
The RSA system. The basics.
• Def. Let N,f ≥ 1 be integers. The RSA function associated to

N,f is the function RSAN,f : ZN → ZN defined by

RSAN,f (w) = wf mod N for all w ∈ ZN.

• Claim. Let N ≥ 2 and e,d ∈ Zφ(N) be integers such that ed ≡ 1

(mod φ(N)). Then the RSA functions RSAN,e and RSAN,d are

• both permutations on ZN and

• inverses of each other, ie. RSAN,e = RSAN,d and

RSAN,d = RSAN,e.

• Proof. For any x∈ZN , modulo N:

• RSAN,d(RSAN,e(x)) ≡ (xe)d ≡ xed ≡ xed mod φ(N) ≡ x1 ≡ x

• Similarly, RSAN,e(RSAN,d(y)) ≡ y

∗∗

∗

∗

∗

−1

−1

∗

• The RSA function associated to N,f can be efficiently computed
using MOD-EXP(⋅,f,N) algorithm.

• Hence, RSAN,e(⋅) is efficiently computable given N,e

• RSAN,e(⋅) = RSAN,d(⋅) is efficiently computable given N,d

• But RSAN,e(⋅) = RSAN,d(⋅) is believed hard (without d) for

a proper choice of parameters (good for crypto).

• Let’s build algorithms that generate RSA parameters.

• Claim. There is an O(k2) time algorithm that on inputs ϕ(N), e

where e ∈ Zφ(N) and N < 2k, returns d ∈ Zφ(N) satisfying

ed ≡ 1 (mod φ(N)).

−1

−1

∗ ∗

• The RSA modulus generator:

(k)

1

Return (N, p,q)

1

10 NUMBER-THEORETIC PRIMITIVES

Definition 10.9 A modulus generator with associated security parameter k (where k ≥ 2 is an
integer) is a randomized algorithm that takes no inputs and returns integers N, p, q satisfying:

1. p, q are distinct, odd primes

2. N = pq

3. 2k−1 ≤ N < 2k (ie. N has bit-length k).

An RSA generator with associated security parameter k is a randomized algorithm that takes no
inputs and returns a pair ((N, e), (N, p, q, d)) such that the three conditions above are true, and, in
addition,

4. e, d ∈ Z∗
(p−1)(q−1)

5. ed ≡ 1 (mod (p − 1)(q − 1))

We call N an RSA modulus, or just modulus. We call e the encryption exponent and d the decryption

exponent.

Note that (p− 1)(q − 1) = ϕ(N) is the size of the group Z∗
N . So above, e, d are relatively prime to

the order of the group Z∗
N . As the above indicates, we are going to restrict attention to numbers

N that are the product of two distinct odd primes. Condition (4) for the RSA generator translates
to 1 ≤ e, d < (p − 1)(q − 1) and gcd(e, (p − 1)(q − 1)) = gcd(d, (p − 1)(q − 1)) = 1.

For parameter generation to be feasible, the generation algorithm must be efficient. There are
many different possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, q at random, with each being about k/2
bits long. The corresponding modulus generator K$

mod with associated security parameter k works
as follows:

Algorithm K$
mod

"1 ← 'k/2(; "2 ←)k/2*
Repeat

p $← {2!1−1, . . . , 2!1 − 1} ; q $← {2!2−1, . . . , 2!2 − 1}
Until the following conditions are all true:

– TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
– p += q
– 2k−1 ≤ N

N ← pq

Return (N, e), (N, p, q, d)

Above, TEST-PRIME denotes an algorithm that takes input an integer and returns 1 or 0. It is
designed so that, with high probability, the former happens when the input is prime and the latter
when the input is composite.

Sometimes, we may want modulii product of primes having a special form, for example primes
p, q such that (p − 1)/2 and (q − 1)/2 are both prime. This corresponds to a different modulus
generator, which works as above but simply adds, to the list of conditions tested to exit the loop, the
conditions TEST-PRIME((p− 1)/2)) = 1 and TEST-PRIME((q− 1)/2)) = 1. There are numerous
other possible modulus generators too.

An RSA generator, in addition to N, p, q, needs to generate the exponents e, d. There are several
options for this. One is to first choose N, p, q, then pick e at random subject to gcd(N, ϕ(N)) =

10 NUMBER-THEORETIC PRIMITIVES

Definition 10.9 A modulus generator with associated security parameter k (where k ≥ 2 is an
integer) is a randomized algorithm that takes no inputs and returns integers N, p, q satisfying:

1. p, q are distinct, odd primes

2. N = pq

3. 2k−1 ≤ N < 2k (ie. N has bit-length k).

An RSA generator with associated security parameter k is a randomized algorithm that takes no
inputs and returns a pair ((N, e), (N, p, q, d)) such that the three conditions above are true, and, in
addition,

4. e, d ∈ Z∗
(p−1)(q−1)

5. ed ≡ 1 (mod (p − 1)(q − 1))

We call N an RSA modulus, or just modulus. We call e the encryption exponent and d the decryption

exponent.

Note that (p− 1)(q − 1) = ϕ(N) is the size of the group Z∗
N . So above, e, d are relatively prime to

the order of the group Z∗
N . As the above indicates, we are going to restrict attention to numbers

N that are the product of two distinct odd primes. Condition (4) for the RSA generator translates
to 1 ≤ e, d < (p − 1)(q − 1) and gcd(e, (p − 1)(q − 1)) = gcd(d, (p − 1)(q − 1)) = 1.

For parameter generation to be feasible, the generation algorithm must be efficient. There are
many different possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, q at random, with each being about k/2
bits long. The corresponding modulus generator K$

mod with associated security parameter k works
as follows:

Algorithm K$
mod

"1 ← 'k/2(; "2 ←)k/2*
Repeat

p $← {2!1−1, . . . , 2!1 − 1} ; q $← {2!2−1, . . . , 2!2 − 1}
Until the following conditions are all true:

– TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
– p += q
– 2k−1 ≤ N

N ← pq

Return (N, e), (N, p, q, d)

Above, TEST-PRIME denotes an algorithm that takes input an integer and returns 1 or 0. It is
designed so that, with high probability, the former happens when the input is prime and the latter
when the input is composite.

Sometimes, we may want modulii product of primes having a special form, for example primes
p, q such that (p − 1)/2 and (q − 1)/2 are both prime. This corresponds to a different modulus
generator, which works as above but simply adds, to the list of conditions tested to exit the loop, the
conditions TEST-PRIME((p− 1)/2)) = 1 and TEST-PRIME((q− 1)/2)) = 1. There are numerous
other possible modulus generators too.

An RSA generator, in addition to N, p, q, needs to generate the exponents e, d. There are several
options for this. One is to first choose N, p, q, then pick e at random subject to gcd(N, ϕ(N)) =

10 NUMBER-THEORETIC PRIMITIVES

Definition 10.9 A modulus generator with associated security parameter k (where k ≥ 2 is an
integer) is a randomized algorithm that takes no inputs and returns integers N, p, q satisfying:

1. p, q are distinct, odd primes

2. N = pq

3. 2k−1 ≤ N < 2k (ie. N has bit-length k).

An RSA generator with associated security parameter k is a randomized algorithm that takes no
inputs and returns a pair ((N, e), (N, p, q, d)) such that the three conditions above are true, and, in
addition,

4. e, d ∈ Z∗
(p−1)(q−1)

5. ed ≡ 1 (mod (p − 1)(q − 1))

We call N an RSA modulus, or just modulus. We call e the encryption exponent and d the decryption

exponent.

Note that (p− 1)(q − 1) = ϕ(N) is the size of the group Z∗
N . So above, e, d are relatively prime to

the order of the group Z∗
N . As the above indicates, we are going to restrict attention to numbers

N that are the product of two distinct odd primes. Condition (4) for the RSA generator translates
to 1 ≤ e, d < (p − 1)(q − 1) and gcd(e, (p − 1)(q − 1)) = gcd(d, (p − 1)(q − 1)) = 1.

For parameter generation to be feasible, the generation algorithm must be efficient. There are
many different possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, q at random, with each being about k/2
bits long. The corresponding modulus generator K$

mod with associated security parameter k works
as follows:

Algorithm K$
mod

"1 ← 'k/2(; "2 ←)k/2*
Repeat

p $← {2!1−1, . . . , 2!1 − 1} ; q $← {2!2−1, . . . , 2!2 − 1}
Until the following conditions are all true:

– TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
– p += q
– 2k−1 ≤ N

N ← pq

Return (N, e), (N, p, q, d)

Above, TEST-PRIME denotes an algorithm that takes input an integer and returns 1 or 0. It is
designed so that, with high probability, the former happens when the input is prime and the latter
when the input is composite.

Sometimes, we may want modulii product of primes having a special form, for example primes
p, q such that (p − 1)/2 and (q − 1)/2 are both prime. This corresponds to a different modulus
generator, which works as above but simply adds, to the list of conditions tested to exit the loop, the
conditions TEST-PRIME((p− 1)/2)) = 1 and TEST-PRIME((q− 1)/2)) = 1. There are numerous
other possible modulus generators too.

An RSA generator, in addition to N, p, q, needs to generate the exponents e, d. There are several
options for this. One is to first choose N, p, q, then pick e at random subject to gcd(N, ϕ(N)) =

10 NUMBER-THEORETIC PRIMITIVES

Definition 10.9 A modulus generator with associated security parameter k (where k ≥ 2 is an
integer) is a randomized algorithm that takes no inputs and returns integers N, p, q satisfying:

1. p, q are distinct, odd primes

2. N = pq

3. 2k−1 ≤ N < 2k (ie. N has bit-length k).

An RSA generator with associated security parameter k is a randomized algorithm that takes no
inputs and returns a pair ((N, e), (N, p, q, d)) such that the three conditions above are true, and, in
addition,

4. e, d ∈ Z∗
(p−1)(q−1)

5. ed ≡ 1 (mod (p − 1)(q − 1))

We call N an RSA modulus, or just modulus. We call e the encryption exponent and d the decryption

exponent.

Note that (p− 1)(q − 1) = ϕ(N) is the size of the group Z∗
N . So above, e, d are relatively prime to

the order of the group Z∗
N . As the above indicates, we are going to restrict attention to numbers

N that are the product of two distinct odd primes. Condition (4) for the RSA generator translates
to 1 ≤ e, d < (p − 1)(q − 1) and gcd(e, (p − 1)(q − 1)) = gcd(d, (p − 1)(q − 1)) = 1.

For parameter generation to be feasible, the generation algorithm must be efficient. There are
many different possible efficient generators. We illustrate a few.

In modulus generation, we usually pick the primes p, q at random, with each being about k/2
bits long. The corresponding modulus generator K$

mod with associated security parameter k works
as follows:

Algorithm K$
mod

"1 ← 'k/2(; "2 ←)k/2*
Repeat

p $← {2!1−1, . . . , 2!1 − 1} ; q $← {2!2−1, . . . , 2!2 − 1}
Until the following conditions are all true:

– TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
– p += q
– 2k−1 ≤ N

N ← pq

Return (N, e), (N, p, q, d)

Above, TEST-PRIME denotes an algorithm that takes input an integer and returns 1 or 0. It is
designed so that, with high probability, the former happens when the input is prime and the latter
when the input is composite.

Sometimes, we may want modulii product of primes having a special form, for example primes
p, q such that (p − 1)/2 and (q − 1)/2 are both prime. This corresponds to a different modulus
generator, which works as above but simply adds, to the list of conditions tested to exit the loop, the
conditions TEST-PRIME((p− 1)/2)) = 1 and TEST-PRIME((q− 1)/2)) = 1. There are numerous
other possible modulus generators too.

An RSA generator, in addition to N, p, q, needs to generate the exponents e, d. There are several
options for this. One is to first choose N, p, q, then pick e at random subject to gcd(N, ϕ(N)) =

• The random-exponent RSA generator:

•

•

•

•

•

• Often for efficiency we want e to be small, e.g. 3. Then

Bellare and Rogaway 11

1, and compute d via the algorithm of Proposition 10.8. This random-exponent RSA generator,
denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q) $←K$
mod

M ← (p − 1)(q − 1)

e $← Z∗
M

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

In order to speed-up computation of RSAN,e, however, we often like e to be small. To enable this,
we begin by setting e to some small prime number like 3, and then picking the other parameters
appropriately. In particular we associate to any odd prime number e the following exponent-e RSA

generator :

Algorithm Ke
rsa

Repeat

(N, p, q) $←K$
mod(k)

Until

– e < (p − 1) and e < (q − 1)
– gcd(e, (p − 1)) = gcd(e, (q − 1)) = 1

M ← (p − 1)(q − 1)

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

10.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e, y
it is hard to compute RSA

−1
N,e(y). One must be careful to formalize this properly though. The

formalization chooses y at random.

Definition 10.10 Let Krsa be an RSA generator with associated security parameter k, and let A
be an algorithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d)) $←Krsa

x $← Z∗
N ; y ← xe mod N

x′ $← A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[
Expow-kea

Krsa
(A) = 1

]
.

Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack,
abbreviated “cea,” in which, rather than having the encryption exponent specified by the instance
of the problem, one allows the adversary to choose it. The only condition imposed is that the
adversary not choose e = 1.

(k)

1

Bellare and Rogaway 11

1, and compute d via the algorithm of Proposition 10.8. This random-exponent RSA generator,
denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q) $←K$
mod

M ← (p − 1)(q − 1)

e $← Z∗
M

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

In order to speed-up computation of RSAN,e, however, we often like e to be small. To enable this,
we begin by setting e to some small prime number like 3, and then picking the other parameters
appropriately. In particular we associate to any odd prime number e the following exponent-e RSA

generator :

Algorithm Ke
rsa

Repeat

(N, p, q) $←K$
mod(k)

Until

– e < (p − 1) and e < (q − 1)
– gcd(e, (p − 1)) = gcd(e, (q − 1)) = 1

M ← (p − 1)(q − 1)

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

10.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e, y
it is hard to compute RSA

−1
N,e(y). One must be careful to formalize this properly though. The

formalization chooses y at random.

Definition 10.10 Let Krsa be an RSA generator with associated security parameter k, and let A
be an algorithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d)) $←Krsa

x $← Z∗
N ; y ← xe mod N

x′ $← A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[
Expow-kea

Krsa
(A) = 1

]
.

Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack,
abbreviated “cea,” in which, rather than having the encryption exponent specified by the instance
of the problem, one allows the adversary to choose it. The only condition imposed is that the
adversary not choose e = 1.

Bellare and Rogaway 11

1, and compute d via the algorithm of Proposition 10.8. This random-exponent RSA generator,
denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q) $←K$
mod

M ← (p − 1)(q − 1)

e $← Z∗
M

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

In order to speed-up computation of RSAN,e, however, we often like e to be small. To enable this,
we begin by setting e to some small prime number like 3, and then picking the other parameters
appropriately. In particular we associate to any odd prime number e the following exponent-e RSA

generator :

Algorithm Ke
rsa

Repeat

(N, p, q) $←K$
mod(k)

Until

– e < (p − 1) and e < (q − 1)
– gcd(e, (p − 1)) = gcd(e, (q − 1)) = 1

M ← (p − 1)(q − 1)

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

10.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e, y
it is hard to compute RSA

−1
N,e(y). One must be careful to formalize this properly though. The

formalization chooses y at random.

Definition 10.10 Let Krsa be an RSA generator with associated security parameter k, and let A
be an algorithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d)) $←Krsa

x $← Z∗
N ; y ← xe mod N

x′ $← A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[
Expow-kea

Krsa
(A) = 1

]
.

Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack,
abbreviated “cea,” in which, rather than having the encryption exponent specified by the instance
of the problem, one allows the adversary to choose it. The only condition imposed is that the
adversary not choose e = 1.

(k)

1

Bellare and Rogaway 11

1, and compute d via the algorithm of Proposition 10.8. This random-exponent RSA generator,
denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q) $←K$
mod

M ← (p − 1)(q − 1)

e $← Z∗
M

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

In order to speed-up computation of RSAN,e, however, we often like e to be small. To enable this,
we begin by setting e to some small prime number like 3, and then picking the other parameters
appropriately. In particular we associate to any odd prime number e the following exponent-e RSA

generator :

Algorithm Ke
rsa

Repeat

(N, p, q) $←K$
mod(k)

Until

– e < (p − 1) and e < (q − 1)
– gcd(e, (p − 1)) = gcd(e, (q − 1)) = 1

M ← (p − 1)(q − 1)

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

10.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e, y
it is hard to compute RSA

−1
N,e(y). One must be careful to formalize this properly though. The

formalization chooses y at random.

Definition 10.10 Let Krsa be an RSA generator with associated security parameter k, and let A
be an algorithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d)) $←Krsa

x $← Z∗
N ; y ← xe mod N

x′ $← A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[
Expow-kea

Krsa
(A) = 1

]
.

Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack,
abbreviated “cea,” in which, rather than having the encryption exponent specified by the instance
of the problem, one allows the adversary to choose it. The only condition imposed is that the
adversary not choose e = 1.

d←MOD-INV(e,M)

1

d←MOD-INV(e,M)

1

1

2

3

4

One-wayness problems

• Def [ow-kea] For an adversary A consider an experiment:

•

•

•

The ow-kea - advantage of A is defined as

Bellare and Rogaway 11

1, and compute d via the algorithm of Proposition 10.8. This random-exponent RSA generator,
denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q) $←K$
mod

M ← (p − 1)(q − 1)

e $← Z∗
M

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

In order to speed-up computation of RSAN,e, however, we often like e to be small. To enable this,
we begin by setting e to some small prime number like 3, and then picking the other parameters
appropriately. In particular we associate to any odd prime number e the following exponent-e RSA

generator :

Algorithm Ke
rsa

Repeat

(N, p, q) $←K$
mod(k)

Until

– e < (p − 1) and e < (q − 1)
– gcd(e, (p − 1)) = gcd(e, (q − 1)) = 1

M ← (p − 1)(q − 1)

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

10.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e, y
it is hard to compute RSA

−1
N,e(y). One must be careful to formalize this properly though. The

formalization chooses y at random.

Definition 10.10 Let Krsa be an RSA generator with associated security parameter k, and let A
be an algorithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d)) $←Krsa

x $← Z∗
N ; y ← xe mod N

x′ $← A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[
Expow-kea

Krsa
(A) = 1

]
.

Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack,
abbreviated “cea,” in which, rather than having the encryption exponent specified by the instance
of the problem, one allows the adversary to choose it. The only condition imposed is that the
adversary not choose e = 1.

(k)

1

Bellare and Rogaway 11

1, and compute d via the algorithm of Proposition 10.8. This random-exponent RSA generator,
denoted K$

rsa, is detailed below:

Algorithm K$
rsa

(N, p, q) $←K$
mod

M ← (p − 1)(q − 1)

e $← Z∗
M

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

In order to speed-up computation of RSAN,e, however, we often like e to be small. To enable this,
we begin by setting e to some small prime number like 3, and then picking the other parameters
appropriately. In particular we associate to any odd prime number e the following exponent-e RSA

generator :

Algorithm Ke
rsa

Repeat

(N, p, q) $←K$
mod(k)

Until

– e < (p − 1) and e < (q − 1)
– gcd(e, (p − 1)) = gcd(e, (q − 1)) = 1

M ← (p − 1)(q − 1)

Compute d by running the algorithm of Proposition 10.8 on inputs M, e

Return ((N, e), (N, p, q, d))

10.3.3 One-wayness problems

The basic assumed security property of the RSA functions is one-wayness, meaning given N, e, y
it is hard to compute RSA

−1
N,e(y). One must be careful to formalize this properly though. The

formalization chooses y at random.

Definition 10.10 Let Krsa be an RSA generator with associated security parameter k, and let A
be an algorithm. We consider the following experiment:

Experiment Expow-kea
Krsa

(A)

((N, e), (N, p, q, d)) $←Krsa

x $← Z∗
N ; y ← xe mod N

x′ $← A(N, e, y)
If x′ = x then return 1 else return 0

The ow-kea-advantage of A is defined as

Advow-kea
Krsa

(A) = Pr
[
Expow-kea

Krsa
(A) = 1

]
.

Above, “kea” stands for “known-exponent attack.” We might also allow a chosen-exponent attack,
abbreviated “cea,” in which, rather than having the encryption exponent specified by the instance
of the problem, one allows the adversary to choose it. The only condition imposed is that the
adversary not choose e = 1.

One-wayness problems
• Def [ow-cea] For an adversary A consider an experiment:

•

•

•

•

The ow-cea - advantage of A is defined as

Conjecture. The RSA function is believed to be ow-kea and ow-
cea secure, i.e. the corresponding advantages of any
polynomial-time (in k) adversaries are small.

(k)

1

12 NUMBER-THEORETIC PRIMITIVES

Definition 10.11 Let Kmod be a modulus generator with associated security parameter k, and let
A be an algorithm. We consider the following experiment:

Experiment Expow-cea
Krsa

(A)

(N, p, q) $←Kmod

y $← Z∗
N

(x, e) $← A(N, y)
If xe ≡ y (mod N) and e > 1

then return 1 else return 0.

The ow-cea-advantage of A is defined as

Advow-cea
K

mod
(A) = Pr

[
Expow-cea

K
mod

(A) = 1
]

.

10.4 Historical notes

10.5 Exercises and Problems

12 NUMBER-THEORETIC PRIMITIVES

Definition 10.11 Let Kmod be a modulus generator with associated security parameter k, and let
A be an algorithm. We consider the following experiment:

Experiment Expow-cea
Krsa

(A)

(N, p, q) $←Kmod

y $← Z∗
N

(x, e) $← A(N, y)
If xe ≡ y (mod N) and e > 1

then return 1 else return 0.

The ow-cea-advantage of A is defined as

Advow-cea
K

mod
(A) = Pr

[
Expow-cea

K
mod

(A) = 1
]

.

10.4 Historical notes

10.5 Exercises and Problems

• Let’s study several known attacks that “break” RSA, i.e.
compute an inverse of the RSA function on random inputs
without knowing the trapdoor.

x xe mod N
easy

easy with d
hard without d

Known attacks on RSA function

1. Factoring the RSA modulus.

• If one can factor N, i.e. compute p,q, s.t. N=pq then one

can compute d=e-1 mod (p-1)(q-1)

• The best known algorithm to factor is GNFS.

2. Theorem [RSA with low secret exponent]. Let N=pq, where

q<p<2q and p,q are prime. Let d<1/3⋅N1/4. Then given
(N,e) one can efficiently compute d.

5

6

7

8

3. Haståd’s broadcast attack for RSA with low public exponent.

pk2=(N2 , 3)

pk1=(N1, 3)

pk3=(N3 , 3)

C1 = m3 mod N1

C
3 = m 3 mod N

3

C
2 = m3 mod N

2

C1 = m3 mod N1
C2 = m3 mod N2
C3 = m3 mod N3

C1, C2, C3, pk1, pk2, pk3

If N1,N2,N3 are relatively
prime then by Chinese
Remainder Theorem can
combine

to find C = m3 mod N1 N2 N3

Since m3 < N1 N2 N3 then

m ← √ C3

A fix? Let’s apply different polynomials to message prior to
applying the RSA function.

4. Theorem [broadcast attack on padded RSA with low public
exponents].
Let N1,...Nn be pairwise relatively prime integers and set

Nmin=mini(Ni). Let gi be n polynomials of maximum degree

e. Suppose there exists a unique M<Nmin satisfying

 gi(M)=0 mod Ni for all i=1,...n.

 If n>e, then one can efficiently find M given all (Ni, gi) for

i=1,...,n.

5. Theorem [Related-message attack on RSA with low public
exponent].
Set e=3 and let N be and RSA modulus. Let M1≠M2∈ZN satisfy

M1=f(M2) mod N for some linear polynomial f=ax+b with b≠0.

Then, given (N,e,C1=M1
e mod N,C2=M2

e mod N), one can

recover M1,M2 in time quadratic in k=|N|.

*

6. Theorem. [Coppersmith’s short pad attack].

Let N,e be RSA modulus and public exponent, where |N|=k. Set m=k/e2.
Let M∈ZN be a message of length at most k-m bits.

Define M1=2mM+r1 and M2=2mM+r2,where 0 ≤ r1,r2 ≤ 2m. Then given
N,e,C1,C2, one can efficiently recover M.

• When e=3 the attack works as long as the pad’s length is less than 1/9
of the message.

*

7. Theorem. Let N=pq be a k-bit RSA modulus. Then given k/4
least or most significant bits of p, one can efficiently factor N.

8. Theorem. Let N be a k-bit RSA modulus and let d be an RSA
secret exponent. Then given the k/4 least significant bits of d,
one can efficiently recover all bits of d.

Reference: http://crypto.stanford.edu/~dabo/abstracts/
RSAattack-survey.html

9

10

11

12

