The RSA system. The basics.

¢ Def. Let N,f = 1 be integers. The RSA function associated to
N,f is the function RSA ¢ : Z§; — Zy; defined by

RSAN,f (w) = wf mod N for all w € Zy

« Claim. LetN >2ande,de Z;(N) be integers such thated = 1
(mod ¢(N)). Then the RSA functions RSAN e and RSAN qare

« both permutations on Zy; and

« inverses of each other, ie. RSA_1 = RSA and
1 N,e N,d
RSAN,d = RSAN,e'

« Proof. For any xezy; , modulo N:
* RSA 4(RSAY () = (x®)d = xed = yed mod ¢(N) _, 1 _

. Similarly, RSAy o(RSAy 4(¥)) = ¥

* The RSA function associated to N,f can be efficiently computed
using MOD-EXP(-,f,N) algorithm.

« Hence, RSAy (") is efficiently computable given N,e
. RSAN}E() = RSAN’d(<) is efficiently computable given N,d
-1
« But RSAN e(-) = RSAN d(-) is believed hard (without d) for
a proper choice of parameters (good for crypto).
* Let’s build algorithms that generate RSA parameters.
* Claim. There is an O(kz) time algorithm that on inputs $(N), e

* k * e
where e € Z¢(N) and N < 2%, returns d € Z¢(N) satisfying
ed = 1 (mod ¢(N)).

¢ The RSA modulus generator:

Algorithm szd (k)

0 — [k/2]; by — [k/2]

Repeat
p {2t 20 1} g &2t 22 — 1}

Until the following conditions are all true:
TEST-PRIME(p) = 1 and TEST-PRIME(q) = 1
p#q
21 < pg

N —pq

Return (N, p,q)

* The random-exponent RSA generator:
Algorithm K%, (k)

Tsa

(N,p,q) < K80
* M—(p-1)@-1)
. e Zy,

d «— MOD-INV (e, M)
Return ((N,e), (N,p,q,d))

* Often for efficiency we want e to be small, e.g. 3. Then

Algorithm K&, (k)
Repeat
(N p.q) & K3 oq(k)
Until
— e<(p-1ande<(qg-1)
- ged(e.(p— 1)) = ged(e, (¢ - 1)) =1
Me—(p-1g-1)
d — MOD-INV (¢, M)
Return ((N,e), (N, p, q, d))




One-wayness problems
* Def [ow-kea] For an adversary A consider an experiment:
o Experiment Expf™*(4)
((Ne), (N, p,q.d)) & Ky (k)
& ZY; y — 2 mod N
2’ < A(N,e,y)
If ' = & then return 1 else return 0

The ow-kea - advantage of A is defined as

AdvRrke(4) = Pr[Expgiie(a) = 1]

One-wayness problems

¢ Def [ow-cea]_For an adversary A consider an experiment:
Experiment Expi”“**(4)

(N2, @) = Kioa (k)
. Y Zy
(x,¢) = A(N.y)
(mod N) and e > 1
then return 1 else return 0.

The ow-cea - advantage of A is defined as

AdvREe(4) = Pr [Exp‘ - (A):l]

Conjecture. The RSA function is believed to be ow-kea and ow-
cea secure, i.e. the corresponding advantages of any
polynomial-time (in k) adversaries are small.

easy e
X x- mod N
easy with d
hard without d
* Let's study several known attacks that “break” RSA, i.e.

compute an inverse of the RSA function on random inputs
without knowing the trapdoor.

Known attacks on RSA function
1. Factoring the RSA modulus.
« If one can factor N, i.e. compute p,q, s.t. N=pq then one
can compute d=e"! mod (p-1)(g-1)
¢ The best known algorithm to factor is GNFS.

2. Theorem [RSA with low secret exponent]. Let N=pq, where

g<p<2q and p,q are prime. Let d<1/3»N1/4. Then given
(N,e) one can efficiently compute d.




3. Hastdd’s broadcast attack for RSA with low public exponent.

Cy, Gy G5, PKy, PKy, P;

If Ny, Ny, N; are relatively ﬁ
prime then by Chinese
Remainder Theorem can
combine
C,=m>mod N,
C,=m>mod N
pky=(N,, 3) Ci = m*mod Ni

= 3
pls=(N;, 3) to find C= m*mod N, N, N5
Since m* < Ny N, N5 then
m<vC

A fix? Let’s apply different polynomials to message prior to
applying the RSA function.

4. Theorem [broadcast attack on padded RSA with low public
exponents].
Let Ny,...N, be pairwise relatively prime integers and set

Npin=min;(N;). Let g; be n polynomials of maximum degree
e. Suppose there exists a unique M<Npin satisfying
gi(M)=0 mod Ni for all i=1,...n.
If n>e, then one can efficiently find M given all (Ni' gi) for
i=1,...,n.

5. Theorem [Related-message attack on RSA with low public

exponent].
Set e=3 and let N be and RSA modulus. Let M1¢M2ezﬁ satisfy

M1=f(M2) mod N for some linear polynomial f=ax+b with b#0.
Then, given (N,e,Clele mod N,CZ:MZe mod N), one can
recover My,M, in time quadratic in k=|NJ|.

6. Theorem. [Coppersmith’s short pad attack].

Let N,e be RSA modulus and public exponent, where INI=k. Set m=k/e2.
Let MEZ,fl be a message of length at most k-m bits.

Define M1=2mM+r1 and M2=2mM+r2,where 0= rrh< 2™ Then given
N,e,C,C,, one can efficiently recover M.

* When e=3 the attack works as long as the pad’s length is less than 1/9
of the message.

7. Theorem. Let N=pq be a k-bit RSA modulus. Then given k/4
least or most significant bits of p, one can efficiently factor N.

8. Theorem. Let N be a k-bit RSA modulus and let d be an RSA
secret exponent. Then given the k/4 least significant bits of d,
one can efficiently recover all bits of d.

Reference: http://crypto.stanford.edu/~dabo/abstracts/
RSAattack-survey.html
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