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Abstract

This paper proposes an architecture that permits se-
lected application- and middleware-level functionality to be
‘pushed into’ network processors. Such functionality is rep-
resented as stream handlers that run on the network proces-
sors (NPs) attached to the host nodes participating in over-
lay networks. When using stream handlers, application-
and middleware-level functionality is ‘split’ into multiple
components that are jointly executed by the host and the
attached NP (ANP). Resulting improvements in application
performance are due to the network-near nature of ANPs
and due to the ability to dynamically customize stream han-
dlers to meet current application needs or match current
network resources. The evaluation of our current prototype
implementation indicates that the use of ANP-level handlers
can reduce the delays on the application data path by more
than 25%, and can sustain higher throughput for the ap-
plication services provided by stream handlers. In addi-
tion, stream handlers are a suitable basis for scalable im-
plementations of data-increasing services like destination-
customized multicast.

1. Attached Network Processors in Overlay
Networks

Research in active networking has long argued the ben-
efits of dynamically reconfiguring the network infrastruc-
ture, to better match application needs with platform con-
ditions [11, 16, 15]. Technical advances due to such work
include the development of architectures and runtime meth-
ods for programmable routers and switches, the provision
of general techniques for adapting communications, and ex-
perimentation with applications like video distribution and
service proxies. While building on such advances, our
research focuses on the network’s ‘edges’, where we are
investigating the benefits attained for applications by dy-
namically customizing the functionality of ‘attached net-

work processors’ (ANPs). ANPs are the programmable
network devices that are attached to the end hosts used
by applications. The specific ANPs used in our research
are the emerging class of programmable network proces-
sors, which are becoming an attractive target for deploy-
ing new functionality ‘into’ the network, at lower costs
and with shorter development times than custom-designed
ASICs. Their utility has already been demonstrated for pro-
gramming network-centric services like software routing,
network monitoring, intrusion detection, load-balancing,
service differentiation, and others. In contrast, we focus
on application-level functionality. For example, data fil-
tering and packet scheduling benefits applications like re-
mote sensing, remote visualization, online collaboration,
and multimedia [17, 7]. Dynamic synchronization methods
or content-based multicast benefit high performance simu-
lations or transactional applications like operational infor-
mation systems [5, 10]. In all such cases, application-level
performance is directly affected by the ability to ‘push’
suitable functionality onto ANPs, and to dynamically cus-
tomize it to meet current application needs or match current
network resources.

Our past work has focused on using ANPs in system
area networks with high end cluster machines [10]. Our
current work is broader, in that it targets any distributed
application that uses overlay networks. These include the
online collaboration and distributed scientific codes con-
sidered in our earlier work, transactional applications, and
the middleware-based grid services that are becoming in-
creasingly important for future distributed systems. The
specific middleware considered in our research implements
publish/subscribe event-based communications across co-
operating peers [3, 14].

The key idea presented in this paper is to permit applica-
tions and middleware to run overlay services on the ‘edge-
deployed’ NPs that are attached to participating hosts. This
is achieved by ‘splitting’ the middleware- or application-
level functionality executed on hosts (in their OS ker-
nels or at application-level) into multiple components that



are efficiently and jointly executed by the host and ANP.
This is shown in Figure 2, where this additional function-
ality is placed into the region labeled Access, which is
split across ANP and host. Splitting should be dynamic,
(i.e., when overlays are first constructed), and split compo-
nents should be runtime-configurable, so as to continuously
match their operation to current application needs and net-
work resources (e.g., by configuring certain execution pa-
rameters, such as rate or point of invocation, or by configur-
ing application-level parameters, such as filtering thresholds
or bounding box coordinates).

The goal is to use ANP resources to deliver to a wide
range of scientific and commercial applications improve-
ments in performance or reliability. Benefits experienced
by applications are due to customized communications and
the reduced computational loads on end-host, e.g., by of-
floading overlay computations onto ANPs. We avoid some
of the safety and security issues raised in the context of ac-
tive networks by engaging end host operating systems in the
control of ANP-level functionality.

The experimental results presented in this paper use In-
tel’s’ IXP1200 network processors as ANPs. Measurements
show that use of ANPs vs. hosts for certain application-
level services can reduce the latency of the application data
path by more than 25%, and that it can sustain high through-
put for most of the services considered. It can also provide a
25% improvement for certain data-increasing services, such
as destination-customized multicast.
Remainder of paper. In the remainder of paper, we first
describe the application domains and platforms targeted by
our work. Section 3 briefly describes the ANP-resident por-
tion of an application-specific service, termed stream han-
dlers, then present the system components of the composite
host-ANP nodes. Section 4 presents and discusses experi-
mental results attained with our prototype implementation.
Related work, conclusions, and future work are presented
last.

2. Application Domains and Execution Plat-
forms

Applications. Our focus is on streaming applications that
involve the continuous exchange of large volumes of data,
exemplified by operational information systems (OIS), real-
time collaboration, dynamic web applications delivering
camera- or sensor-captured data to remote users, etc. Previ-
ous work has demonstrated the utility of overlay networks
for such data-intensive applications, in terms of improve-
ments in performance and resource utilization [14, 3, 19].
Improvements are attained in part by customizing the data
being exchanged based on the destinations’ interests, using
communication paradigms that offer customization control
like peer-to-peer and publish/subscribe.
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Figure 1. Intel IXP1200 Block Diagram.

Two representative applications are the operational in-
formation system used by companies like Delta Air Lines
(OIS) [5] that manipulates business events and a real-time
scientific collaboration, termed SmartPointer [17], which
transforms and filters molecular data. In the OIS, in or-
der to meet requirements like reliability and availability, the
streaming of business events is customized with methods
like selective data mirroring. In SmartPointer, data is cus-
tomized via downsampling or reduction methods in order to
continuously meet the real-time needs of end users despite
varying network resources.

For these applications, we advocate the use of ANPs
as building blocks for the dynamic and customized de-
livery of data across overlay networks. Host nodes per-
form computationally intensive data transformations or ap-
ply business rules that require substantial state, while ANPs
perform application-specific stream management functions
like client-specific data filtering, selective dynamic data
mirroring, and transactional constructs.

Intel IXP1200 Network Processor. Our implementation
uses Intel’s IXP1200 [6] as an ANP. This programmable
network processor is a multiprocessor on a chip contain-
ing a StrongArm (SA) core and 6 microengines with 4
thread contexts each (see Figure 1). For the Radisys boards
used in our work, each microengine operates at 232MHz,
and it has a 2Kword instruction store, shared among the
4 contexts. The chip integrates memory controllers for
256MB of SDRAM, 8MB of external SRAM and 4KB of
internal scratch memory. Four 100T MACs connect exter-
nally through a proprietary 64-bit/66-MHz IX bus accessed
through on-chip transmit and receive FIFOs, and network
packets are received as a sequence of 64-byte MAC-layer
packets. We expect to migrate to the next generation IXP
with two gigabit Ethernet MACs in the near future.

3. System Overview

3.1 Stream Handlers

Stream handlers are lightweight, composable, pa-
rameterizable computational units that encapsulate the
application- or middleware-level functionality to be applied
to data streams in the network processor [4].
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Accessing application-level data. Since stream handlers ex-
ecute application-level functions, their implementation uti-
lizes (1) protocol code that assembles application-level data
units, and (2) the ability to interpret the structure of the data
byte stream and access the relevant packet body contents.
For the current IXP platform, we rely on an RUDP-like pro-
tocol to efficiently implement the reassembly and fragmen-
tation of application-level data in IXP memory. This is be-
cause previous work has shown that TCP cannot be run at
link speeds on this platform [13]. For next generation IXPs,
we expect to use standardized protocols. Application-level
data is described with compact binary data format descrip-
tions [3], which provide to handlers information about the
structure and layout of the data they manipulate. The use
of formats enables us to duplicate for packet bodies the el-
ements that make it easy for NPs to perform header-based
operations: known header formats, offsets, and types and
sizes of fields. IXP-resident handlers rely on such encod-
ings to access the correct parts of the MAC-layer packet(s),
or the memory buffers on which they operate.
Basic data path components. In the IXP1200, packets are
delivered from and to the network as a sequence of 64B
MAC-layer packets, on any one of its ports. Application-
level messages are assembled from these packets in IXP
memory, and access to these buffers is enabled through a set
of shared queues. Figure 2 represents the basic elements of
the data path through the host-ANP. The Receive block ex-
ecutes the receive-side protocol code to detect message and
flow boundaries across packets, and associates packets with
the corresponding memory queues. In the IXP1200, this
functionality is executed by a set of receive (Rx) threads,
currently allocated on a per port basis. Received data can
be forwarded directly to the transmit-side protocol code –
Transmit, implemented by a separate Tx-thread for each
port. Any additional processing is represented with the Ac-
cess block. The stream handlers represent, in fact, such ad-
ditional functions, and can be executed by one of the ANP-
level processing contexts, or at the host kernel- or user-level.
Programming interface. All handlers have access to cer-
tain global information, which includes stream state, cur-
rent data queues, counters, control buffers, etc. A set of IXP
registers and routines can be used to move data across the
DRAM data queues, R/TFIFOs, and the network. A portion
of IXP memory is made available to handlers to store state

h h

Control
AdmissionResource

Monitor

ANP−HOST
INTERFACE

resource state

Data
Mngt

Ctrl
Mngt

Buffers
Control
Buffers

Data

Rx SH TxSH

HOST

ANP

Application

Figure 3. System Components.

and parameter values. Unlike traditional application-level
handlers, which operate solely on application data on top of
the underlying protocols, on the ANP, stream handlers are
essentially combined with the protocol’s execution. There-
fore, the protocols used need to be taken into consideration,
and handlers are aware of both data and header offsets, and
of data delivery to and from the underlying network.

3.2 System Components

Figure 3 depicts the system components of the composite
host-ANP nodes. On the ANP side, multiple microengines
execute the receive and transmit side protocol, and/or im-
plement the stream handler functionality assigned to them.
Controlled access to data buffers is used to coordinate the
ANP’s execution contexts, and to exchange data with the
host-resident application component. The configuration and
deployment of new handlers is managed by the admission
control block, which depending on resource availability,
configures the IXP runtime through accesses to its control
buffers.
Stream handler deployment. A rich set of application-level
services can be implemented by deploying stream handlers
to all parts of the data path, at any of its execution engines.
We have previously shown that on the ANP, stream handlers
can be applied to data as part of the (1) Rx- or (2) Tx-side
protocol processing, or (3) while data is ‘in transit’ in ANP
memory [4]. In addition, data can be processed by kernel-
or user-level handlers on the host, which is important for
complex handlers or to deal with runtime resource limi-
tations. Stream handlers can be simultaneously deployed
at multiple points of the data path, and executed by any
of the execution engines. In this manner, compositions of
handlers are achieved, which enables us to provide com-
plex, composite services to applications (e.g., representing
application-level workflow). For instance, experimental re-



sults presented in this paper demonstrate performance gains
of over 25% for message sizes of

���
kB derived from imple-

menting destination-customized multicast as a composition
of an Rx-side mirroring handler and a set of Tx-side han-
dlers that perform the customization based on the destina-
tion, compared to an implementation that uses a memory-
resident handler. A more complex example is one that per-
forms filtering or stream differentiation on the ANP, and di-
rects the customized substream to host-resident handlers, to
execute computationally expensive data transformations, or
to perform value-added services like intrusion detection.

Application-ANP interaction. The deployment and config-
uration of stream handlers is driven and controlled by the
host to which the NP is attached. Our current implementa-
tion of ANP-resident stream handling cannot dynamically
map newly created handlers onto an IXP. Instead, we have
implemented a more modest approach of exchanging con-
trol information between the application and the ANP in
order to allow the application to choose between a set of
pre-existing handlers on the IXP and/or to dynamically pass
new parameter values to selected handlers. This allows us to
adjust ANP actions to runtime changes in application needs
and operating conditions. For instance, as a client’s interests
shift to different data in a remote scientific visualization, pa-
rameters identify the new coordinates of appropriate image
regions to be selected for forwarding to the client from a
stream of images being delivered to it. Or, as request loads
increase on a server system, the IXP can downsample the
incoming data streams, as permitted by the application.

The interaction between the ANP and the application
host node involves the exchange of a set of control mes-
sages, similarly to those described in [10]. For instance, a
control message can request an existing connection to be
terminated, or it can contain parameters, one example being
an identifier of the stream handler to be associated with a
certain data stream. A portion of the IXP memory is des-
ignated for enabling such control communications. Control
messages can also be mixed in with regular data traffic, and
delivered to the ANP on one of its incoming ports. We are
currently implementing the host-ANP control channel over
the PCI-based interface described in [9]. The control in-
terface will use OS-controlled mappings between host and
IXP memory in order to configure the ANP and monitor its
state.

Deploying stream handlers – admission control. For rea-
sons of programming complexity and system safety and se-
curity, end users cannot directly map stream handlers into
ANPs. Instead, end users specify suitable stream handlers,
but these handlers are ‘deployed’ by the underlying admis-
sion control unit. Resource management in the host operat-
ing system tracks the available ‘headroom’ on the ANP, and
it manages the different stream handlers available and exe-
cutable on ANPs. Our current model is to simply compute
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Figure 4. Latency on source-destination path
when application level routing is performed
at the host vs. at the IXP side.

the total number of cycles that can be allocated to a single
packet’s processing (i.e., headroom) and compare this num-
ber with the number of cycles consumed by the stream han-
dler being deployed. Such comparisons can be easily im-
plemented with the existing IXP programming tools [6, 9].
In ANP-level resources are not available, handlers are exe-
cuted on the host, with a corresponding performance cost.
Dynamic reconfiguration. In order to best utilize resources
and match current application needs and platform resources,
stream handlers need to be dynamically deployed and con-
figured. Handler selection and parameterization both rely
on runtime resource monitoring, admission control, and re-
source management mechanisms.

4. Experimental Evaluation

Evaluation is performed on the aforementioned IXP1200
Radisys boards, interconnected via 100Mbps Ethernet links,
using a cluster of Dell 530s with dual 1.7GHz Xeon pro-
cessors running Linux 2.4.18. We also use the IXP1200
simulation package SDK2.0, claimed to be cycle-accurate
to within 2%. Stream data consists of (1) sequences of im-
ages files, and (2) replays of flight data originally captured
at Delta Airlines. All data passes through an intermediate
node (host or ANP), where a handler is applied to it. The
application components executed on the cluster nodes use
our version of the RUDP protocol built on top of raw sock-
ets. The same protocol is used on the IXP microengines.

The first experiment compares the latency on the source-
destination data path when performing application-level
routing at an intermediate host vs. an IXP-based ANP. The
results are gathered by timestamping the data at the source
and destination, and the average is reported over multiple
runs. From Figure 4 we observe that while for smaller data
sizes, application-level routing can be performed equally
efficiently on the IXP as on the host, as message sizes in-
crease, IXP-side data routing can reduce delays on the data
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path by more than 25%. This reduction is due to the IXP’s
built-in message handling concurrency, and due to the re-
duced costs of protocol processing, buffer copying and host
kernel invocation. We expect that further improvements in
the IXP runtime implementation will result in additional re-
ductions in the data delay through the NP.

The next set of experiments compares the host’s vs. the
IXP’s ability to sustain throughput, while performing a va-
riety of additional application-level functions on the data
path. Results are gathered by timing the transmission du-
ration for ��� � � � - � � � � � � application-level messages, de-
pending on their sizes. The stream handlers implementing
content-based routing, mirroring and filtering are executed
on the Rx-side in the IXP. The destination-specific multicast
is implemented in the IXP by composing an Rx-side mir-
roring handler with a Tx-side filtering handler. The ‘delta’
handler in Figure 5 modifies 20% of the application-level
message, and the ‘format’ handler operates on the entire
payload. These handlers, as well as all the host-side han-
dlers are executed once the application-level message has
been assembled in memory.

Figure 5 represents the throughput with which the inter-
mediate node, host or IXP, can operate on the data stream,
and deliver the corresponding service to the application. For
the most part, the IXP performs at least slightly better than
the host-side implementation of the same service. Some of
the results support our previous simulation-based conclu-
sions, e.g., the importance of filtering application-level data
as early as possible (‘filter’). Particularly interesting is that
the ANP implementation of data-increasing handlers, such
as mirroring, have a much improved ability to sustain higher
throughput. This is because it is more efficient to implement
the multiple packet transmissions at the network level (e.g.,
to perform multiple port accesses per each packet), than to

execute the host-side protocol stack for multiple connec-
tions. Furthermore, while IXP-side mirroring is just slightly
affected by the message size, a 7% drop in the sustained
throughput is observed when the host mirrors 50kB data to
two destinations. The results becomes more dramatic if the
mirrored data is to be customized based on the destination:
for 50kB messages and two clients the IXP outperforms the
host by 25%. This difference is even more profound as the
data sizes and number of clients increase.

For computationally intensive handlers (e.g. format
translations, security checks, etc), host-side implementa-
tions are more efficient. As we increase both the message
size and the computational requirements, we eventually ex-
haust the IXP’s resources. At the same time, the host CPU
is orders of magnitude faster than current generation IXP
microengines. This supports our desire to ‘split’ handlers
across host and ANP, depending on resource availability
and application requirements.

Additional results not included for brevity demonstrate
the scalability of the ANP handlers, and their effects on host
CPU utilization.

5. Related Work

Network-level services realized on NPs include software
routing, firewalling, low-level intrusion detection, packet
classification and scheduling, network monitoring, software
multicast, and service differentiation across different traffic
classes [13, 2, 20, 15]. Application-level services demon-
strated on NPs include load-balancing for cluster servers,
the proxy forwarding functionality servers need, and pay-
load caching [1, 18]. With our approach, these and many
other services can be implemented on ANPs or jointly by
ANPs and hosts, independent of the specific protocol- or
application-level headers being used.

As with research in active networking, our goal is to ex-
tend and customize the behavior of the network infrastruc-
ture, in order to meet application needs [16, 11, 15]. We
differ by focusing on the ‘edges’ of the network, and by op-
erating in the controlled environment consisting of host and
attached NP. The customized delivery of streaming data,
which results from the execution of these handlers, has al-
ready been widely used in industry and academia, in a vari-
ety of peer-to-peer or publish-subscribe systems [14, 3, 19].

Handler compositions are similar to those performed
in modular frameworks for dynamically generating cus-
tomized higher-level services from simpler compo-
nents [12, 8]. Unique to our approach is the deployment
of these components (i.e., of stream handlers), across the
host - NP boundary, dependent on service requirements and
on available system and network resources.



6. Conclusions and Future Work

The paper presents a software architecture and its
prototype implementation that enables the movement of
application- and middleware-level functionality ‘into’ the
network, ‘onto’ network processors attached to nodes
(ANPs) that run certain overlay components of distributed,
data-intensive applications. The ‘stream handlers’ exe-
cuted by the ANP or host can be dynamically deployed
and configured to match current application needs or oper-
ating conditions, and also taking into account current plat-
form resources. Performance gains are due to the network-
near execution of stream handlers and the flexibility with
which stream handling can be mapped across the ANP-host
boundary.

Future work will focus on the composition of complex
services from stream handlers executed at different points
in the data path. The goal is to allow applications to embed
critical functionality into the fast path and create new kinds
of services for distributed commercial and scientific codes.
Acknowledgments. Ivan Ganev and Kenneth Mackenzie
provided the initial implementation of the Georgia Tech
IXP1200 driver for the Radisys ENP2505 placed in a PC
running Linux, and the PCI-based host-IXP interface, on
top of which we are implementing the stream handlers ar-
chitecture and the composite host-ANP nodes. The authors
would also like to thank Austen McDonald for his helpful
suggestions during the implementation phase.
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