kea-advantage of I with respect to Krsa. There
are a few observations involved in verifying the bound claimed in Equation (9.2).
First that the “view” of F at any time at which I has not aborted is the “same” as
in Experiment Expuf-cma

DS (F ). This means that the answers being returned to F by
I are distributed exactly as they would be in the real experiment. Second, F gets no
information about the value i that I chooses at random. Now remember that the last
hash simulator query made by I is the message M in the forgery, so M is certainly
in the array Msg at the end of the execution of I. Let l = Find(Msg ,M, qhash) be
the first index at which M occurs, meaning Msg [l] =M but no previous message is
M . The random choice of i then means that there is a 1/qhash chance that i = l,
which in turn means that Y [i] = y and the hash oracle simulator won’t abort. If x
is a correct signature of M we will have xe ≡ Y [i] (mod N) because Y [i] is H(M)
from the point of view of F . So I is successful whenever this happens.

9.3.6 PSS0: A security improvement

The FDH-RSA signature scheme has the attractive security attribute of possessing a
proof of security under the assumption that RSA is a one-way function, albeit in the
random oracle model. However the quantitative security as given by Theorem 9.3
could be better. The theorem leaves open the possibility that one could forge sig-
natures with a probability that is qhash times the probability of being able to invert
the RSA function at a random point, the two actions being measured with regard
to adversaries with comparable execution time. Since qhash could be quite large,
say 260, there is an appreciable loss in security here. We now present a scheme in



Bellare and Rogaway 19

which the security relation is much tighter: the probability of signature forgery is
not appreciably higher than that of being able to invert RSA in comparable time.
The scheme is called PSS0, for “probabilistic signature scheme, version 0”, to

emphasize a key aspect of it, namely that it is randomized: the signing algorithm
picks a new random value each time it is invoked and uses that to compute signa-
tures. The scheme DS = (Krsa, Sign,VF), like FDH-RSA, makes use of a public
hash function H: {0, 1}∗ → Z∗

N which is modeled as a random oracle. Additonally
it has a parameter s which is the length of the random value chosen by the signing
algorithm. We write the signing and verifying algorithms as follows:

Algorithm Sign
H(·)
N,p,q,d(M)

r $←{0, 1}s

y ← H(r ‖M)
x← yd mod N
Return (r, x)

Algorithm VF
H(·)
N,e (M,σ)

Parse σ as (r, x) where |r| = s
y ← H(r ‖M)
If xe mod N = y
Then return 1 else return 0

Obvious “range checks” are for simplicity not written explicitly in the verification
code; for example in a real implementation the latter should check that 1 ≤ x < N
and gcd(x,N) = 1.
This scheme may still be viewed as being in the “hash-then-invert” paradigm,

except that the hash is randomized via a value chosen by the signing algorithm. If
you twice sign the same message, you are likely to get different signatures. Notice
that random value r must be included in the signature since otherwise it would not
be possible to verify the signature. Thus unlike the previous schemes, the signature
is not a member of Z∗

N ; it is a pair one of whose components is an s-bit string and the
other is a member of Z∗

N . The length of the signature is s+k bits, somewhat longer
than signatures for deterministic hash-then-invert signature schemes. It will usually
suffice to set l to, say, 160, and given that k could be 1024, the length increase may
be tolerable.
The success probability of a forger F attacking DS is measured in the random

oracle model, via experiment Expuf-cma
DS (F ). Namely the experiment is the same

experiment as in the FDH-RSA case; only the scheme DS we plug in is now the one
above. Accordingly we have the insecurity function associated to the scheme. Now
we can summarize the security property of the PSS0 scheme.

Theorem 9.4 Let DS be the PSS0 scheme with security parameters k and s. Let F
be an adversary making qsig signing queries and qhash ≥ 1+ qsig hash oracle queries.
Then there exists an adversary I such that

Advuf-cma
DS (F ) ≤ Advow-kea

Krsa
(I) +

(qhash − 1) · qsig
2s

. (9.3)

Say qhash = 2
60 and qsig = 2

40. With l = 160 the additive term above is about 2−60,
which is very small. So for all practical purposes the additive term can be neglected
and the security of the PSS0 signature scheme is tightly related to that of RSA.



20 DIGITAL SIGNATURES

We proceed to the proof of Theorem 9.4. The design of I follows the same
framework used in the proof of Theorem 9.3. Namely I, on input N, e, y, will ex-
ecute F on input N, e, and answer F ’s oracle queries so that F can complete its
execution. From the forgery, I will somehow find yd mod N . I will respond to hash
oracle queries of F via a subroutine H -Sim called the hash oracle simulator, and
will respond to sign queries of F via a subroutine Sign-Sim called the sign oracle
simulator. A large part of the design is the design of these subroutines. To get some
intuition it is helpful to step back to the proof of Theorem 9.3.

We see that in that proof, the multiplicative factor of qhash in Equation (9.2)
came from I’s guessing at random a value i ∈ {1, . . . , qhash}, and hoping that i =
Find(Msg ,M, qhash) where M is the message in the forgery. That is, it must guess
the time at which the message in the forgery is first queried of the hash oracle. The
best we can say about the chance of getting this guess right is that it is at least
1/qhash. However if we now want I’s probability of success to be as in Equation (9.3),
we cannot afford to guess the time at which the forgery message is queried of the
hash oracle. Yet, we certainly don’t know this time in advance. Somehow, I has to
be able to take advantage of the forgery to return yd mod N nonetheless.

A simple idea that comes to mind is to return y as the answer to all hash queries.
Then certainly a forgery on a queried message yields the desired value yd mod N .
Consider this strategy for FDH. In that case, two problems arise. First, these
answers would then not be random and indpendent, as required for answers to hash
queries. Second, if a message in a hash query is later a sign query, I would have no
way to answer the sign query. (Remember that I computed its reply to hash query
Msg [j] for j 6= i as (X[j])e mod N exactly in order to be able to later return X[j] if
Msg [j] showed up as a sign query. But there is a conflict here: I can either do this,
or return y, but not both. It has to choose, and in FDH case it chooses at random.)

The first problem is actually easily settled by a small algebraic trick, exploiting
what is called the self-reducibility of RSA. When I wants to return y as an answer
to a hash oracle query Msg [j], it picks a random X[j] in Z∗

N and returns Y [j] =
y · (X[j])e mod N . The value X[j] is chosen randomly and independently each time.
Now the fact that RSAN,e is a permutation means that all the different Y [j] values
are randomly and independently distributed. Furthermore, suppose (M, (r, x)) is
a forgery for which hash oracle query r ‖M has been made and got the reponse
Y [l] = y · (X[l])e mod N . Then we have (x ·X[l]−1)e ≡ y (mod N), and thus the
inverse of y is x ·X[l]−1 mod N .

The second problem however, cannot be resolved for FDH. That is exactly why
PSS0 pre-pends the random value r to the message before hashing. This effectively
“separates” the two kinds of hash queries: the direct queries of F to the hash oracle,
and the indirect queries to the hash oracle arising from the sign oracle. The direct
hash oracle queries have the form r ‖M for some l-bit string r and some message
M . The sign query is just a message M . To answer it, a value r is first chosen at
random. But then the value r ‖M has low probability of having been a previous
hash query. So at the time any new direct hash query is made, I can assume it will



Bellare and Rogaway 21

never be an indirect hash query, and thus reply via the above trick.

Here now is the full proof.

Proof of Theorem 9.4: We first decribe I in terms of two subroutines: a hash
oracle simulator H -Sim(·) and a sign oracle simulator Sign-Sim(·). It takes input
N, e, y where y ∈ Z∗

N , and maintains four tables, R, V , X and Y , each an array
with index in the range from 1 to qhash. All these are global variables which will
be used also be the subroutines. The intended meaning of the array entries is the
following, for j = 1, . . . , qhash–

V [j] – The j-th hash query in the experiment, having the form R[j] ‖Msg [j]

R[j] – The first l-bits of V [j]

Y [j] – The value playing the role of H(V [j]), chosen either by the hash simulator
or the sign simulator

X[j] – If V [j] is a direct hash oracle query of F this satisfies Y [j] · X[j]−e ≡ y
(mod N). If V [j] is an indirect hash oracle query this satisfies X[j]e ≡ Y [j]
(mod N), meaning it is a signature of Msg [j].

Note that we don’t actually need to store the array Msg ; it is only referred to above
in the explanation of terms.

We will make use of a subroutine Find that given an array A, a value v and index
m, returns 0 if v 6∈ {A[1], . . . , A[m]}, and else returns the smallest index l such that
v = A[l].

Inverter I(N, e, y)
Initialize arrays R[1 . . . qhash], V [1 . . . qhash], X[1 . . . qhash], Y [1 . . . qhash], to empty
j ← 0
Run F on input N, e
If F makes oracle query (hash, v)
then h← H -Sim(v) ; return h to F as the answer

If F makes oracle query (sign,M)
then σ ← Sign-Sim(M) ; return σ to F as the answer

Until F halts with output (M, (r, x))
y ← H -Sim(r ‖M) ; l← Find(V, r ‖M, qhash)
w ← x ·X[l]−1 mod N ; Return w

We now describe the hash oracle simulator. It makes reference to the global variables
instantiated in in the main code of I. It takes as argument a value v which is assumed
to be at least s bits long, meaning of the form r ‖M for some s bit strong r. (There
is no need to consider hash queries not of this form since they are not relevant to
the signature scheme.)

Subroutine H -Sim(v)



22 DIGITAL SIGNATURES

Parse v as r ‖M where |r| = s
l← Find(V, v, j) ; j ← j + 1 ; R[j]← r ; V [j]← v
If l = 0 then

X[j] $← Z∗
N ; Y [j]← y · (X[j])e mod N ; Return Y [j]

Else
X[j]← X[l] ; Y [j]← Y [l] ; Return Y [j]

EndIf

Every string v queried of the hash oracle is put by this routine into a table V , so
that V [j] is the j-th hash oracle query in the execution of F . The following sign
simulator does not invoke the hash simulator, but if necessary fills in the necessary
tables itself.

Subroutine Sign-Sim(M)

r $←{0, 1}s

l← Find(R, r, j)
If l 6= 0 then abort
Else

j ← j + 1 ; R[j]← r ; V [j]← r ‖M ; X[j] $← Z∗
N ; Y [j]← (X[j])

e mod N
Return X[j]

EndIf

Now we need to establish Equation (9.3).

First consider Expow-kea
Krsa

(I) and let Pr1 [·] denote the probability function in this
experiment. Let bad1 be the event that I aborts due to the “abort” instruction in
the sign-oracle simulator.

Now consider Expuf-cma
DS (F ), and let Pr2 [·] denote the probability function in this

experiment. Let bad2 be the event that the sign oracle picks a value r such that F
had previously made a hash query r ‖M for some M .

Let succ be the event (in either experiment) that F succeeds in forgery. Now we
have

Advuf-cma
DS (F ) = Pr2 [succ]

= Pr2
[

succ ∧ bad2

]

+ Pr2 [succ ∧ bad2]

≤ Pr2
[

succ ∧ bad2

]

+ Pr2 [bad2]

= Pr1
[

succ ∧ bad1

]

+ Pr1 [bad1] (9.4)

= Advow-kea
Krsa

(I) + Pr1 [bad1] (9.5)

≤ Advow-kea
Krsa

(I) +
(qhash − 1)qsig

2s
. (9.6)



Bellare and Rogaway 23

This establishes Equation (9.3). Let us now provide some explanations for the above.

First, Equation (9.6) is justified as follows. The event in question happens if the
random value r chosen in the sign oracle simulator is already present in the set
{R[1], . . . , R[j]}. This set has size at most qhash − 1 at the time of a sign query, so
the probability that r falls in it is at most (qhash − 1)/2

s. The sign oracle simulator
is invoked at most qsig times, so the bound follows.

It is tempting to think that the “view” of F at any time at which I has not aborted
is the “same” as the view of F in Experiment Expuf-cma

DS (F ). This is not true,
because it can test whether or not bad occured. That’s why we consider bad events
in both games, and note that

Advow-kea
Krsa

(I) = Pr1
[

succ ∧ bad1

]

= Pr2
[

succ ∧ bad2

]

.

This is justified as follows. Remember that the last hash simulator query made by
I is r ‖M where M is the message in the forgery, so r ‖M is certainly in the array
V at the end of the execution of I. So l = Find(V, r ‖M, qhash) 6= 0. We know
that r ‖M was not put in V by the sign simulator, because F is not allowed to
have made sign query M . This means the hash oracle simulator has been invoked
on r ‖M . This means that Y [l] = y · (X[l])e mod N because that is the way the
hash oracle simulator chooses its replies. The correctness of the forgery means that
xe ≡ H(r ‖M) (mod N), and the role of the H value here is played by Y [l], so we
get xe ≡ Y [l] ≡ y ·X[l] (mod N). Solving this gives (x ·X[l]−1)e mod N = y, and
thus the inverter is correct in returning x ·X[l]−1 mod N .

It may be worth adding some words of caution about the above. It is tempting to
think that

Advow-kea
Krsa

(I) ≥

[

1−
(qhash − 1) · qsig

2s

]

·Advuf-cma
DS (F ) ,

which would imply Equation (9.3) but is actually stronger. This however is not true,
because the bad events and success events as defined above are not independent.


