
Chapter 6

Message Authentication

In most people’s minds, privacy is the goal most strongly associated to cryptography.
But message authentication is arguably even more important. Indeed you may or
may not care if some particular message you send out stays private, but you almost
certainly do want to be sure of the originator of each message that you act on.
Message authentication is what buys you that guarantee.
Message authentication allows one party—the Sender—to send a message to

another party—the Receiver—in such a way that if the message is modified en
route, then the Receiver will almost certainly detect this. Message authentication is
also called “data-origin authentication,” since it authenticates the point-of-origin for
each message. Message authentication is said to protect the “integrity” of messages,
ensuring that each that is received and deemed acceptable is arriving in the same
condition that it was sent out—with no bits inserted, missing, or modified.
Here we’ll be looking at the shared-key setting for message authentication (re-

member that message authentication in the public-key setting is the problem ad-
dressed by digital signatures). In this case the Sender and the Receiver share a
secret key, K, which they’ll use to authenticate their transmissions. We’ll define the
message authentication goal and we’ll describe some different ways to achieve it. As
usual, we’ll be careful to pin down the problem we’re working to solve.

6.1 The setting

It is often crucial for an agent who receives a message to be sure who sent it out. If
a hacker can call into his bank’s central computer and produce deposit transactions
that appear to be coming from a branch office, easy wealth is just around the corner.
If an unprivilaged user can interact over the network with his company’s mainframe
in such a way that the machine thinks that the packets it is receiving are coming
from the system administrator, then all the machine’s access control mechanisms
are for naught. An Internet interlouper who can provide bogus financial data to

1

2 MESSAGE AUTHENTICATION

S R

M M or
 REJECT

M'

A

S R

K K

M

Figure 6.1: A message-authentication scheme. Sender S wants to send a message
M to receiver R in such a way that R will be sure that M came from S. They
share key K. Adversary A controls the communication channel. Sender S sends an
authenticated version of M , M ′, which adversary A may or may not pass on. On
receipt of a message M , receiver R either recovers a message that S really sent, or
else R gets an indication that M is inauthentic.

on-line investors by making the data seem to have come from a reputable source
when it does not might induce an enemy to make a disasterous investment.

In all of these cases the risk is that an adversary A—the Forger—will create
messages that look like they come from some other party, S, the (legitimate) Sender.
The attacker will send a message M to R—the Receiver—under S’s identity. The
Receiver R will be tricked into believing that M origiates with S. Because of this
wrong belief, R may act on M in a way that is somehow inappropriate.

The rightful Sender S could be one of many different kinds of entities, like
a person, a corporation, a network address, or a particular process running on a
particular machine. As the receiver R, you might know that it is S that supposedly
sent you the messageM for a variety of reasons. For example, the messageM might
be tagged by an identifier which somehow names S. Or it might be that the manner
in which M arrives is a route currently dedicated to servicing traffic from S.

Here we’re going to be looking at the case when S and R already share some
secret key,K. How S and R came to get this shared secret key is a separate question,
one that we deal with it in Chapter ??.

Authenticating messages may be something done for the benefit of the Receiver
R, but the Sender S will certainly need to help out—he’ll have to authenticate

each of his messages. See Fig. 6.1. To authenticate a message M using the key K
the legitimate Sender will apply some “message-authenticating algorithm” S to K
and M , giving rise to an “authenticated message” M ′. The sender S will transmit
the authenticated message M ′ to the receiver R. Maybe the Receiver will get R—
and then again, maybe not. The problem is that an adversary A controls the channel
on which messages are being sent. Let’s let M be the message that the Receiver
actually gets. The receiver R, on receipt of M , will apply some “message-recovery
algorithm” to K and M . We want that this should yield one of two things: (1) the
original message M , or else (2) an indication that M should not be regarded as
authentic.

Bellare and Rogaway 3

MAC VF
ACCEPT
 or
REJECT

S R

M Tag

A
K K

Tag

MM

Figure 6.2: A message authentication code (MAC). A MAC is a special-case of
a message-authentication scheme, where the authenticated message is the original
message M together with a tag Tag . The adversary controls the channel, so we
can not be sure that M and Tag reach their intended destination. Instead, the
Receiver gets M, T . The Receiver will apply a verification function to K, M and
T to decide if M should be regarded as the transmitted message, M , or as the
adversary’s creation.

Often the authenticated messageM ′ is just the original messageM together with
a fixed-length “tag.” The tag serves to validate the authenticity of the message M .
In this case we call the message-authentication scheme a message authentication

code, or MAC. See Fig. 6.2

When the Receiver decides that a message he has received is inauthentic what
should he do? The Receiver might want to just ignore the bogus message: perhaps
it was just noise on the channel. Or perhaps taking action will do more harm than
good, opening up new possiblities for denial-of-service attacks. Or the Receiver
may want to take more decisive actions, like tearing down the channel on which the
message was received and informing some human being of apparent mischief. The
proper course of action is dictated by the circumstances and the security policy of
the Receiver.

Adversarial success in violating the authenticity of messages demands an active
attack: to succeed, the adversary has to get some bogus data to the receiver R.
If the attacker just watches S and R commuicate she hasn’t won this game. In
some communication scenerios it may be difficult for the adversary to get her own
messages to the receiver R—it might not really control the communication channel.
For example, it may be difficult for an adversary to drop its own messages onto a
dedicated phone line or network link. In other environments it may be trivial, no
harder than dropping a packet onto the Internet. Since we don’t know what are the
characteristics of the Sender—Receiver channel it is best to assume the worst and
think that the adversary has plenty of power over the communications media (and
even some power over influencing what messages are legitimately sent out).

We wish to emphasize that the authentication problem is very different from
the encryption problem. We are not worried about secrecy of the message M . Our
concern is in whether the adversary can profit by injecting new messages into the

4 MESSAGE AUTHENTICATION

communications stream, not whether she undersands the contents of the communi-
cation. Indeed, as we shall see, encryption provides no ready solution for message
authentication.

6.2 Privacy does not imply authenticity

We know how to encrypt data so as to provide privacy, and something often sug-
gested (and done) is to encrypt as a way to provide data authenticity, too. Fix
a symmetric encryption scheme SE = (K, E ,D), and let parties S and R share a
key K for this scheme. When S wants to send a message M to R, she encrypts
it, transferring a ciphertext M ′ = C generated via C $←EK(M). The receiver B
decrypts it and, if it “makes sense”, he regards the recovered message M = DK(C)
as authentic.

The argument that this works is as follows. Suppose, for example, that S trans-
mits an ASCII message M100 which indicates that R should please transfer $100
from the checking account of S to the checking account of some other party, A.
The adversary A wants to change the amount from the $100 to $900. Now if M100

had been sent in the clear, A can easily modify it. But if M100 is encrypted so
that ciphertext C100 is sent, how is A to modify C100 so as to make S recover the
different message M900? The adversary A does not know the key K, so she cannot
just encrypt M900 on her own. The privacy of C100 already rules out that C100 can
be profitably tampered with.

The above argument is completely wrong. To see the flaws let’s first look at a
counter-example. If we encrypt M100 using a one time pad, then all the adversary
has to do is to XOR the byte of the ciphertext C100 which encodes the character
“1” with the XOR of the bytes which encode “1” and “9”. That is, when we one-
time pad encrypt, the privacy of the transmission does not make it difficult for the
adversary to tamper with ciphertext so as to produce related ciphertexts.

There are many possible reactions to this counter-example. Let’s look at some.

What you should not conclude is that one-time pad encryption is unsound. The
goal of encryption was to provide privacy, and nothing we have said has suggested
that one-time pad encryption does not. Faulting an encryption scheme for not
providing authenticity is like faulting a car for not being able to fly. There is no
reason to expect a tool designed to solve one problem to be effective at solving
another. You need an airplane, not a car, if you want to fly.

You should not conclude that the example is contrived, and that you’d fare
far better with some other encryption method. One-time-pad encryption is not at
all contrived. And other methods of encryption, like CBC encryption, are only
marginally better at protecting message integrity. This will be explored in the
exercises.

You should not conclude that the failure stemmed from a failure to add “re-
dundancy” before the message was encrypted. Adding redundancy is something
like this: before the Sender S encypts his data he pads it with some known, fixed

Bellare and Rogaway 5

string, like 128 bits of zeros. When the receiver decrypts the ciphertext he checks
whether the decrypted string ends in 128 zeros. He rejects the transmission if it
does not. Such an approach can, and almost always will, fail. For example, the
added redundancy does absolutely nothing in our one-time pad example.
What you should conclude is that encrypting a message was never an appropriate

approach for protecting its authenticity. With hindsight, this is pretty clear. The
fact that data is encrypted need not prevent an adversary from being able to make
the receiver recover data different from that which the sender had intended. Indeed
with most encryption schemes any ciphertext will decrypt to something, so even
a random transmission will cause the receiver to receive something different from
what the Sender intended, which was not to send any message at all. Now perhaps
the random ciphertext will look like garbage to the receiver, or perhaps not. Since
we do not know what the Receiver intends to do with his data it is impossible to
say.
Since encryption was not designed for authenticating messages, it very rarely

does. We emphasize this because the belief that good encryption, perahaps af-
ter adding redundancy, already provides authenticity, is not only voiced, but even
printed in books or embedded into security systems.
Good cryptographic design is goal-oriented. One must understand and formalize

our goal. Only then do we have the basis on which to design and evaluate potential
solutions. Accordingly, our next step is to come up with a definition for a message-
authentication scheme and its security.

6.3 Syntax of message-authentication schemes

Amessage authentication schemeMA = (K,S,R) is simply a symmetric encryption
scheme, consisting of a triple of algorithms. What is changed is the security goal,
which is no longer privacy but authenticity. For this reason we denote and name
the scheme and some of the algorithms differently. What used to be called the
encryption algorithm is now called the message authenticating algorithm; what used
to be called the decryption algorithm is now called the message recovery algorithm.
As we indicated already, a message-authentication code (MAC) is the special

case of a message-authentication scheme in which the authenticated message M ′

consists of M together with a fixed-length string, Tag . Usually the length of the
tag is between 32 and 128 bits. MACs of 32 bits, 64 bits, 96 bits, and 128 bits are
common.
It could be confusing, but it is very common practice to call the tag itself a

MAC. That is, the scheme itself is called MAC, but so too is the computed tag.

Definition 6.1 [MAC] A message-authentication code Π consists of three algo-
rithms, Π = (K,MAC,VF), as follows:

• The randomized key generation algorithm K returns a string K. We let
Keys(Π) denote the set of all strings that have non-zero probability of be-

6 MESSAGE AUTHENTICATION

ing output by K. The members of this set are called keys. We write K $←K
for the operation of executing K and letting K denote the key returned.

• The MAC-generation algorithm MAC, which might be randomized or stateful,
takes a key K ∈ Keys(Π) and a plaintext M ∈ {0, 1}∗ to return a tag Tag ∈

{0, 1}∗∪{⊥}. We write Tag $←MACK(M) to denote the operation of executing
MAC on K and M and letting Tag denote the tag returned.

• The deterministic MAC-verification algorithm VF takes a key K ∈ Keys(SE),
a message M ∈ {0, 1}∗ and a candidate tag Tag ∈ {0, 1}∗ to return either 1
(accept) or 0 (reject). We write d ← VFK(M,Tag) to denote the opera-
tion of executing VF on K,M and Tag and letting d denote the decision bit
returned.

We require that for any key K ∈ Keys(Π) and any message M ∈ {0, 1}∗

Pr
[

Tag = ⊥ OR VFK(M,Tag) = 1 : Tag $←MACK(M)
]

= 1 .

A number τ ≥ 1 is called the tag-length associated to the scheme if for any key
K ∈ Keys(Π) and any message M ∈ {0, 1}∗

Pr
[

Tag = ⊥ OR |Tag | = τ : Tag $←MACK(M)
]

= 1 .

Any message authentication code gives rise to an associated message authentication
scheme in which the authenticated message consists of the message together with
the tag. In more detail, if Π = (K,MAC,VF) is a message authentication code,
then its associated message authentication scheme is MA = (K,S,R) where the
key-generation algorithm remains unchanged and

Algorithm SK(M)

Tag
$←MACK(M)

M ′ ← (M,Tag)
Return M ′

Algorithm RK(M
′)

Parse M ′ as (M,Tag)
If VFK(M,Tag) = 1 then return 1 else return 0

Let us make a few comments about Definition 6.1. First, we emphasize that, so
far, we have only defined MAC and message-authentication scheme “syntax”—we
haven’t yet said anything formal about security. Of course any viable message-
authentication scheme will require some security properties. We’ll get there in a
moment. But first we needed to pin down exactly what type of objects we’re talking
about.

Note that our definitions don’t permit stateful message-recovery or stateful
MAC-verfication. Stateful functions for the Receiver can be problematic because
of the possiblity of messages not reaching their destiation—it is too easy for the
Receiver to be in a state different from the one that we’d like. All the same, state-
ful MAC verification functions are essiential for detecting “replay attacks,” and are
therefore important tools. We will eventually allow stateful verification. We take
up this issue in Section ??.

Bellare and Rogaway 7

Recall that it was essential for security of an encryption scheme that the encryp-
tion algorithm be probabilistic or stateful—you couldn’t do well at achieving our
strong notions of privacy with a determinisitic encryption algorithm. But this isn’t
true for message authentication. It is possible (and even common) to have secure
message authentication schemes in which the message-authenticating algorithm is
deterministic or stateless, and to have secure message-authentication codes in which
the MAC-generation algorithm is deterministic or stateless.
When the MAC-generation algorithm is deterministic and stateless, MAC ver-

ification is invariably accomplished by having the Verifier compute the correct tag
for the received messageM (using the MAC-generation function) and checking that
it matches the received tag. That is, the MAC-verification function is simply the
following:

algorithm VFK(M,Tag)
Tag ′ ← MACK(M)
if (Tag = Tag ′ and Tag ′ 6= ⊥) then return 1 else return 0.

For a deterministic MAC we need only specify the key-generation function and the
MAC-generation function: the MAC-verification function is then understood to be
the one just described. That is, a deterministic MAC may be specified with a pair
of functions, Π = (K,MAC), and not a triple of functions, Π = (K,MAC,VF), with
the understanding that one can later refer to VF and it is the canonical algorithm
depicted above.

6.4 A definition of security for MACs

Let’s concentrate on MACs. We begin with a discussion of the issues and then state
a formal definition.

6.4.1 Towards a definition of security

The goal that we seek to achieve with a MAC is to be able to detect any attempt by
the adversary to modify the transmitted data. We don’t want the adversary to be
able to produce messages that the Receiver will deem authentic—only the Sender
should be able to do this. That is, we don’t want that the adversary A to be able to
create a pair (M,Tag) such that VFK(M,Tag) = 1, but M did not originate with
the Sender S. Such a pair (M,Tag) is called a forgery. If the adversary can make
such a pair, she is said to have forged.
In some discussions of security people assume that the adversary’s goal is to

recover the secret key K. Certainly if it could do this, it would be a disaster,
since it could then forge anything. It is important to understand, however, that an
adversary might be able to forge without being able to recover the key, and if all
we asked was for the adversary to be unable to recover the key, we’d be asking too
little. Forgery is what counts, not key recovery.

8 MESSAGE AUTHENTICATION

Now it should be admitted right away that some forgeries might be useless
to the adversary. For example, maybe the adversary can forge, but it can only
forge strings that look random; meanwhile, suppose that all “good” messages are
supposed to have a certain format. Should this really be viewed as a forgery? The
answer is yes. If checking that the message is of a certain format was really a
part of validitating the message, then that should have been considered as part
of the message-authentication scheme. In the absence of this, it is not for us to
make assumptions about how the messages are formatted or interpreted. We really
have no idea. Good protocol design means the security is guaranteed no matter
what is the application. Asking that the adversary be unable to forge “meaningful”
messages, whatever that might mean, would again be asking too little.

In our adversary’s attempt to forge a message we could consider various attacks.
The simplest setting is that the adversary wants to forge a message even though it
has never seen any transmission sent by the Sender. In this case the adversary must
concoct a pair (M,Tag) which passes the verification test, even though it hasn’t
obtained any information to help. This is called a no-message attack. It often falls
short of capturing the capabilities of realistic adversaries, since an adversary who
can inject bogus messages onto the communications media can probably see valid
messages as well. We should let the adversary use this information.

Suppose the Sender sends the transmission (M,Tag) consisting of some message
M and its legitimate tag Tag . The Receiver will certainly accept this—we demanded
that. Now at once a simple attack comes to mind: the adversary can just repeat
this transmission, (M,Tag), and get the Receiver to accept it once again. This
attack is unavoidable, so far, in that we required in the syntax of a MAC for the
MAC-verification functions to be stateless. If the Verifier accepted (M,Tag) once,
he’s bound to do it again.

What we have just described is called a replay attack. The adversary sees a valid
(M,Tag) from the Sender, and at some later point in time it re-transmits it. Since
the Receiver accepted it the first time, he’ll do so again.

Should a replay attack count as a valid forgery? In real life it usually should. Say
the first message was “Transfer $1000 from my account to the account of party A.”
Then party A may have a simple way to enriching herself: it just keeps replaying
this same MAC’ed message, happily watching her bank balance grow.

It is important to protect against replay attacks. But for the moment we will
not try to do this. We will say that a replay is not a valid forgery; to be valid a
forgery must be of a messageM which was not already produced by the Sender. We
will see later that we can always achieve security against replay attacks by simple
means; that is, we can take any MAC which is not secure against replay attacks
and modify it—after making the Verifier stateful—so that it will be secure against
replay attacks. At this point, not worrying about replay attacks results in a cleaner
problem definition. And it leads us to a more modular protocol-design approach—
that is, we cut up the problem into sensible parts (“basic security” and then “replay
security”) solving them one by one.

Bellare and Rogaway 9

Of course there is no reason to think that the adversary will be limited to seeing
only one example message. Realistic adversaries may see millions of authenticated
messages, and still it should be hard for them to forge.

For some MACs the adversary’s ability to forge will grow with the number qs
of legitimate message-MAC pairs it sees. Likewise, in some sucurity systems the
number of valid (M,Tag) pairs that the adversary can obtain may be architecturally
limited. (For example, a stateful Signer may be unwilling to MAC more than a
certain number of messages.) So when we give our quantitative treatment of security
we will treat qs as an important adversarial resource.

How exactly do all these tagged messages arise? We could think of there being
some distribution on messages that the Sender will authenticate, but in some set-
tings it is even possible for the adversary to influence which messages are tagged.
In the worst case, imagine that the adversary itself chooses which messages get
authenticated. That is, the adversary chooses a message, gets its MAC, chooses
another message, gets its MAC, and so forth. Then it tries to forge. This is called
an adaptive chosen-message attack. It wins if it succeds in forging the MAC of a
message which it has not queried to the sender.

At first glance it may seem like an adaptive chosen-message attack is unrealisticly
generous to our adversary; after all, if an adversary could really obtain a valid MAC
for any message it wanted, wouldn’t that make moot the whole point of authenticting
messages? In fact, there are several good arguments for allowing the adversary such
a strong capability. First, we will see examples—higher-level protocols that use
MACs—where adaptive chosen-message attacks are quite realistic. Second, recall
our general principles. We want to design schemes which are secure in any usage.
This requires that we make worst-case notions of security, so that when we err in
realistically modelling adversarial capabilities, we err on the side of caution, allowing
the adversary more power than it might really have. Since eventually we will design
schemes that meet our stringent notions of security, we only gain when we assume
our adversary to be strong.

As an example of a simple scenerio in which an adaptive chosen-message attack
is realistic, imagine that the Sender S is forwarding messages to a Receiver R. The
Sender receives messages from any number of third parties, A1, . . . , An. The Sender
gets a piece of data M from party Ai along a secure channel, and then the Sender
transmits to the Receiver 〈i〉 ‖M ‖MACK(〈i〉 ‖M). This is the Sender’s way of
attesting to the fact that he has received message M from party Ai. Now if one of
these third parties, say A1, wants to play an adversarial role, it will ask the Sender
to forward its adaptively-chosen messages M1,M2, . . . to the Reciever. If, based on
what it sees, it can learn the key K, or even if it can learn to forge message of the
form 〈2〉 ‖M , so as to produce a valid 〈2〉 ‖M ‖MACK(〈2〉 ‖M), then the intent
of the protocol will have been defeated, even though most it has correctly used a
MAC.

So far we have said that we want to give our adversary the ability to obtain
MACs for messages of her choosing, and then we want to look at whether or not

10 MESSAGE AUTHENTICATION

it can forge: produce a valid (M,Tag) where it never asked the Sender to MAC
M . But we should recognize that a realistic adversary might be able to produce
lots of candidate forgeries, and it may be content if any of these turn out to be
valid. We can model this possiblity by giving the adversary the capability to tell if
a prospective (M,Tag) pair is valid, and saying that the adversary forges if it ever
finds an (M,Tag) pair that is but M was not MACed by the Sender.

Whether or not a real adversary can try lots of possible forgeries depends on
the context. Suppose the Verifier is going to tear down a connection the moment
he detects an invalid tag. Then it is unrealistic to try to use this Verifier to help
you determine if a candidate pair (M,Tag) is valid—one mistake, and you’re done
for. In this case, thinking of there being a single attempt to forge a message is quite
adequtate.

On the other hand, suppose that a Verifier just ignores any improperly tagged
message, while it responds in some noticably different way if it receives a properly
authenticated message. In this case a quite reasonable adversarial strategy may be
ask the Verifier about the validity of a large number of candidate (M,Tag) pairs.
The adversary hopes to find at least one that is valid. When the adversary finds
such an (M,Tag) pair, we’ll say that it has won.

Let us summarize. To be fully general, we will give our adversary two different
capabities. The first adversarial capaiblity is to obtain a MAC M for any message
that it chooses. We will call this a signing query. The adversary will make some
number of them, qs. The second adversarial capability is to find out if a particular
pair (M,Tag) is valid. We will call this a verification query. The adversary will
make some number of them, qv. Our adversary is said to succeed—to forge—if it
ever makes a verification query (M,Tag) and gets a return value of 1 (accept) even
though the message M is not a message that the adversary already knew a tag for
by viture of an earlier signing query. Let us now proceed more formally.

6.4.2 Definition of security

LetMA = (K,MAC,VF) be an arbitrary message authentication scheme. We will
formalize a quantitative notion of security against adpative chosen-message attack.
We begin by describing the model.

We distill the model from the intuition we have described above. There is no
need, in the model, to think of the Sender and the Verifier as animate entities.
The purpose of the Sender, from the adversary’s point of view, is to authenticate
messages. So we will embody the Sender as an oracle that the adversray can use to
authenticate any message M . This “signing oracle,” as we will call it, is our way
to provide the adversary black-box access to the function MACK(·). Likewise, the
purpose of the Verifier, from the adversary’s point of view, is to have something to
whom to send attempted forgeries. So we will embody the Verifier as an oracle that
the adversray can use to see if a candidate pair (M,Tag) is valid. This “verification
oracle,” as we will call it, is our way to provide the adversary black-box access to
the function VFK(·). Thus, when we become formal, the cast of characters—the

Bellare and Rogaway 11

A

M

MAC-Generation
Oracle

MACK (M)

MACK (.) VFK (.)

MAC-Verification
Oracle

M
VFK (M)

Figure 6.3: The model for a message authentication code. Adversary A has access

to a MAC-generation oracle and a MAC-verification oracle. The adversary wants to

get the MAC-verification oracle to accept some (M,Tag) for which it didn’t earlier

ask the MAC-generation oracle for M .

Sender, Verifier, and Adversary—gets reduced to just the adversry, running with
her oracles. The Sender and Verifier have vanished.

Definition 6.2 [MAC Security] Let Π = (K,MAC,VF) be a message authenti-
cation code, and let A be an adversary. We consider the following experiment:

Experiment Expuf-cmaΠ (A)

K $←K

Run AMACK(·),VFK(·,·)

If A made a verification query (M,Tag) such that the following are true
– The verification oracle returned 1
– A did not, prior to making verification query (M,Tag),
make signing query M

Then return 1 else return 0

The uf-cma advantage of A is defined as

Advuf-cmaΠ (A) = Pr
[

Expuf-cmaΠ (A) = 1
]

.

Let us discuss the above definition. Fix a MAC scheme Π. Then we associate to
any adversary A its “advantage,” or “success probability.” We denote this value as
Advuf-cmaΠ (A). It’s just the chance that A manages to forge. The probability is
over the choice of key K, any probabilistic choices that MAC might make, and the
probabilistic choices, if any, that the adversary A makes.

As usual, the advantage that can be achieved depends both on the adversary
strategy and the resources it uses. Informally, Π is secure if the advantage of a
practical adversary is low.

12 MESSAGE AUTHENTICATION

As usual, there is a certain amount of arbitrariness as to which resources we
measure. Certainly it is important to separate the oracle queries (qs and qv) from
the time. In practice, signing queries correspond to messages sent by the legitimate
sender, and obtaining these is probably more difficult than just computing on one’s
own. Verification queries correspond to messages the adversary hopes the Verifier
will accept, so finding out if it does accept these queries again requires interaction.
Some system architectures may effectively limit qs and qv. No system architecture
can limit t— that is limited primarilly by the adversary’s budget.

We emphasize that there are contexts in which you are happy with a MAC that
makes forgery impractical when qv = 1 and qs = 0 (an “impersonation attack”) and
there are contexts in which you are happy when forgery is imporactical when qv = 1
and qs = 1 (a “substitution attack”). But it is perhaps more common that you’d
like for forgery to be impractical even when qs is large, like 2

50, and when qv is large,
too.

We might talk of the total length of an adversary’s MAC-generation oracle
queries, which is the sum of the lengths of all messages it queries to this oracle.
When we say this value is at most µs we mean it is so across all possible coins of
the adversary and all possible answers returned by the oracle. We might talk of the
total length of an adversary’s MAC-verification oracle queries, which is the sum of
the lengths of all messages in the queries its makes to its MAC-verification oracle.
(Each such query is a pair, but we count only the length of the message). The same
conventions apply.

Naturally the key K is not directly given to the adversary, and neither are any
random choices or counter used by the MAC-generation algorithm. The adversary
sees these things only to the extent that they are reflected in the answers to her
oracle queries.

6.5 Examples

Let us examine some example message authentication codes and use the definition to
assess their strengths and weaknesses. We fix a PRF F : {0, 1}k×{0, 1}` → {0, 1}L.
Our first scheme Π1 = (K,MAC) is a deterministic, stateless MAC, so that we
specify only two algorithms, the third being the canonical associated verification
algorithm discussed above. The key-generation algorithm simply picks at random a
k-bit key K and returns it, while the MAC-generation algorithm works as follows:

algorithm MACK(M)
if (|M | mod ` 6= 0 or |M | = 0) then return ⊥
Break M into ` bit blocks M =M [1] . . .M [n]
for i = 1, . . . , n do yi ← FK(M [i])
Tag ← y1 ⊕ · · · ⊕ yn
return Tag

Now let us try to assess the security of this message authentication code.

Bellare and Rogaway 13

Suppose the adversary wants to forge the tag of a certain given message M .
A priori it is unclear this can be done. The adversary is not in possession of the
secret key K, so cannot compute FK and hence will have a hard time computing
Tag . However, remember that the notion of security we have defined says that the
adversary is successful as long as it can produce a correct tag for some message, not
necessarily a given one. We now note that even without a chosen-message attack
(in fact without seeing any examples of correctly tagged data) the adversary can do
this. It can choose a messageM consisting of two equal blocks, sayM = x‖x where
x is some `-bit string, set Tag ← 0L, and make verification query (M,Tag). Notice
that VFK(M,Tag) = 1 because FK(x) ⊕ FK(x) = 0

L = Tag . So the adversary is
successful. In more detail, the adversary is:

Adversary A
MACK(·),VFK(·,·)
1

Let x be some `-bit string
M ← x ‖ x
Tag ← 0L

d← VFK(M,Tag)

Then Advuf-cmaΠ1
(A1) = 1. Furthermore A1 makes no signing oracle queries, uses

t = O(`+L) time, and its verification query has length 2`-bits, so it is very practical.
There are many other attacks. For example we note that

Tag = FK(M [1]) ⊕ FK(M [2])

is not only the tag ofM [1]M [2] but also the tag ofM [2]M [1]. So it is possible, given
the tag of a message, to forge the tag of a new message formed by permuting the
blocks of the old message. We leave it to the reader to specify the corresponding
adversary and compute its advantage.
Let us now try to strengthen the scheme to avoid these attacks. Instead of

applying FK to a data block, we will first prefix the data block with its index. To
do this we pick some parameter m with 1 ≤ m ≤ ` − 1, and write the index as an
m-bit string. The MAC-generation algorithm of the deterministic, stateless MAC
Π1 = (K,MAC) is as follows:

algorithm MACK(M)
l← `−m
if (|M | mod l 6= 0 or |M | = 0 or |M |/l ≥ 2m) then return ⊥
Break M into l bit blocks M =M [1] . . .M [n]
for i = 1, . . . , n do yi ← FK([i]m ‖M [i])
Tag ← y1 ⊕ · · · ⊕ yn
return Tag

As before, the verification algorithm is the canonical one that simply recomputes
the tag using MAC and checks whether it is correct.
As the code indicates, we divide M into blocks, but the size of each block is

smaller than in our previous scheme: it is now only l = `−m bits. Then we prefix

14 MESSAGE AUTHENTICATION

the i-th message block with the value i itself, the block index, written in binary as a
string of length exactly m bits. It is to this padded block that we apply FK before
taking the XOR.
Note that encoding of the block index i as an m-bit string is only possible if

i < 2m. This means that we cannot authenticate a message M having more 2m

blocks. This explains the conditions under which the MAC-generation algorithm
returns ⊥. However this is hardly a restriction in practice since a reasonable value
of m, like m = 32, is large enough that typical messages fall in the message space.
Anyway, the question we are really concerned with is the security. Has this

improved with respect to Π1? Begin by noticing that the attacks we found on Π1
no longer work. For example if x is an `−m bit string and we letM = x‖x then its
tag is not likely to be 0L. (This would happen only if FK([1]m ‖ x) = FK([2]m ‖ x)
which is unlikely if F is a good PRF and impossible if F is a block cipher, since
every instance of a block cipher is a permutation.) Similar arguments show that the
second attack discussed above, namely that based on permuting of message blocks,
also has low success against the new scheme. Why? In the new scheme, ifM [1],M [2]
are strings of length `−m, then

MACK(M [1]M [2]) = FK([1]m ‖M [1]) ⊕ FK([2]m ‖M [2])

MACK(M [2]M [1]) = FK([1]m ‖M [2]) ⊕ FK([2]m ‖M [1]) .

These are unlikely to be equal for the same reasons discussed above. As an exercise,
a reader might upper bound the probability that these values are equal in terms of
the value of the advantage of F at appropriate parameter values.
However, Π2 is still insecure. The attack however require a more non-trivial

usage of the chosen-message attacking ability. The adversary will query the tagging
oracle at several related points and combine the responses into the tag of a new
message. We call it A2–

Adversary A
MACK(·)
2

Let a1, b1 be distinct, `−m bit strings
Let a2, b2 be distinct `−m bit strings
Tag1 ← MACK(a1a2) ; Tag2 ← MACK(a1b2) ; Tag3 ← MACK(b1a2)
Tag ← Tag1 ⊕ Tag2 ⊕ Tag3
d← VFK(b1b2,Tag)

We claim that Advuf-cmaΠ2
(A2) = 1. Why? This requires two things. First that

VFK(b1b2,Tag) = 1, and second that b1b2 was never a query to MACK(·) in the
above code. The latter is true because we insisted above that a1 6= b1 and a2 6= b2,
which together mean that b1b2 6∈ {a1a2, a1b2, b1a2}. So now let us check the first
claim. We use the definition of the tagging algorithm to see that

Tag1 = FK([1]m ‖ a1) ⊕ FK([2]m ‖ a2)

Tag2 = FK([1]m ‖ a1) ⊕ FK([2]m ‖ b2)

Tag3 = FK([1]m ‖ b1) ⊕ FK([2]m ‖ a2) .

Bellare and Rogaway 15

Now look how A2 defined Tag and do the computation; due to cancellations we get

Tag = Tag1 ⊕ Tag2 ⊕ Tag3

= FK([1]m ‖ b1) ⊕ FK([2]m ‖ b2) .

This is indeed the correct tag of b1b2, meaning the value Tag
′ that VFK(b1b2,Tag)

would compute, so the latter algorithm returns 1, as claimed. In summary we have
shown that this scheme is insecure.

It turns out that a slight modification of the above, based on use of a counter or
random number chosen by the MAC algorithm, actually yields a secure scheme. For
the moment however we want to stress a feature of the above attacks. Namely that
these attacks did not cryptanalyze the PRF F . The cryptanalysis of the message
authentication schemes did not care anything about the structure of F ; whether it
was DES, AES, or anything else. They found weaknesses in the message authenti-
cation schemes themselves. In particular, the attacks work just as well when FK is
a random function, or a “perfect” cipher. This illustrates again the point we have
been making, about the distinction between a tool (here the PRF) and its usage. We
need to make better usage of the tool, and in fact to tie the security of the scheme
to that of the underlying tool in such a way that attacks like those illustrated here
are provably impossible under the assumption that the tool is secure.

6.6 The PRF-as-a-MAC paradigm

Pseudorandom functions make good MACs, and constructing a MAC in this way
is an excellent approach. Here we show why PRFs are good MACs, and determine
the concrete security of the underlying reduction. The following shows that the
reduction is almost tight—security hardly degrades at all.

Let F : Keys × D → {0, 1}τ be a family of functions. We define the associated
message authentication code Π = (K,MAC) via:

algorithm K

K $← Keys

return K

algorithm MACK(M)
if (M 6∈ D) then return ⊥
Tag ← FK(M)
Return Tag

Since this is a deterministic stateless MAC, we have not specified a verification
algorithm. It is understood to be the canonical one discussed above.

Note that when we think of a PRF as a MAC it is important that the domain of
the PRF be whatever one wants as the domain of the MAC. So such a PRF probably
won’t be realized as a block cipher. It may have to be realized by a PRF that allows
for inputs of many different lengths, since you might want to MAC messages of many
different lenghts. As yet we haven’t demonstrated that we can make such PRFs.
But we will. Let us first relate the security of the above MAC to that of the PRF.

16 MESSAGE AUTHENTICATION

Proposition 6.3 Let F : Keys × D → {0, 1}τ be a family of functions and let
Π = (K,MAC) be the associated message authentication code as defined above. Let
A by any adversary attacking Π, making qs MAC-generation queries of total length
µs, qv MAC-verification queries of total length µv, and having running time t. Then
there exists an adversary B attacking F such that

Advuf-cmaΠ (A) ≤ AdvprfF (B) +
qv
2τ

. (6.1)

Furthermore B makes qs+ qv oracle queries of total length µs+µv and has running
time t.

Proof: Remember that B is given an oracle for a function f : D → {0, 1}τ . It will
run A, providing it an environment in which A’s oracle queries are answered by B.

Adversary Bf

d← 0 ; S ← ∅
Run A
When A asks its signing oracle some query M :
Answer f(M) to A ; S ← S ∪ {M}

When A asks its verification oracle some query (M,Tag):
if f(M) = Tag then
answer 1 to A ; if M 6∈ S then d← 1
else answer 0 to A

Until A halts
return d

We now proceed to the analysis. We claim that

Pr
[

Expprf-1F (B) = 1
]

= Advuf-cmaΠ (A) (6.2)

Pr
[

Expprf-0F (B) = 1
]

≤
qv
2τ

. (6.3)

Subtracting, we get Equation (6.1). Let us now justify the two equations above.

In the first case f is an instance of F , so that the simulated environment that B
is providing for A is exactly that of experiment Expuf-cmaΠ (A). Since B returns 1
exactly when A makes a successful verification query, we have Equation (6.2).

In the second case, A is running in an environment that is alien to it, namely one
where a random function is being used to compute MACs. We have no idea what
A will do in this environment, but no matter what, we know that the probability
that any particular verification query (M,Tag) with M 6∈ S will be answered by 1
is at most 2−τ , because that is the probability that Tag = f(M). Since there are at
most qv verification queries, Equation (6.3) follows.

Bellare and Rogaway 17

E E EK K

M1 M3M2

EK

M4

K

Tag

M M

M

Figure 6.4: The CBC MAC, here illustrated with a message M of four blocks,

M =M1M2M3M4.

6.7 The CBC MACs

A very popular class of MACs is obtained via cipher-block chaining of a given block
cipher. Here is the most basic scheme in this class.

Scheme 6.4 [Basic CBC MAC] Let E: {0, 1}k × {0, 1}n → {0, 1}n be a block
cipher. The basic CBC MAC Π = (K,MAC) is a deterministic, stateless MAC
that has as a parameter an associated message space Messages. The key-generation
algorithm K simply picks K via K $←{0, 1}k and returns K. The MAC generation
algorithm is as follows:

Algorithm MACK(M)
If M 6∈ Messages then return ⊥
Break M into n-bit blocks M [1] · · ·M [m]
C[0]← 0n

For i = 1, . . . ,m do C[i]← EK(C[i− 1] ⊕M [i])
Return C[m]

See Fig. 6.4 for an illustration with m = 4. The verification algorithm VF is the
canonical one since this MAC is deterministic: It just checks, on input (K,M,Tag),
if Tag = MACK(M).

As we will see below, the choice of message space Messages is very important
for the security of the CBC MAC. If we take it to be {0, 1}mn for some fixed value
m, meaning the length of all authenticated messages is the same, then the MAC is
secure. If however we allow the generation of CBC-MACs for messages of different
lengths, by letting the message space be the set of all strings having length a positive
multiple of n, then the scheme is insecure.

18 MESSAGE AUTHENTICATION

Theorem 6.5 [1] Let E: {0, 1}k×{0, 1}n → {0, 1}n be a block cipher, letm ≥ 1 be
an integer, and let Π be the CBC-MAC of Scheme 6.4 over message space {0, 1}mn.
Then for any adversary A making at most q MAC-generation queries, one MAC-
verification query and having running time t there exists an adversary B, making
q + 1 oracle queries and having running time t, such that

Advuf-cmaΠ (A) ≤ Advprp-cpaE (B) +
m2q2

2n−1
.

6.8 Problems

Problem 6.1 Consider the following variant of the CBC MAC, intended to allow
one to MAC messages of arbitrary length. The construction uses a block cipher
E : {0, 1}k ×{0, 1}n → {0, 1}n, which you should assume to be secure. The domain
for the MAC is ({0, 1}n)+. To MAC M under key K compute CBCK(M ‖ |M |),
where |M | is the length of M , written in n bits. Of course K has k bits. Show that
this MAC is completely insecure: break it with a constant number of queries.

Problem 6.2 Consider the following variant of the CBC MAC, intended to allow
one to MAC messages of arbitrary length. The construction uses a block cipher
E : {0, 1}k ×{0, 1}n → {0, 1}n, which you should assume to be secure. The domain
for the MAC is ({0, 1}n)+. To MACM under key (K,K ′) compute CBCK(M) ⊕ K ′.
Of course K has k bits and K ′ has n bits. Show that this MAC is completely
insecure: break it with a constant number of queries.

Problem 6.3 Let SE = (K, E ,D) be a symmetric encryption scheme and let MA =
(K′,MAC,VF) be a message authentication code. Alice (A) and Bob (B) share
a secret key K = (K1,K2) where K1 ← K and K2 ← K′. Alice wants to send
messages to Bob in a private and authenticated way. Consider her sending each of
the following as a means to this end. For each, say whether it is a secure way or
not, and briefly justify your answer. (In the cases where the method is good, you
don’t have to give a proof, just the intuition.)

(a) M,MACK2(EK1(M))

(b) EK1(M,MACK2(M))

(c) MACK2(EK1(M))

(d) EK1(M),MACK2(M)

(e) EK1(M), EK1(MACK2(M))

(f) C,MACK2(C) where C = EK1(M)

(g) EK1(M,A) where A encodes the identity of Alice; B decrypts the received
ciphertext C and checks that the second half of the plaintext is “A”.

Bellare and Rogaway 19

In analyzing these schemes, you should assume that the primitives have the
properties guaranteed by their definitions, but no more; for an option to be good
it must work for any choice of a secure encryption scheme and a secure message
authentication scheme.
Now, out of all the ways you deemed secure, suppose you had to choose one

to implement for a network security application. Taking performance issues into
account, do all the schemes look pretty much the same, or is there one you would
prefer?

Problem 6.4 Refer to problem 4.3. Given a block cipher E : K×{0, 1}n → {0, 1}n,
construct a cipher (a “deterministic encryption scheme”) with message space {0, 1}∗

that is secure in the sense that you defined. (Hint: you now know how to construct
from E a pseudorandom function with domain {0, 1}∗.)

Problem 6.5 Let H: {0, 1}k × D → {0, 1}L be a hash function, and let Π =
(K,MAC,VF) be the message authentication code defined as follows. The key-
generation algorithm K takes no inputs and returns a random k-bit key K, and the
tagging and verifying algorithms are:

Algorithm MACK(M)
Tag ← H(K,M)
Return Tag

Algorithm VFK(M,Tag ′)
Tag ← H(K,M)
If Tag = Tag ′ then return 1
Else return 0

Show that

Advcr2-hkH (t, q, µ) ≤ (q − 1) ·Advuf-cmaΠ (t′, q − 1, µ, q − 1, µ)

for any t, q, µ with q ≥ 2, where t′ is t+ O(log(q)). (This says that if Π is a secure
message authentication code then H was a CR2-HK secure hash function.)

20 MESSAGE AUTHENTICATION

Bibliography

[1] M. Bellare, J. Kilian and P. Rogaway. The security of the cipher
block chaining message authentication code. Journal of Computer and System

Sciences , Vol. 61, No. 3, Dec 2000, pp. 362–399.

[2] M. Bellare, R. Canetti and H. Krawczyk. Keying hash functions for
message authentication. Advances in Cryptology – CRYPTO ’96, Lecture
Notes in Computer Science Vol. 1109, N. Koblitz ed., Springer-Verlag, 1996.

[3] J. Black, S. Halevi, H. Krawczyk, T. Krovetz, and P. Rogaway.
UMAC: Fast and secure message authentication. Advances in Cryptology –

CRYPTO ’99, Lecture Notes in Computer Science Vol. 1666, M. Wiener ed.,
Springer-Verlag, 1999.

[4] J. Black and P. Rogaway. CBC MACs for Arbitrary-Length Messages:
The Three-Key Constructions. Advances in Cryptology – CRYPTO ’00, Lec-
ture Notes in Computer Science Vol. 1880, M. Bellare ed., Springer-Verlag,
2000.

21

