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ABSTRACT
Energy efficiency in data center operation depends on many

factors, including power distribution, thermal load and conse-
quent cooling costs, and IT management in terms of how and
where IT load is placed and moved under changing request
loads. Current methods provided by vendors consolidate IT
loads onto the smallest number of machines needed to meet
application requirements. This paper’s goal is to gain further
improvements in energy efficiency by also making such meth-
ods ’spatially aware’, so that load is placed onto machines in
ways that respect the efficiency of both cooling and power usage,
across and within racks. To help implement spatially aware load
placement, we propose a model-based reinforcement learning
method to learn and then predict the thermal distribution of dif-
ferent placements for incoming workloads. The method is trained
with actual data captured in a fully instrumented data center fa-
cility. Experimental results showing notable differences in total
power consumption for representative application loads indicate
the utility of a two-level spatially-aware workload management
(SpAWM) technique in which (i) load is distributed across racks
in ways that recognize differences in cooling efficiencies and (ii)
within racks, load is distributed so as to take into account cool-
ing effectiveness due to local air flow. The technique is being im-
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plemented using online methods that continuously monitor cur-
rent power and resource usage within and across racks, sense
BladeCenter-level inlet temperatures, understand and manage IT
load according to an environment’s thermal map. Specifically, at
data center level, monitoring informs SpAWM about power us-
age and thermal distribution across racks. At rack-level, SpAWM
workload distribution is based on power caps provided by maxi-
mum inlet temperatures determined by CRAC speeds and supply
air temperature. SpAWM can be realized as a set of management
methods running in VMWare’s ESXServer virtualization infras-
tructure. Its use has the potential of attaining up to 32% improve-
ments on the CRAC supply temperature requirement compared to
non-spatially aware techniques, which can lower the inlet tem-
perature 2∼ 3◦C, that is to say we can increase the CRAC supply
temperature 2∼ 3◦C to save nearly 13% -18% cooling energy.

INTRODUCTION
Internet-based services supplied by companies like Ama-

zon, Google, and Facebook, along with new models like cloud
computing are fueling the construction and operation of ever in-
creasing numbers of data center facilities. This has not only led
to a rapid rise in their energy consumption where according to
EPA reports, data centers accounted for roughly 1.5% of U.S.
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electricity use in 2006, with an estimated growth rate of 12%
per year [1], but in addition, companies face the fact that annual
data center op-ex costs can exceed the cap-ex costs of equipment
acquisition and installation. Further, corporations and govern-
ments have become concerned about the environmental influence
of data centers, including their carbon dioxide (CO2) footprints.
Motivated by the “green” or sustainability needs of data centers,
this paper seeks to incorporate agressive energy efficiency tech-
nologies into the ways in which data center IT loads and their
cooling infrastructures are managed. It is this joint considera-
tion of both the IT and cooling infrastructures that distinguishes
our work from prior efforts typically focused on specific sub-
systems like processor power consumption or chip vs. board
vs. node/rack level power usage. Specifically, building on ear-
lier work in Computer Science, we assume that future data cen-
ters will use cloud computing and virtualization technologies that
can dynamically migrate IT workloads across machines, e.g., to
consolidate them onto smaller numbers of servers without sac-
rificing service quality requirements [2]. We leverage research
in Mechanical Engineering that considers heat distribution and
transfer in the data center, to better place equipment or to design
new power-efficient racks and enclosures [3, 4], but incontrast to
such prior work, our approach is based on actual measurements
obtained continuously and throughout the operation of a fully
instrumented small-scale data center rather than relying on ther-
mal models gained from simulation. We adopt machine learning
methods [5,6] to support the workload distribution decision pro-
cess. Our approach and research are based on evidence from both
our own prior work [3, 7, 8] and other efforts that additional ef-
ficiencies can be obtained from the holistic approach pursued in
our work. Thermal-aware task scheduling based on models, for
instance, has been shown useful for high performance systems
and applications [9, 10]. We aim to generalize such methods to
deal with cloud and enterprise systems in which virtualization
technologies and dynamic application behaviors offer both new
challenges and opportunities in terms of runtime IT load man-
agement.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the backgroud of virtualization technology and
thermal mapping in data centers, which is a key subproblem
of the spatially aware workload distribution solutions sought in
our work. Section 3 uses reinforcement learning to solve this
subproblem, and Section 4 presents a spatially aware sched-
uler based on the optimal policy generated by the reinforcement
learning model. Section 5 describes our experimental data cen-
ter’s configuration and reviews initial experimental results. Sec-
tion 6 concludes the paper.

BACKGROUND
In this section, we will introduce some background about

the virtualization technology that we used in our experiments,

and the problem we want to solve in this paper.

Virtualization in Data Center
Virtualization is not a new technology [11], but due to the

present of Virutal Machine Moniters (VMMs) such as Xen,
ESXi, etc. and also the hardware support in Intel and AMD pro-
cessors, it re-attracts industry and academic community’s atten-
tion in these years. More and more companies have devoted to
applying the virtualization technology into their new products,
just like Amazon’s EC2, Microsoft’s Azure, VMware’s vCenter,
and so on. It almost has been a trend to virtualize the compute
resource in data center, which is driven by the following three
main benefits provided by virtualization.

First, Virtualization could consolidate multiple virtual sys-
tems into few physical servers. Compared to previous 5-20% av-
erage resource utilization in data centers [12], virtualization not
only improve the resource utilization of physical servers, but also
save the equipments, power, floor space, cooling, and manage-
ment cost of data center operators. The use of virtual machines
also provides other features like security, performance and fault
isolation. The second benefit is utility computing services de-
livered by virtual machines, which make the computing widely
available as water and electricity, and also customers are charged
by usage, Amazon’s EC2 is a successful example for this case.
The last but not least benefit is the automatic resource manage-
ment enabled by live virtual machine migration [13, 14], which
allows for flexible resource allocation among the virtual ma-
chines to meet application performance requirements and even
the system’s high-availability that was traditionally only availabe
through customized hardware or software [15].

Whereas the above benefits of virtualization, IDC estimated
that 2010 will be the first year that more than 50% installed ap-
plications will run inside a virtual machine and predicted that
more than 23% of all servers shipped in 2014 will be actively
supporting virtual machine technology. In addition, more than
70% of all server workloads installed on new shipments in 2014
will reside in a virtual machine [16].

Determining The Data Center Thermal Map
A typical data center is laid out with a hot/cold aisle ar-

rangement, by installing the racks and perforated floor tiles on
a raised floor to which cold air is delivered by Computer Room
Air Conditioner (CRAC) units [17]. The cooling air enters the
racks from their front panel, removes heat while flowing through
these racks, and exits from the rear of the racks. The heated air
forms hot aisles behind the racks, from which it is extracted back
to the CRAC unit’s intakes, which in most cases, are positioned
above the hot aisles.

The thermal maps of data centers arranged in this fashion are
affected by many factors, including the assignments of computa-
tional tasks to data center nodes, the power consumption and the
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thermo-mechanical properties of IT devices, the CRAC’s cool-
ing capacity, and others [18,19]. Further, there are air circulation
issues, such as the fact that due to the complex nature of airflows
inside the data center, some of the hot exhaust air from server
outlets will recirculate into the inlets of other servers. More gen-
erally, because the thermal distribution implicitly correlates with
the energy cost of the data center, it is important to improve it
to enhance energy efficiency or maximize the center’s computa-
tional capabilities. Improperly designed or operated data centers
may suffer from overheated servers and potential system failures,
or from overcooled system and energy waste.

Thermal maps and their accurate prediction are useful for
determining the thermal changes caused by different workload
distributions, thus forming the basis of the SPAWM – spatially
aware workload management – methods being developed in our
work. [20, 21] employ a cross heat interference matrix to char-
acterize heat recirculation between nodes, using CFD simula-
tions to calculate the cross-interference co-efficients. This static
co-efficient matrix is then used to advise workload distribution
methods. However, in practice, cross heat interference is dy-
namic, affected by the air velocities and temperature supplied by
the CRAC, thereby challenging the assumption that the amount
of air and heat recirculated from the outlet of one server to the
inlet of another is static and stable. In response, [5, 6] derived
a machine learning method to construct an approximate thermal
map, which used a trained neural net model to predict the out-
put temperature under certain environmental inputs, using CFD
simulation results to help train the neural net. We use the same
approach, but employ actual experimental data to train the neural
net. This then becomes the basis for the reinforcement learning
methods described next.

A REINFORCEMENT LEARNING MODEL FOR SPAWM
We begin this section with an introduction to reinforcement

learning and its applicability to data center workload distribu-
tion management, followed by a more precise formulation of the
problem solved in this paper.

Reinforcement Learning and Its Applicability to
SpAWM

Reinforcement Learning (RL) focused on how an agent
ought to behave in a dynamic environment so as to maximize
long term rewards defined by some high level goal. It refrers to
a collection of trial-and-error methods by which an agent learns
to make good decision through a sequence of interactions with
envrionment. RL offers two advantages: (1) it does not require
a prior model of either the system being considered or of the en-
vironmental dynamics, and (2) it is able to capture the delayed
effects of a decision making task [22].

The purpose of RL is to search such a policy, which directs

the agent to the best action it could take in the current state. Ev-
ery action in a state is measured by a value function that estimates
the future cumulative rewards obtained from taking this action.
The reward information is propagated backward temporally in
repeated interactions, eventually leading to an approximation of
the value function. The optimal policy is essentially choosing the
action that maximizes the value function in each state. The inter-
actions consist of exploitations and explorations. Exploitation is
to follow the existed policy; in contrast, exploration is the selec-
tion of random actions to capture changes in the environment so
as to enable the refinement of existing policy [23].

Consider the whole data center as the agent environment,
and the workload dispatch controller is the agent that interacts
with the environment. The states are bladecenter resource utiliza-
tion and inlet temperature, and possible changes to resource uti-
lization form the set of actions. Each time the controller assigns
an incoming workload to a specific node, it receives monitoring
values describing the change of inlet temperatures. After suffi-
ciently many interactions, the controller obtains good estimations
for the assignment decisions at some given state. Starting from
an arbitrary initial setting, the controller is able to balance the
thermal distribution by following the optimal policy. Through
exploration, the controller can modify its workload assignment
policy according to the dynamics of incoming workloads.

RL theory is developed from Markov Decision Process
(MDP) or Semi-MDP [24]. Formally, for a set of environment
states S and a set of actions A, the MDP is defined by the tran-
sition probability Pa(s,s′) = Pr(st+1 = s′|st = s,at = a) and an
immediate reward function R = E[rt+1|st = s,at = a,st+1 = s′].
At each step t, the agent perceives its current state st ∈ A(st), the
agent transits to the next state st+1 and receives an immediate
reward rt+1 from the environment. The value function of taking
action a in state s can be defined as:

Q(s,a) = E

{
∞

∑
k=0

γ
krt+k+1|st = s,at = a

}
(1)

where 0 ≤ γ < 1 is a discount factor helping Q(s,a)’s conver-
gence.

Formulation of Workload Distribution Control as a RL
Task

We describe an incoming workload by its projected addi-
tional utilization of the data center’s computing resources. As
a result, the workload distribution task is naturally formulated
as a continuing discounted MDP, where the goal is to optimize
the holistic energy cost. We define the reward function based
on the BladeCenter’s inlet temperature. The state space are the
CPU utilization and inlet temperature of every BladeCenter, both
of which are fully observable by the monitoring infrastructure.
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Actions are the changes to the BladeCenter’s utilization, and
there are two kinds of actions that can lead to such changes: (1)
dispatching the incoming workload, and (2) migrating existing
workload. The workload distribution task is formulated as fol-
lows.

The state space. In the workload distribution task, the state
space is defined to be the set of BladeCenter nodes’ resource
utilization, currently simply measured as CPU utilization val-
ues. So, each node i’s state at time period t can be expressed
as < ui(t) >, and the whole data center’s state can be noted
as:〈u1(t), ...ui(t)...,un(t)〉, where ui(t) are the ith BladeCenter’s
CPU utilization. The value of ui(t) should be in the range of
[0,1].

The actions. In the workload distribution process, we must
consider the energy cost of the entire system. This means that
if we must increase the power consumption of some comput-
ing device for the incoming workload, we then need to consider
whether we can reduce cooling cost by not increasing the max
inlet temperature of those compute nodes. One simple way of
doing so is to find the ”coldest” node to accomodate the incom-
ing workload, but more generally, we must also balance node
utilization in order to obtain high performance for the incom-
ing workload. Conversely, if the incoming workload will not af-
fect cooling cost, we should consider ways to reduce computing
power costs, e.g., by consolidating workload and idling nodes.

The reward function. The long term cumulative reward is
the optimization target of RL. In the workload distribution task,
the desired workload assignments are the ones that optimize the
whole system energy cost, including the computing device and
the CRAC’s energy cost. Cooling energy is modeled by its co-
efficient of performance (COP), which is the ratio of the heat re-
moved over the work required to remove that heat. A higher COP
means more efficient cooling, and usually the COP increases
with increase in the air temperature supplied by the CRAC, T in

sup.
So, the CRAC units will operate more efficiently by raising the
temperature of the air supplied to the room. The cooling costs of
the data center at slot t can be calculated as:

PAC
t =

Pcomp
t

CoP(T in
sup)

+Pfan (2)

where Pfan is the total power required to drive the CRAC fans,
which can be considered a linear function of fan speed. Pcomp

t is
the summary of the power consumption of all nodes, calculated
by:

Pcomp
t =

n

∑
i=1

(ωi +αiui(t)) (3)

where ωi denotes power consumption of BladeCenter i at idle
state, and αi represents extra power consumption at full utiliz-

tion for each BladeCenter. These two parameters will be given
in our BladeCenter power profile in Section 5. From the calcula-
tion of PAC and PComp, we can find that the T in

sup is the important
coefficient which influence the whole cooling cost. So we define
the reward as:

reward = T in
redline−max

{
T in

i
}

, i ∈ [1,n] (4)

where T in
redline is the maximum safe BladeCenter inlet temper-

ature, which minus the maximum observed BladeCenter inlet
temperature is the temperature Tad j to which we can adjust the
CRAC. If Tad j is negative, it indicates that a BladeCenter inlet
exceeds our maximum safe temperature. In response, we lower
Tsup to bring the servers back to safe operation range, which
means the reward actually is a kind of penalty, because lower-
ing the Tsup will lead to the increase of cooling cost. Based on
the equation the bigger the reward the higher Tsup we could set
for CRAC, which means more cooling energy could be saved. So
this reward function just tells us whether we can save or lose en-
ergy, where the concrete number can be calculated by the given
PAC and Pcomp functions.

Solutions to the RL Task
The particular RL algorithm we used here is known as

temporal-difference (TD) methods, which is an experience-based
solution based on the theory that the average of the sample
Q(s,a) values collected approximates the actual value of Q(s,a)
given a sufficiently large number of samples [25]. A sample is
in the form of (st ,at ,rt), the Q(s,a) is updated incrementally at
each time a new sample is collected:

∆Q(st ,at) = α ∗ [rt + γ ∗Q(st+1,at+1)−Q(st ,at)] (5)

where α is the learning rate, which decays to zero to ensure con-
vergence, γ is the discount factor between 0 and 1 expressing
the present value of expected future reward. The Q values are
usually stored in a look-up table and updated during the traning
process by writing new values to the corresponding entries in the
table. In the workload distribution task, the RL-base agent is-
sues workload dispatching or VM migration actions following
an ε-greedy policy. With a small probability ε , the agent picks a
random action, and follows the best policy it has found for most
of the time. Starting from any initial policy, the agent will grad-
ually refine the policy based on the feedback perceived at each
step.

THE DESIGN AND IMPLEMENTATION OF SPAWM
In this section, we introduce SPAWM, a RL-based spatially

aware workload management agent. Including too many servers
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FIGURE 1. SPAWM ARCHITECTURE

in the RL problem creates challenges to the adaptability and scal-
ability of SPAWM, which we address by employing model-based
RL methods with two levels of approximation.

Overview
SPAWM is designed as a standalone daemon residing in

VMware’s vCloud hypervisor. It takes advantage of the con-
trol interface provided by vCloud to migrate VMs between the
servers, which helps achieve the uniform thermal distribution in
the data center to save cooling energy, and also considers work-
load balance among all active nodes as the second priority objec-
tive. Fig. 1 illustrates the architecture of SPAWM and the CRAC
control environment. In this paper, we mainly focus on the inter-
action between SPAWM and the data center environment. The
thermostat controller for the CRAC is being designed in comple-
mentary work carried out by our mechanical engineering collab-
orators. Its role is to receive thermal adjustment commands or
alerts based on which it then reconfigures the CRACs. The cur-
rent realization of SPAWM assumes that an incoming workload
can be run on any machine in the data center.

Model Creation and Scalability
As introduced in previous section, the basic RL method uses

the Q(s,a) value table to decide which action is the optimal one
for the current state, so the number of Q values grows exponen-
tially with the state space. For our problem, because CPU utiliza-
tion is a continuous integer between [0,1], the state space will be
an infinite set. Obviously, the Q value table method is not appro-
priate for our situation. Instead of updating each Q(s,a) value
directly from the immediate reward recently collected, we em-
ploy environment models to generate a simulated experience for
value function estimation. These environment models are im-
plemented as a data structure that capture the relationship be-
tween current state, action and the observed reward. The model
can be trained from previous collected samples in the form of

(st ,at ,rt+1). Once trained, a model is able to predict the r values
for unseen state-action pairs.

Turning back to the problem considered in this paper, we
must find the relationship between resource utilization, workload
assignment, and thermal distribution. In such a multi-variable
situation, a neural network is a good choice for determining this
relationship from the recorded sample data. To do so, we selected
standard multi-layer feed-forward back-propagation neural net-
work (NN) with sigmoid activations and output to represent the
environment model. This is because of the NN’s ability to gener-
alize from linear to non-linear relationships between the environ-
ment and the real-valued immediate reward. More importantly,
it is easy to control the structure and complexity of the network
by changing the number of hidden layers and the number of neu-
rons in each layer. This flexibility facilitates the integration of a
supervised learning algorithms with RL for better convergence.
The performance of model-based RL algorithms depends on the
accuracy of the environment model in generating simulated sam-
ples. Thus, the training samples used to train the model should
be representative. In the implementation of the Q function, an
NN-based function approximator replaces the tabular form. The
NN function approximator takes the state-action pairs as input
and outputs the approximated Q value. It directs the selection of
workload assignment actions based on the ε-greedy policy.

Algorithm 1 shows the SPAWM online algorithm. It is de-
signed to run forever until being stopped. At each workload as-
signment interval, SPAWM records the previous state and ob-
serves the actual immediate reward obtained. The next action is
selected by ε-greedy policy according to outputs of the function

Algorithm 1: The SPAWM online algorithm

1: Initialize Qnn to trained function approximator.

2: Initialize t← 0,at ← nop.

3: Repeat

4: St(u1,t , ...,ui,t , ...,un,t)← get current state();

5: Wt ← identify workload();

6: For i=1 to n

7: ri,t ← Qnn(u1,t , ...,ui,t +Wt , ...,un,t);

8: at ← max(ri);

9: rt,real ←observed reward();

10: update Rmodel(St ,at ,rt+1,Rmodel);

11: update Qnn(Rmodel ,Qnn);

12: t← t +1;

13: util SPAWM is stopped.
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approximator Q.

The use of environment models offers two advantages for
RL tasks. First, model-based RL is more data efficient. With
limited samples, the model is able to shed insight on unobserved
rewards. Especially in online policy adaptation, the model is
updated every time with new collected samples. The modified
model generates simulated experiences to update the value func-
tion, and hence expedites policy adaptation. Second, the immedi-
ate reward models can be reused in a similar environment. In on-
line adaptation, once SPAWM identifies that the incoming work-
load’s resource requirement is similar to a previous workload, the
corresponding model is re-used. Instead of starting from scratch,
the reuse of previous models is equivalent to starting from guided
domain knowledge, which again improves the whole data cen-
ter’s thermal distribution.

In model-based RL, the scalability problem is alleviated by
the model’s ability to cope with relative scarcity of data in large
scale problems. The conventional table-based Q values can be
updated using the batch of experiences generated by the environ-
ment model. However, the table-based Q representation requires
a full population using the rewards simulated by the model. This
is problematic when the RL problem scale up. In SPAWM, we
use netural network to generate the approximation value func-
tion, which helps to reduce the time in updating the value func-
tion in every workload assignment.

Neural Network Based Learned Value Function

There are several off-the-shelf neural network development
libraries, enabling us to leverage these techniques rapidly. We se-
lected the Python-Based Reinforcement Learning, Artificial In-
telligence and Neural Network Library (PyBrain) [26], which
contains algorithms for neural networks and reinforcement learn-
ing, allowing us to combine the two to build our model and value
function approximators to cope with the large dimensionality
state space. We use the neural net to predict how heat is gen-
erated and flows within the data center. There will be N inputs
to the model, which denote every BladeCenter’s CPU utilization,
and the outputs will be the inlet temperature of every BladeCen-
ter. Between the input layer and the output layer, there are L
internal or hidden layers. Each layer contains a set of of ele-
ments known as neurons. Each neuron j accepts N j inputs from
the previous layer, applies a weighting factor w j,a to each input
Ia, and uses the sum of the weighted inputs as the I-value for its
activation function f. The result of this function yi is passed to
neuron in the next layer. After we get the output from the netural
network predictor, we could then use the Eqn. 4 to calculate the
approximate reward of the input state. The RL model can then
use such an approximate reward value to decide which action to
choose.

FIGURE 2. DATA CENTER LAYOUT

EVALUATION
This section introduces our experiment data center layout

and the BladeCenter’s power profile. We then present the training
results of the neural network, which is used to calculate the value
function of the RL model. Last, we analyze the output of our RL
model experiment.

Data Center Layout
We study a typical medium-sized data center which has four

rows as shown in Fig. 2. The data center has alternating “hot”
and “cold” aisles. Cooling air from the computer room air con-
ditioner (CRAC) reaches the front of the racks in the cold aisles
via an air supply plenum under a raised floor through perforated
floor tiles. The heated exhaust air is recirculated from the hot
aisles at the rear of the racks back to the CRAC. Since there is
some additional hot air flow back to the front of the racks, it is
difficult to accurately predict thermal distribution among these
BladeCenters. Finally, according to the available resources in
our data center, we use 4 racks in row C, 6 racks in row D. there
are totally 10 racks are used for our experiment, each rack has 6
BladeCenters, and each BladeCenter has 14 blade servers, each
with 4 cores. So, there are 840 servers/3360 cores running in our
experiment.

A sensor network is used to monitor the inlet temperature,
fan speed, and CPU temperature of every BladeCenter, and from
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FIGURE 3. THERMAL DISTRIBUTION AMONG RACKS

the collected data, we observe that the top BladeCenter usually
is the hottest one, as presented in Fig. 3, and lower temperatures
observed at different rack heights across the cold aisle. This is
caused by the tile air discharge velocity decrease along the rack
heights, so the top BladeCenter is usually wrapped by the hot air
which is to be exhausted by CRACs. Also the cold air reaches
the top BladeCenter at a weak speed that is another reason for
such thermal distribution in the data center. Further, because the
cold air velocity varies across the cold aisle, the coldest node in
each rack is different. These facts indicate that data center lay-
out is an important factor to be considered when disseminating
the incoming workload, thereby motivating the spatially aware
workload distribution methods advocated in our work.

Power Profile of BladeCenter
In our data center, all racks are occupied by the IBM 8677-

3XU BladeCenter, each BladeCenter has 14 BladeServers (8850-
Y15), which has 2 x Dual-Core Opteron 270 / 2 GHz and RAM
4 GB. There are 4 power line cords for each BladeCenter, so we
can only find out the relationship between power and resource
utilization to the whole BladeCenter. In order to determine this
correlation, we instrumented the whole BladeCenter with the
benchmark application we wrote to get the power usage at dif-
ferent CPU utilization levels. The idle BladeCenter power con-
sumption (ω) and the extra power consumption at full utilization
for the BladeCenter (α) were computed through the collected
data. This results is presented in Fig. 4, also we get the fitting
function :

Pt = 2070+5.44∗ut , ut ∈ [0,100] (6)

Neural Network Training
Neural Network Architecture: We used a two-layer feed-

forward neural network to do the function fitting, with a sigmoid
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FIGURE 4. POWER PROFILE OF IBM BLADECENTER E

transfer function in the hidden layer and a linear transfer function
in the output layer as showed in Fig. 5. The number of hidden
neurons is set to 20, which is a tradeoff between the computing
efficiency and network training performance. The output neurons
is set to 6 which are responsible for the predicted inlet tempera-
ture output of each BladeCenter.

Training Data Collection: In order to collect the training
data for the neural network, we run four different kinds of bench-
mark applications in our data center, using the workload traces
provided by the public Google Cluster Data [27]. During the 7-
hour experiment, all related IT resource utilization and physical
environment data were collected and then processed to determine
the inlet air temperature and power utilization of each BladeCen-
ter, CPU utilization of each blade server, etc. Because the whole
data is too large, we just take one rack for example, Fig. 6 depicts
the change of temperature and workload of all the BladeCenters
(BCs) in the rack C2 during the experiment. We could find that
in the non spatially-ware situation, the workload continually be
assigned to the ’hottest’ BladeCenter – BC6 – in our example,
which makes the inlet temperature of BC6 remains the hottest
one during the experiment.

Training Performance: The collected data are then used
to train the neural network model to find out the complex cor-

FIGURE 5. NEURAL NETWORK ARCHITECTURE
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relation between the CPU utilization and inlet air temperature.
The input of the neural network is the real CPU utilization data
we collected in the experiment, these data went through the neu-
ral network then were transferred to the predicted inlet tempera-
ture data of each BladeCenter. The comparison between the real
data and predicted data is showed in Fig.7, we could find the
outputs of neural network and real data nearly overlapped. The
trained performance is presented in Fig. 8. R is used to mea-
sure the correlation between outputs and targets. An R value of 1
means a close relationship, 0 a random relationship. In our train-
ing result,R = 0.99209, which indicates that the prediction of the
neural network has high precision. Now we can nearly exactly
infer the inlet air temperature of the BladeCenter from the Blade-
Center’s CPU utilization, which makes it possible to use the RL
model as stated in Section 3 to advise the placement of incoming
workloads.

System Performance Analysis
We next simulate the workload distribution among one rack

of BladeCenters to test our spatially aware RL model. In order
to fully utilize the data we have collected from the system, all
workload information for BladeCenter C2 has been sampled out
from the whole system workload log file, and only the resource
utilization increasing period is used in this experiment, because
we need to compare the spatially aware RL model to the de-
fault VMware center’s dynamic power management (DPM) pol-
icy. The metric we use to compare here is the reward calculated
by Eqn. 4. The workload is the same as in the last experiment,
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FIGURE 7. NEURAL NETWORK PREDICTION AND REAL
DATA

only converted to a CPU resource request in the simulation.
We choose one state in the real experiment as the beginning

state of our RL model, then start to deal with the same incoming
resource requirement, i.e., for the CPU resource. The simula-
tion result is illustrated in Fig. 9. The observed reward is the
reward we calclulated from the actual experiment log data. Be-
cause the resource allocation policy in VMware’s VMM places
more emphasis on workload balance, one of the BladeCenters

FIGURE 8. NEURAL NETWORK TRAINED PERFORMANCE
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FIGURE 9. REWARDS UNDER DIFFERENT POLICY

has the highest temperature for a long time, so that the observed
reward did not change during this time period. If we had in-
stead used the neural network to predict the next step inlet tem-
peratures, and then chosen the best one to execute the workload
as described in Algorithm 1, the reward is greater than the de-
fault policy in VMware’s ESX server. The RL model shows
more inprovement based on the neural network model, because
it considers the future reward in the next state, which means that
the reward is larger than the one based only on the neural net-
work. This results in an average improvement of roughly 32%,
approximately 2.4◦C, the outcome being nearly 13% -18% cool-
ing power savings in the data center,which is calculated through
Eqn. 2.

We also monitor the actions chosen by the RL model at ev-
ery step. We found that it changed frequently, largely depen-
dent on the initial state and the incoming workload. But we can
find that the RL model rarely assigns workload to BladeCenter
6, which usually is the hotest one in the rack, and BladeCenter
1, 2 and 5 have more chances to be chosen as the destination of
the incoming workload. Compared to Fig. 3, we can find that
BladeCenter 1, 2 and 5 usually are colder than other BladeCen-
ters. This assignment strategy results in cooling energy savings
since workload placement on a colder node has less influence on
cooling energy cost than on a hotter node.

CONCLUSIONS AND FUTURE WORK
This paper presents SPAWM, a spatially aware workload and

thermal management system for data centers. The system uses
online monitoring to continuously observe a data center’s cool-
ing and IT subsystems, and then applies reinforcement learning
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FIGURE 10. BEST ACTIONS UNDER RL POLICY

and neural network techniques to implement optimizations that
deal with data center workload, thermal distribution, and cooling
facilities. SPAWM approximates a uniform thermal distribution
in the rack through thermally aware workload placement, which
can reduce the max inlet temperature 2–3◦C. In turn, this permits
CRAC fan speeds to be slowed down to reduce cooling energy.

Current results with SPAWM demonstrate the potential util-
ity of the approach, and future work will deploy SPAWM in the
vCloud enterprise software deployed in a small-scale, fully in-
strumented data center operated by our groups. The idea is to
construct an online control module that can update its policies at
runtime and along with changes in the data center’s cyberphysi-
cal environment.
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