SPLITS Stream Handlers: Deploying Application-level

Services to Attached Network Processors

A Thesis
Presented to
The Academic Faculty

by

Ada Gavrilovska

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy

College of Computing
Georgia Institute of Technology
July 2004

Copyright (©) 2004 by Ada Gavrilovska

SPLITS Stream Handlers: Deploying Application-level

Services to Attached Network Processors

Approved by:

Karsten Schwan, Advisor

Peter Steenkiste
(Carnegie Mellon University)

Kenneth Mackenzie
Calton Pu
George Riley

Date Approved: 12 July 2004

ACKNOWLEDGEMENTS

This work would not have been possible without the support and sacrifice of many others.
I would like to express my gratitude to them all.

First of all, T am in eternal debt to my advisor Karsten Schwan. His advise and guidance,
the support and opportunities he gave me throughout my Ph.D. years are of invaluable
importance. I would also like to acknowledge the other members of my thesis committee. I
am grateful to Kenneth Mackenzie for the boost he gave to the IXP-based research at Tech,
the code base he developed, which is utilized in the implementation of this work, and the
many questions he always so readily raised. Calton Pu and George Riley challenged me and
provided me with invaluable feedback from two very different perspectives. I would finally
like to thank Peter Steenkiste for gracefully accepting to be part of this committee and for
providing me with many insightful comments on this work and its presentation.

The College of Computing at Georgia Tech, and particularly the Systems Group, gave
me the pleasure of meeting and working with many very talented students and researchers
over the years. I would like to acknowledge Greg Eisenhauer, Austen McDonald, Ivan
Ganev, Sanjay Kumar, Haile Seifu and Josh Fryman among others, who helped with many
technical issues in this work. Special thanks to many past and present members of the
Pizza&Birra crowd. Our friendship and discussions made these years an enjoyable journey.

But most of all, I would like to give my deepest thanks to my family, my husband, my
brother, and especially my parents. Their love, support, sacrifice and encouragement gave

me the strength and inspiration to make it through. This work is dedicated to all of them.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS it iii
LIST OF TABLES et e viii
LIST OF FIGURES e e ix
SUMMARY e X
CHAPTER 1 INTRODUCTION 1
1.1 Background e 1

1.2 Motivationo e e e e 3

1.3 Thesis Statemento 4

1.4 SPLITS and Stream Handlers 4

1.5 Organization e e 7
CHAPTER 2 HOST - ATTACHED NETWORK PROCESSOR PAIRS 9
2.1 Network Processors e 9
2.1.1 Intel IXP Network Processors 10

2.2 Host-ANP pairs: High Level View 11
2.2.1 Data Path Through the Host-ANP Node 12
CHAPTER 3 APPLICATION DOMAIN 14
3.1 Streaming Applications 14

3.2 Network Processors and Application-specific Services 16

3.3 Sample Applications Using Host-ANP Pairs 18
3.3.1 Operational Information Systems: Delta Airlines 18

3.3.2 Scientific Collaborations: The SmartPointer Framework 21
CHAPTER 4 PROGRAMMING MODEL 24
4.1 Model Overview oo e e e e e e 24

4.2 Basic Abstractionso 25
4.2.1 Data Streams and Services oo oo L. 29

4.3 Activation Pointso 29

4.4 Concrete Implementation of the Model 33

4.5 Relationships with Other Models 34

v

4.5.1 Models for Network-level Services 34

4.5.2 Models Used with Streaming Applications 36
CHAPTER 5 STREAM HANDLERS 38
5.1 Concept and Definitions Lo Lo 0oL 38
5.1.1 Accessing Application-level Data, 40

5.2 Stream Handler Implementation 41
5.3 Stream Handler Invocation L. 44
5.3.1 Classification L o 44
5.3.2 Enmabling Activation Points 0oL 45

5.3.3 Receive Contexts o 47
5.3.4 Transmit Contexts 49
5.3.5 Memory-resident Contexts, 51
5.3.6 Resource Requirements 0. 53

5.4 Programming Interface oL 54
5.0 Summary e e e e e e e 56

CHAPTER 6 SPLITS - SOFTWARE ARCHITECTURE FOR PROGRAM-

MABLE LIGHTWEIGHT STREAM HANDLERS 58
6.1 SPLITS Framework 0ottt 58
6.2 System Components 59
6.3 SPLITS on Host-IXP1200 Nodes 61
6.3.1 DataBuffers. 62
6.3.2 Data Management, 62
6.3.3 Control Buffers L o o . 63
6.3.4 Control Management 64
6.3.5 Host-side Components 66
6.3.6 Deploying Stream Handlers onto the Host-ANP Data Path 66

6.4 SPLITS API e 66
6.5 Dynamic Reconfiguration L Lo 68
6.5.1 Handler Selection 70
6.5.2 Parameter Reconfiguration 71
6.5.3 Dynamic Reloading 71

6.6 Summary L. e e e 72
CHAPTER 7 SPLITS SUPPORT TOOLS 74
7.1 Constraint Verifier Lo 74

7.2 Control Manager e e 7

7.3 Resource Monitoring L 7

7.4 Stream Handler Profiling 79

7.5 Safety, Security, Code Generation 80
CHAPTER 8 EVALUATION ittt ie o 82
8.1 Experimental Setupo o 82

8.2 TImproved Overlay Network Performance Using Host-ANP Nodes. 83
8.2.1 ANP-forwarding Reduces Latency and Improves Throughput ... 83

8.2.2 Importance of Multiple Activation Points on ANPs 85

8.3 Application-specific Services on ANPs: Feasibility and Limitations 87
8.3.1 Efficient Support for NP-based Services 88

8.3.2 Impact of Memory Accesses on Handler Placement 90

8.3.3 ANP-handlers Improve Performance of Data Increasing Services . . 91

8.3.4 Memory-intensive Serviceson ANPs 92

8.3.5 XML-based Data Transcoding Stream Handlers Are Feasible on ANPs 94

8.4 Deploying Services on Host-ANP Nodes with SPLITS 95
8.4.1 Efficient Handler Deployment and Configuration. 96

8.4.2 CPUOffloading 96

8.5 Importance of Split Services Across Host-ANP Boundary 97
8.5.1 ANP Handlers Reduce Loads Delivered to Host Components 98

8.5.2 Benefits of Offloading Even Non-communication Related Handlers . 99

8.6 Summary of Results. oo oo 101
CHAPTER 9 RELATED WORK 102
9.1 Dynamic Service Customization in Streaming Applications 102
9.1.1 Middleware-level Customization 102

9.1.2 Kernel-level Extensions 103

9.2 Modular Frameworks and Service Compositions 104

vi

9.2.1 Split Services 106

9.3 Extensible network infrastructureso 106
9.3.1 Device-level Research 106

9.3.2 Active Networks 107

9.3.3 Use of Network Processors for Application-specific Services 107

9.3.4 IXP-based Research. 108

9.4 Programming Models Lo Lo 109
CHAPTER 10 CONCLUDING REMARKS 111
10.1 Contribution e e e 111

10.2 Future Directions L e 112
REFERENCES e e e e 114
VITA . e e e e e 123

vii

Table 1

Table 2
Table 3
Table 4
Table 5

LIST OF TABLES

State variables available to stream handlers at different contexts on the

IXP ANP. e 55
Control message exchanged in SPLITS. 64
SPLITS host-side API. 68
State maintained by SPLITS runtime. 69
Effect of handlers on throughput for different sizes of stream data items. 86

viii

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Figure 7

Figure 8

Figure 9

Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Figure 18
Figure 19
Figure 20

Figure 21
Figure 22

LIST OF FIGURES

Intel IXP1200 block diagram.o
Data path through host-ANP nodes.
Delta Airlines Operational Information System.
Smart Pointer Application.o oo oL
Abstractions used in the programming model.

Control graph representing a service and its deployment on three processing
contexts. oL L o e e e e e e e e e e e e e e

Activation Points at Rx/Tx and X threads.
Examples of Rx, X and Tx implementation of a stream handler.
Position of SPLITS with respect to other layers.
System components. Lo
Data path.
Different data path configurations used in experimental analyses.
Data delivery delay for IXP- vs. host-level forwarding.
ANP vs. host throughput for UDP socket stream.
Client-customized multicast.
Handler complexity and sustainable throughput for set of services.

Stream handler performance cost as a function of the amount and type of
memory accessed. oLl i e e e e e e e e

Performance gains for data increasing services.
Evaluation of an image cropping handler.

Efficient XML-based data transformation on the IXP. Benefits of parame-
ter selection under increased loads.,

Importance of service deployment across Host-ANP boundaries.

OpenGL pipeline service. e

ix

10
12
20
22
26

30
46
52
59
61
67
83
84
85
87
89

90
91
92

SUMMARY

Modern distributed applications utilize a rich variety of distributed services. Due to
the computation-centric notions of modern machines, application-level implementations of
these services are problematic for applications requiring high data transfer rates, for reasons
that include the inability of modern architectures to efficiently execute computations with
communication. Conversely, network-level implementations of services are limited due to the
network’s inability to interpret application-level data or execute application-level operations
on such data. The emergence of programmable network processors capable of high-rate data
transfers, with flexible interfaces for external reconfiguration, has created new possibilities
for movement of processing into the network infrastructure. This thesis explores the extent
to which programmable network processors can be used in conjunction with standard host
nodes, to form enhanced computational host-ANP (Attached Network Processor) platforms
that can deliver increased efficiency for variety of applications and services.

The main contributions of this research are the creation of SPLITS, a Software ar-
chitecture for Programmable LIghtweighT Stream handling, and its key abstraction stream
handlers. SPLITS enables the dynamic configuration of data paths through the host-ANP
nodes, and the dynamic creation, deployment and reconfiguration of application-level pro-
cessing applied along these paths. With SPLITS, application-specific services can be dy-
namically mapped to the host, ANP, or both, to best exploit their joint capabilities. The
basic abstraction used by SPLITS to represent instances of application-specific activities
are stream handlers - parameterizable, lightweight, computation units that operate on data
headers as well as application-level content. Experimental results demonstrate performance
gains of executing various application-level services on ANPs, and demonstrate the impor-
tance of the SPLITS host-ANP nodes to support dynamically reconfigurable services, and

to deal with the resource limitations on the ANPs.

CHAPTER 1

INTRODUCTION

Modern distributed applications utilize a rich variety of distributed services. Due to the
computation-centric notions of modern machines, application-level implementations of these
services are problematic for applications requiring high data transfer rates, for reasons
that include the inability of modern architectures to efficiently execute computations with
communication. Conversely, network-level implementations of services are limited due to the
network’s inability to interpret application-level data or execute application-level operations
on such data.

This research explores the extent to which programmable network processors, an emer-
gent class of network devices, can be used in conjunction with standard host nodes, to form
enhanced computational platforms. The intent is to deliver improved performance and
more efficient and flexible service implementations to commercial and scientific distributed

applications.

1.1 Background

Data-intensive distributed applications depend upon the performance and availability of
underlying services, that range from ‘traditional’ services like multicast [9] or QoS sup-
port [105, 99], to security (e.g., firewalls, encryption [103]), to new classes of services that
support XML-based applications [108, 30] or perform data transcoding for multimedia or
remote graphics [97, 90, 75, 22, 84]. Since applications evolve over time, and/or end-user
interest change, applications require the ability (1) to dynamically place service instances
at nodes in the distributed infrastructure, at both data sources and intermediate nodes on
the application-level data path, so as to increase the shared resource utilization, and (2) to
dynamically configure these services to match the current application requirements (e.g.,

QoS, fault-tolerance), current end-user interests (e.g., in specific data subsets), or current

operating conditions (e.g., CPU loads and networking resources).

Modern middleware assumes that service placement and configuration occur at the
application-level at nodes in the overlay used by the distributed application, where overlays
may be as simple as the front-end/back-end distinctions made in large-scale server sys-
tems [91, 36], or they may extend across multiple Inter- or Intra-net nodes [6, 101]. Overlay
networks [3, 101, 6, 22] have already established the utility of processing stream data ‘in
transit’, for media transcoding [36, 90], for sensor data selection and fusion [35], and for
handling the large data used in distributed scientific collaboration [109, 110]. Much of the
previous middleware- and application-level research [30, 114, 73, 18, 100, 23] has addressed
the need of dynamic deployment and customization of application-specific services at user-
or even kernel-level at nodes in the overlay [78, 81]. Complimentary work demonstrates
the utility of executing compositions of various protocol- vs. application-level actions in
different processing contexts [11, 23, 84]. The latter leverage the availability of safe, yet
expressive subsets of standard languages for implementation the application-level services,
the underlying OS support for dynamic linking and safety checking at the host node, and
the availability of the host’s resource-rich environment that can sustain the execution of
services of varied degrees of complexity, with arbitrary data access patterns. The costs
incurred by all such approaches are the repeated protocol-stack traversals to and from the
application layer, the loads imposed at the host node’s CPU and I/O infrastructure, and
the overheads of moving large data volumes through a general purpose processing engine
(e.g., memory loads).

While application- and middleware-level solutions offer rich functionality on top of stan-
dard communication infrastructures, at the other end of the spectrum, research on active
networking [106, 62, 92, 5] has demonstrated the utility of extending the core behavior of
networks with new functionality, by essentially deploying selected application-specific ser-
vices into the network. However, in order to address safety and security concerns, and to
meet the high data rate requirements imposed at the targeted shared networking devices,
this approach imposes restrictions on service complexity and on the data accesses performed.

These constraints have resulted in active networking to be better suited for network-level

services, performing operations on protocol headers, such as network monitoring, intru-
sion detection, routing and multicasting [92, 106, 10, 4], or for simple application services
that operate on application-headers, such as those implementing service differentiation, or

content-based routing based on request types.

1.2 Motivation

Driven by industry desires to offer new capabilities and services as part of basic network
infrastructures [102, 75, 65, 74, 56|, device-level research has evaluated the tradeoffs in
cost/performance vs. utility of networking devices. As a results, an emerging class of
programmable network processors (NPs) is becoming an attractive vehicle for deploying
new functionality ‘into’ the network infrastructure, with shorter development times than
custom-designed ASICs and with levels of cost/performance exceeding that of purely server-
based infrastructures. NP hardware is optimized to efficiently move large volumes of packets
between their incoming and outgoing ports, and typically, there is an excess of cycles avail-
able on the packets’ fast path through the NP. Such ‘headroom’ has been successfully used
to implement network-centric services like software routing, network monitoring, intrusion
detection, service differentiation, and others [98, 64, 88, 63, 41].

One outcome of these developments is that increasingly, networking vendors are de-
ploying NPs into their products and are even considering to ‘open’ them to developers to
facilitate rapid service development. In addition, industry trends suggest that with the
emergence of high-performance system level interconnects, in the near future we can expect
tightly integrated programmable NPs as standard components in off-the-shelf systems.

This research aims to better understand how to use programmable network processors.
We explore the idea of using NPs closely tied to host nodes, thereby creating a computational
platform that can deliver increased efficiency for variety of applications and services. The
goals are to attain improvements in end-user application performance, to more efficiently
utilize server capacity, and to offer new services at no or little additional performance
overheads perceived by end users. Our key idea is to map service functionality to the

combined resources offered by hosts and their attached NPs (ANPs).

Such host-ANP pairs are powerful platforms for service execution for several reasons.
First, ANP-level service components can benefit from hardware that is optimized for the
efficient manipulation of ‘in transit’ data, as it is being streamed into and out of the ANP.
Second, ANP-level service execution can reduce hosts’ memory or CPU loads, particularly
when their actions involve data forwarding (e.g., proxy forwarding) or replication (e.g., mul-
ticast). Next, host-ANPs offer high degree of flexibility and efficient reconfigurability, which
are required by the targeted distributed applications. Finally, since ANPs’ capabilities are
limited, a software architecture supporting the execution of service components on both
ANPs and on the hosts to which they are attached further enhances a developer’s ability to
efficiently implement end user services. Examples of the combined use of ANP- and host-
level service functionality abound, ranging from earlier work that statically maps selected
portions of protocol stacks onto communication co-processors, or that implements synchro-
nization or transactional primitives there, to more recent work on dynamically extensible

communication machines [34, 88, 56].

1.3 Thesis Statement

e Application-specific processing is not only feasible on network processors, but certain
types of application-specific functionality can be implemented more efficiently than
on standard host nodes.

e Limited NP resources are not sufficient for efficiently sustaining services of arbitrary
complexity.

e Joint use of hosts with attached programmable NPs, creates platforms that are better
suited for the types of application-specific functionality commonly required in today’s

distributed streaming applications.

1.4 SPLITS and Stream Handlers

The main contributions of this research are the creation of SPLITS, a Software architecture
for Programmable LIghtweighT Stream handling, and its key abstraction stream handlers.

SPLITS enables the dynamic configuration of data paths through the host-ANP nodes,

and the dynamic creation, deployment and reconfiguration of application-level processing
applied along these paths. With SPLITS, application-specific services can be dynamically
mapped to the host, ANP, or both, to best exploit their joint capabilities. The processing
contexts on the host and the ANP are treated as nodes in a micro-overlay, where arbitrary
data paths can be formed so as to best utilize the resources and the functionality available at
each context. The basic abstraction used by SPLITS are stream handlers - parameterizable,
lightweight, computation units that operate on data headers as well as application-level
content. Application-level services composed with stream handlers can run on the ANP, the
host, or across host-ANP boundaries. To enable the application-level processing performed
by stream handlers, SPLITS provides ANP-level runtime support for message assembly and
fragmentation, for dynamically deploying stream handlers onto ANPs, for configuring the
data path through the host-ANP contexts, and for configuring stream handlers while in use.

In contrast to earlier work on extensible communication co-processors used in cluster
machines [88, 34, 102], SPLITS is targeted at the services provided in overlay networks or in
‘application servers’ used by service providers. The classes of services addressed by SPLITS

include:

e transactional services, like the data mirroring performed in the operational informa-
tion systems used by large corporations [43, 70, 42];

e data translation services, to help applications deal with multiple data formats, alter-
native data representations, and the up/down translations they require [108];

e media services that can efficiently perform tasks ranging from data transport and
transcoding [75, 36, 90] to data personalization on behalf of individual end users, as
in scientific collaboration or remote graphics [109]; and

e event services, like those used in wide area notification or sensor nets [113, 89, 44].

The performance gains attained from using SPLITS for implementing application-level
services stem from (1) the ability to use optimized, highly parallel NP hardware with built
in support for tasks like queuing, scheduling, and signaling, (2) the removal of load from

host CPUs, (3) the offloading of the host’s networking and I/O infrastructure, and (4) the

joint use of host and ANP resources.

SPLITS and stream handlers are implemented for hosts that run standard Linux OS
kernels and for ANPs that are based on Intel’s IXP network processor. Services realized with
SPLITS include (1) application-specific data mirroring as used in enterprise applications
like operational information systems, (2) the efficient processing of XML-structured data,
and (3) remote graphics and visualization actions that perform per-client customizations of
visual displays.

SPLITS occupies a ‘middle ground’ in the spectrum of work described above. For over-
lay networks, we demonstrate that performance can be enhanced by judiciously mapping
overlay functionality onto network processors vs. the hosts to which they are attached.
This is particularly evident for overlay operations that cause data replication, as when an
overlay node mirrors data to multiple remote nodes. Measurements in Section 8.2 demon-
strate substantially improved end to end latency when doing content-based forwarding of
data streams on ANPs vs. hosts. Such improvements are not surprising: ANPs are de-
signed for efficient data streaming whereas hosts are not. Performance improvements are
most pronounced when ANPs are used to enhance host-level operations. ANP-level stream
handlers that filter the data streamed to and operated on by hosts, for example, reduce
the loads imposed on hosts’ I/O busses and memory structures and decrease the work-
loads imposed on host CPUs. Application-specific ANP-level data filtering and selection
are shown to improve the performance of data mirroring with the data streams used in
an Operational Information System by 25% (see Section 8.3.5). Such improvements are
particularly striking when ANPs operate on efficient, binary representations of structured
data, in comparison to the inefficient XML-based data representations currently used by
many web services applications and infrastructure. Finally, even mid-range ANPs like In-
tel’s IXP1200 are surprisingly powerful. Results shown in Section 8.3.4 show that this ANP
is capable of performing client-specific data reductions even for large data events and when
a high percentage of the events’ payload must be inspected, the example being dynamic
image cropping for OpenGL-based remote graphics displays performed at gigabit speeds.

In general, of course, there is a near-linear relationship between the ANP’s ability to offer

high throughput and the percentage of message payload touched by it [41]. This is a key
reason for our development of the SPLITS software architecture that permits services to be
composed of stream handlers deployed across the host-ANP boundary.

Superior performance of host-ANP pairs compared to non-programmable host /network
card infrastructures is not surprising. Essentially, stream handlers on ANPs can be writ-
ten to enable hosts to focus on the computationally intensive application processing they
do best, while ANPs perform the ‘fast path’ packet processing tasks for which they are
well-suited. For example, ANPs are designed to efficiently perform data replication tasks
like multicasting, whether such actions are taken based on protocol- or on application-level
headers. In contrast, such ‘data increasing’ tasks executed in host-resident overlay networks
require hosts to repeatedly execute protocol stacks, may imply multiple crossings of pro-
tection boundaries, and can result in unpredictable performance levels. These latter two
problems have been well-documented, giving rise to kernel-level solutions to TCP-tunneling
or proxy forwarding [87], for example. SPLITS addresses these issues by handling stream

processing with the host vs. ANP resources that are best suited for certain tasks.

1.5 Organization

The remainder of this dissertation is organized as follows. Chapter 2 describes the pair
of host and attached network processors, and motivates their joint use. Chapter 3 dis-
cusses the targeted domain of streaming distributed applications, and gives more detail on
two applications in whose context the thesis work is evaluated. Chapter 4 presents the
programming model used by application developers to map computations across the joint
host-ANP resources. The stream handlers, their properties, and their use for representing
application-level services, are explained in greater detail in Chapter 5. The software archi-
tecture SPLITS, its components, the manner in which it enables dynamic deployment and
configuration of stream handlers and data paths through the host-ANP nodes, and current
implementation status are described in Chapters 6 and 7. The experimental evaluation of
the ideas presented in this thesis appears in Chapter 8. A more detailed survey of related

work along several different dimensions is given in Chapter 9. Finally, Chapter 10 highlights

open questions for future research, and summarizes our conclusions.

CHAPTER 2

HOST - ATTACHED NETWORK PROCESSOR PAIRS

This chapter motivates in greater detail the coupled use of standard host systems with
attached network processors. It presents a high-level view of the host-ANP platform and
the data path through it. We highlight the main features of network processors, in order
to support our choice of using NPs to enhance hosts’ capabilities, and briefly describe the

Intel IXP network processors used as a sample NP.

2.1 Network Processors

Technology advances have created programmable network processors that can be used across
the entire range of moderate data rate embedded systems like residential gateways [65] to
high end data streaming at 10GB link speeds [50]. A concrete example is Intel’s IXP
line of network processors. At the low end, the IXP 425 board targets embedded systems
applications like residential gateways and in fact, is already used in one of Linksys’ new
products [65]. The Intel IXP1200 used in this research is a mid-level product, and its com-
mercial use has included Video over IP [75] applications. At the high end, the IXP2800 and
IXP2850 operate at gigabit speeds, with new developments targeting the 10GB market [25].

There is a large variety of NP products on the market, with 40+ vendors competing
for their market share [107, 94]. The objective is to deliver to service providers, network
administrators, and others, greater flexibility and shorter deployment time of new architec-
tures, services, or protocols into the network, than ASIC-based solutions. They all share
some similarities. Programmable network processors are based on on-chip multiprocessing
processing elements (PEs) with varying complexity, ranging from many, designed for a ded-
icated task, as in EZchip’s or Vitesse’s approaches [31, 95], to few and complex as in the
Intel’s IXPs or Motorola’s C-Port NPs [50, 49]. In addition to the PEs, most NPs typically

include additional hardware support for network-related functionality, such as switch fabric

IX Bus
\
1

SDRAM StrongArm

< ——
SRAM R 3
HIESSSSS RFIFO >*|: s
I —
\ TFIFOR
—CC—
Scratch
—

Figure 1: Intel IXP1200 block diagram.

management, look-up table management and queue management, different types and sizes
of on-chip memory and controllers for additional memory, a special processing unit to han-
dle control and supervision, proprietary internal bus, etc. Some higher-end NP products
offer additional hardware support such as for packet buffer management or crypto func-
tionality [49, 32]. The NPs are primarily targeting flexible development of network-level
functionality and efficient operation in high-data rate environments. Our work exploits the
use of NP resources for implementing application-level functionality. Due to resource limi-
tations on the ANP, we consider more specifically, the joint use of NPs attached to standard
hosts. The goal is to benefit from NPs’ optimized hardware for communication-related tasks

in the application.
2.1.1 Intel IXP Network Processors

Intel IXP1200 Network Interconnect Boards. High cost/performance for data stream-
ing in network processors like the IXP1200 is attained by use of parallelism in stream pro-
cessing. The Intel IXP1200 [50] is a multiprocessor on a chip containing a StrongArm (SA)
core and six microengines with four thread contexts each (see Figure 1), all operating at
232MHz. Each microengine has a 2Kword instruction store loaded by the SA and shared
among the four contexts. The chip integrates memory controllers for up to 256 MB of
SDRAM, 8MB of external SRAM and 4KB of internal scratch memory. Ethernet or other
MACs connect externally through a proprietary 64-bit/66-MHz IX bus accessed through
on-chip transmit and receive FIFOs, and network packets are received as a sequence of

64-byte MAC-layer packets. A 32bit/66MHz PCI bridge links the IXP1200 to the host or

10

to other boards capable of PCI-based interactions (e.g., FPGA boards used for applications
like intrusion detection). Our work targets the IXP1200 chip on Radisys ENP2505 boards,
which have the maximum amount of memory and four 100T Ethernet MACs.

Intel IXP2xxx family. We are currently migrating to the next generation 1XP2400
network processor, which offers an increased number of microengines at higher speeds, ad-
ditional memory, a faster host-ANP PCI-based interconnect, and other technology improve-
ments. The IXP2400 chip [53] includes eight 8-way multithreaded microengines for data
movement and processing, local SRAM and DRAM controllers and an integral PCI interface
with three DMA channels. The Radisys ENP2611 board [83] on which the IXP2400 resides
includes a 600MHz IXP2400, 256 MB DRAM, 8MB SRAM, a POS-PHY Level 3 FPGA
which connects to 3 Gigabit interfaces and a PCI interface. An XScale core, running Linux,
is primarily used for initialization, management and debugging. Our design uses host-side
drivers with NP firmware to implement the host-ANP interface. The IXP2400 is attached

to hosts running standard Linux kernels over a PCI interface.

2.2 Host-ANP pairs: High Level View

Host-ANP pairs are tightly coupled platforms consisting of standard hosts connected to a
programmable network processor via a system-level interconnect. Our work uses network
processors attached to the host via its PCI interface. In this configuration, the host can use
the NP as a programmable network interface card. Using a network processor as a ‘smart’
network interface can improve system performance by offloading the host processor and by
reacting to important events with lower latency. Essentially, the NP adds to the network
interface the ability to aggregate, classify and reorganize data as it is being transferred [68].
The host and the processing contexts on the network processors (e.g., threads running in
separate microengines on the IXP1200 NP), share the joint host and NP resources, and
jointly contribute to data path processing. Externally, a host-ANP pair represents a single
processing platform, which communicates via the network interfaces available on the host
or on the attached NP. Internally, these platforms represent distributed system consisting

of host- and ANP-level processing contexts, that share the joint host-ANP resources, and

11

”””””” ---1Aceess- 1”””””’

Receive [Transmit

ANP protocol plane

Figure 2: Data path through host-ANP nodes.

communicate via controlled access to shared memory channels. Some, or all of these contexts

can be involved in the processing along the data path, thereby forming micro overlays.
While these platforms can be used in a standard manner, with computation-related

tasks confined to the host, our focus is on the potential of jointly using the host and ANP

for computational data paths that cross host-ANP boundaries or that are fully ANP-bound.
2.2.1 Data Path Through the Host-ANP Node

An application’s data path can traverse host-ANP resources in several ways. First, data that
originates at the host, or is delivered to the host on one of its NIs, can be transmitted through
the ANP’s interfaces, i.e. ports. Protocol processing can be performed on the outgoing data,
with ANP-resident processing engines partitioning the data into packets and adding the
appropriate headers (i.e., splitting the protocol stack across the host/NIC boundaries [13,
12, 88]). Examples of other useful actions executed on the outgoing data stream include
mirroring, multicast customized on per-destination basis, stream differentiation, etc. Next,
data delivered on one of the ANP’s ports can be placed into host memory, either directly
via DMA, or after the appropriate pre-processing is performed on the ANP. Sample actions
include performing protocol processing to merely assemble the application-level data and
place it into memory, real-time packet scheduling, and filtering actions on the incoming data.
Finally, the data path can be fully confined to the ANP, as is the case with host-ANP pairs
used as intermediate nodes in application-level overlays. The functionality implemented on
the ANP includes basic data forwarding to its ultimate destination in the application-level
overlay, or it can be enriched with additional processing. The intent, of course, is to deliver
exactly and only the data currently needed by each node, using application-level information

about message formats, data layout and content.

12

Figure 2 represents the basic elements of the data path through the host-ANP pair. The
Receive block on the ANP executes the receive-side protocol code to detect message and
flow boundaries network across packets, and it associates packets with the corresponding
memory queues. On the IXP1200 NP used in our work, this functionality is executed by a
set of Rx threads, one per incoming port, all assigned to a single microengine. Received data
can be forwarded directly to the transmit-side protocol code — Transmit, which directs it to
its destination. Our implementation assigns four Tx threads, all from the same microengine,
to execute the transmit-side functionality. Additional processing performed between packet
receive and transmit represents the functionality implemented by the Access block. Such
processing is implemented with additional application-specific codes, which are executed by
one of the ANP-level processing contexts (termed X contexts), in the host’s OS kernel, or
at user-level. Our work further enables developers to embed such Access functionality in

the Receive or Transmit contexts.

13

CHAPTER 3

APPLICATION DOMAIN

This chapter presents the applications considered by our work, which are large-scale, dis-
tributed, data-intensive, streaming applications, that use dynamically configurable services.
The goal is to demonstrate that our work considers a significant target application space
and that some of the specific requirements posed by these applications can be implemented

efficiently on host-ANP nodes.

3.1 Streaming Applications

This research targets data-intensive distributed streaming applications, which deal with
both large data volumes and large data sizes. In general, in these applications, structured
data is transmitted on a continuous basis, often relying on application-level overlays to
direct the data stream(s) from sources to the destination set. Furthermore, these appli-
cations depend upon the ability of the underlying infrastructure to provide services for
online data analysis, for pre-processing and/or customization of a stream before it reaches
its destination, or for stream manipulations necessary for the implementation of different
quality or fault-tolerance properties. The stream processing actions involved in these ser-
vice implementations are executed at the stream end points, sources and destinations, as
well as at intermediate nodes in the application-level overlays. Such actions are not only
application-specific, but they also require access to, interpretation, and manipulation of
application-level content of the messages traversing the overlay.

There is an abundance of classes of streaming applications, distinguished by their large
data needs and by the substantial processing that is needed to convert raw data into in-
formation useful to end users. Some of the classes of applications relevant to our work

include:

e Scientific Collaborations — in remote scientific collaboration [77, 109], distributed

14

instruments, remote sensors, and visual displays interact in real-time with human
end users and with large-scale scientific or engineering simulations, to perform in-
dustrial tasks like collaborative parts design, to improve scientists’ understanding of
certain physical processes (e.g., consider the ongoing SuperNova Simulation Initia-
tive at DOE), or to deliver real-time services to end users, as in weather prediction.
These applications depend upon the availability of services that will provide support
for efficient sharing of information among multiple users and application components
and enable customized delivery of data to the specific destination sets based on cur-
rent operating conditions, data content, and application-specific quality requirements
[109, 37, 73]. These application also rely on data translation services, to help ap-
plications deal with multiple data formats, alternative data representations, and the

up/down translations they require [108].

Operational Information Systems — in Operational Information Systems (OIS) used
by large corporations, such as Delta Airlines, FedEx, and Worldspan, data captured
by sensors or entered by human operators is transformed into the information needed
to run the company’s daily operations [43, 70]. These applications require services
that will gather, transport, and transform data that is exchanged among the com-
pany’s subsystems, while also executing business rules to extract useful information
from the data streams and perform the necessary system state updates. The critical
nature of the operations executed by the OISs poses replication requirements, which
in turn translate in the need for services that will efficiently perform transactional
tasks, such as mirroring of streaming data, or delivery of subsets of data to specific
subsystems. Furthermore, company internal optimized subsystems interact and must
share information with external clients and applications, and therefore require the

ability to efficiently perform necessary data format translations.

Multimedia Applications — multimedia applications such as remote visualization or

dynamic delivery of camera-captured data require media services that can efficiently

15

perform tasks ranging from data transport and transcoding [75, 36, 90] to data per-
sonalization on behalf of individual end users, as in scientific collaboration or remote
graphics [109]. These services can be specified with application-specific quality metrics
that requires dynamic functionality such as downsampling, transcoding, scheduling,
and cropping [116, 58, 78, 90]. Furthermore, the specific implementation of the re-
quired functionality is dependent upon the specific media encoding used and the algo-
rithms used. Media services are particularly useful in wired-to-wireless gateways that
deal with limitations in available wireless bandwidths by reducing the data volumes

sent to clients [65].

e FEuvent Notification Systems — event notification systems such as those used for stock
ticker updates or monitoring of traffic conditions [21, 113], sensor applications [61, 35],
or applications supporting dynamic web content delivery [66, 16] typically use pub-
lish/subscribe infrastructures, where boolean or simple query-based selection oper-
ations and routing actions applied to events ensure that only necessary data items
are transmitted at intermediate points of their overlays [113, 89]. These application
require ability to efficiently determine subsets of events relevant to a specific client or

class of clients, and replicate that subset on all of the corresponding connections.

3.2 Network Processors and Application-specific Services

Common to all of these applications are the requirements for services that enable efficient
movement of large data volumes, perform application-specific stream manipulations, and
deal with the dynamic nature of the application’s inputs, component interactions, out-
puts, and current QoS needs. Such dynamics, coupled with runtime variations in network
conditions and system resources, imply that QoS needs cannot be met without runtime
modifications to applications’ and data streaming functionality [79].

This thesis shows that the host-ANP pairs introduced by our work are particularly
well-suited for such streaming applications. The NPs’ ability to efficiently move large data
volumes improve the performance of the data transfers required by streaming applications.

In addition, the excess of cycles associated with data movements can be used to implement

16

some of the application-specific services required by applications, or to enhance the host’s
ability to execute them, by removing loads from the host’s CPU and I/O and memory in-
frastructures. Finally, the programmability of NPs can be used to deliver the dynamically
reconfigurable platforms necessary for addressing changes in application interests, QoS spec-
ifications, or operating conditions. Processing actions executed on the ANP can implement
a wide range of stream manipulations to support the dynamic needs of applications, and

can be categorized as follows:

e content-based routing — necessary for content-based load balancing [7], or for wide area
event systems, like IBM’s Gryphon system [113], where ANPs perform the boolean
or simple query-based selection operations performed on events, to route events or to
deliver suitable event subsets to groups of end users [89];

e data sharing — required for data mirroring and replication services, used in pub-
lish/subscribe infrastructures and transactional services such as those executed in
OISs;

o selective data filtering and data reduction — needed to ensure delivery of only those data
items and those elements of items that are of current interest to the application, as
with image cropping that matches the current end user’s viewpoint in remote scientific
collaborations, or simply reduces the amount on data placed on the network so as to
match the current networking conditions;

e data transcoding operations, used in OISs or scientific collaborations, for instance, to
enable data exchanges that have the required format or contain the necessary level of
detail;

o priority scheduling necessary to implement QoS-centric stream manipulations, e.g., to
order or classify the data items being transported as in for critical data delivery in
multimedia or sensor applications [75, 116];

¢ ancillary tasks like data stream monitoring and control used for timely detection of
critical events in sensor applications, or for status services such as online averages and

sums; and

17

e security services that cover the wide range of security processing either already embed-
ded into high end networking products (e.g., the crypto processing in the IXP2850)
or under consideration for such machines (e.g., authentication, intrusion detection,

attack forensics, etc. [26, 71, 24]).

We cannot list all possible communication services host-ANP pairs are capable of per-
forming. Instead, we have outlined some of the basic services that can be used to implement

the potentially high payoff functionality currently considered by vendors and/or researchers.

3.3 Sample Applications Using Host-ANP Pairs

Next, we present in greater detail the two sample streaming applications most extensively

used in our work.
3.3.1 Operational Information Systems: Delta Airlines

Our first focus is on applications that require cluster-based server solutions for their con-
tinuous data streams, an example being the Delta Air Lines OIS described in more detail
in [43]. An OIS is a large-scale, distributed system that provides continuous support for a
company’s or organization’s daily operations. OISs are used 24/7 in companies like FedEx,
UPS, or Delta Air Lines [43, 70], to collect, transport, collate, and distribute the informa-
tion used in these companies’ daily operations. One example of such a system we have been
studying is the OIS run by Delta Air Lines, which provides the company with uptodate
information about all of its flight operations, including data events about passenger board-
ing, flight arrivals and departures, flight positions, and baggage. Information is collated
using business rules, which in turn generate events that are used for tasks ranging from
the update of airport terminal displays to notifications sent to caterers of passengers’ food
preferences.

Multiple cluster nodes apply business logic to continuous input streams comprised of
FAA flight position updates and Delta-specific flight information (see Figure 3). The clus-
ter nodes form an Internal Event System (IES), that interacts with clients, by generating

continuously derived system-state updates and/or responses to explicit requests. Different

18

nodes may be dedicated to different OIS’ subsystems, such as the Flight Progress Event
System (FPES) that maintains all relevant flight information, or a separate subsystem that
is responsible for all interactions with the passengers database. In addition, subsystems may
be replicated across multiple nodes, in order to meet the system’s availability and reliability
requirements.

The large number of clients, the complexity of the business logic being applied and its
working set size of hundreds of gigabytes, and a 24/7 uptime requirement dictate a cluster-
based solution to the stream processing done by a business server of this nature. Other
examples of such cluster-based streaming servers include sensor processing [45], graphics and
visualization servers [77], transaction processing engines, and ‘fresh information’ database
servers [82].

Traditionally, in OISs, dedicated machines serve as the cluster front-end, termed ‘appli-
cation server’, and perform actions like format translations, load-balancing, data striping,
or simply serve as a software router. ANPs enhance such dedicated nodes. In the Delta
OIS example, streams entering the cluster-server are pre-processed by the NP’s processing
engines, and based on application-level rules, they are mirrored to the desired destination
node(s). Other actions useful for applications like these include stream differentiation based
on data content or stream customization based on destination nodes, filtering, and online
derivation of new data such as averages and sums. Dynamic changes in certain parameters
of the processing can result in modified performance, and such changes can be used to
dynamically tune the performance of the system to current operating conditions.

An example is the use of host-ANP pairs to offer efficient solutions for the data sharing
tasks of large-memory applications like FPES. Specifically, by using techniques like selective
or adaptive data mirroring [43] on the NPs at the ingress points of FPES, duplicate server
systems can be provided with the data necessary to handle the state refresh tasks required
in such situations. Duplicate servers need not execute all of the tasks run by the primary
FPES, but their state and actions can be constrained to focus on the specifically needed
data. In turn, data mirroring does not simply duplicate all data received by FPES, which

would lead to unnecessary network and server loads, but instead, data can be selectively

19

raw events
Delta and FAA

Replicated IES

Y
front- GRSs
end ||

T T~ interaction

I I with GRSs 385 j
PSG REV | | | FPES = =

state updates interaction
to clients with clients

Figure 3: Delta Airlines Operational Information System.

mirrored to focus on what is needed for emergency response.

Data mirroring at ingress points is one ANP-level service of use to applications like
FPES. Another useful service is selective data forwarding at egress points, where data events
produced by FPES are routed to appropriate other subsystems, such as the General Ref-
erence System (GRS) used for interactions with external service providers, e.g., caterers.
Again, unnecessarily high server loads or network usage can be avoided by selecting at the
egress ANPs exactly the data needed for such actions. Furthermore, removal of some of the
content produced by the FPES may be required to meet the company’s privacy policy and
confidentiality requirements. Finally, the data translations at FPES egress are necessary in
order to convert it to a representation that can be accepted by the external subsystem, and
can be efficiently implemented on ANPs.

In general, the tasks listed above require ANPs to use information about application-
level data structures and layouts in message payloads. In in-house systems, such information
is readily available as descriptions of the event formats used. More general descriptions of
such formats in efficient binary forms are described in [108, 17]. This raises a third issue,
which gives rise to another class of important services ANPs may execute on behalf of
applications: the dynamic management and use of meta-information about data structure.

The approach to efficiently representing and using information about data formats used

20

in our work leverages the widely used XML standard. XML schemas are used to represent
meta-information, used and manipulated by hosts. ANPs do not utilize these inefficient
descriptions, however. Instead, schemas are dynamically translated to efficient binary for-
mats [108] and ANPs use dynamically deployed binary formats to understand and then
manipulate the payload of application messages. In this fashion, ANPs can efficiently per-
form ‘XML’ services like data selection, data subsetting, data reorganization, and similar

changes to data representation. ‘XML’ services on ANPs are evaluated in Section 8.3.5.
3.3.2 Scientific Collaborations: The SmartPointer Framework

A scientific application driving our work is a framework for collaboration across physicists,
chemists, and application researchers (e.g., Aerospace). This application, termed ‘Smart-
Pointer’ due to its realization of multiple views and ‘pointers’ into the large data space
shared across researchers, is depicted in Figure 4 and discussed in detail in [109]. Here, we
focus on those parts of the application that would most benefit from embedding function-
ality in the ANPs attached to the cluster server transforming its data.

The central pieces of a molecular dynamics application built with this framework are
a bond server and imaging servers. The bond server receives streams of molecular data,
from a running simulation or from stored earlier runs, and computes the different types of
existing atomic bonds. It then forwards the newly created information to imaging server(s),
which prepare easily rendered representations of this information. Different classes of dis-
play/manipulation devices interact with the imaging server and request all, or parts of the
molecular dynamics data. Differences in quality of service requirements exist across classes
and within classes, across multiple clients. There can be multiple imaging servers, each
perhaps driving a certain class of clients, as with an imaging server that executes the entire
OpenGL pipeline on behalf of its low-end, handheld clients, compared to an imaging server
that relies on OpenGL or even higher level display capabilities (e.g., CAVE software [86])
to exist on its clients.

The figure assumes that the middleware used to ‘connect’ information sources, trans-

formers, and sinks uses the publish/subscribe model of communication. In this model, the

21

disk client
............ Bond Server @
P Immersadesk
. ~—

Molecular
Dynamics

LEGEND:
—==* raw MD data
-~ -+ coordinates & bondg

iPaq client

— imagedata

Figure 4: Smart Pointer Application.

data units sent are events, and event distribution uses logical communication channels (i.e.,
event channels) to which information sources and sinks subscribe whenever needed. QoS
requirements translate in different actions being applied to events when they are emitted
by source, accepted by a sink, or both. By default, the ECho event system [30] used in
our research maps all source-to-sink communications to reliable point-to-point network con-
nections. If desired, however, developers can also map event handlers into ‘third parties’,
which is useful when dynamically mapping the event handlers that perform computation-
ally expensive data transformations into non-source or non-sink servers like the Terastream
server [109]. Such mappings result in the creation of overlay networks.

We are not concerned with middleware details. Instead, our focus is on the mapping
of application-specific services to either application-level processes or ‘into’ the underlying
interactive grid platforms, consisting of host-ANP nodes. First, an ANP placed on the data
path ‘between’ the bond and imaging servers can customize the molecular data stream for a
certain class of imaging servers, as exemplified by an image server for low end clients which
cannot display high resolution data in the first place. Second, an ANP placed ‘between’
imaging servers and remote clients can support the per client, dynamic stream customization
(e.g., image cropping or downsampling) necessitated by dynamic bandwidth constraints in
Internet-connected clients or by power constraints in clients running on handheld devices.

In all such cases, the functions executed by such ANPs manipulate the application-level

22

content of data events. Finally, data selectivity is also important when client requirements
change, as with a client that frequently changes its data focus.

For the SmartPointer application, we demonstrate the utility of host-ANP pairs for ex-
ecuting selective data filtering that uses application-specific knowledge and data content to
determine the subsets of data currently required by the imaging server. In addition, we
show that ANPs can help with the dynamic personalization of remote graphics services.
Specifically, the imaging server runs an OpenGL graphics pipeline, which uses the host’s
graphics processor to perform computationally expensive operations like perspective trans-
formation. Such a fast graphics host is capable of producing high quality graphical displays
for multiple remote clients. Clients, however, may require image personalization, ranging
from data downsampling that reduces the color depth of displays (e.g., to reduce energy
usage) to image cropping, which permits each client to focus on those portions of the display
currently important to it. Specifically, Section 8.3.4 demonstrates experimentally that even
Intel’s mid-range IXP1200 ANP can execute personalization operations like image crop-
ping at Gigabit speeds. As a result, it is conceivable for an ANP to take a single graphics
stream received from its host and personalize it for a number of clients. Furthermore, the
actual personalizations being performed are easily parameterized, as with a client providing
current view area descriptions to the host-ANP pair, which are then used to control the
ANP’s cropping actions. This could open up interesting network-level opportunities for

future remote graphics and gaming services.

23

CHAPTER 4

PROGRAMMING MODEL

We next present the programming model upon which we base the development of the pro-
posed SPLITS software architecture. This chapter outlines the basic abstractions used in
our model, the interactions among them, and compares this model with existing program-
ming models used with programmable network infrastructures or developed for streaming

applications.

4.1 Model Overview

SPLITS enables the dynamic deployment and configuration of application-specific services
on the data path through the host-ANP nodes. The intent is to support the exchanges of
large data between the different components of distributed applications. Such an exchange
is modeled as data stream from data source to sink. A path is the sequence of physical or
logical processing contexts, interconnected via communication channels, that are traversed
by each data item in the stream as it is delivered from source to sink, and it may include
other execution contexts that exist in the distributed system. The default functionality
executed by these intermediate contexts involves the forwarding of the data items to the
next context on the path towards the stream’s sink: data is received, the next context is
determined, and it is transmitted on the path’s outgoing links at this context.

The computation applied to an application-level message in the stream represents a
service. A service can operate on each message individually, or it can implement some
property across multiple messages. Each service can be decomposed into multiple basic
components termed activities that may be executed by different execution contexts.

The SPLITS model is aimed at distributed streaming applications, and it can be used

by programmers to represent simple and complex network- or application-level services.

24

4.2 Basic Abstractions

The basic abstractions used in the SPLITS model, are summarized in Figure 5. Their
discussion is illustrated with examples drawn from the Delta Airlines application described
in the previous chapter. In this application, a data stream is comprised of business events
exchanged among different components of the airline’s distributed system. One instance
of such a data stream is the set of events sent from the Delta General Reference System
(GRS) (see Figure 3) to an external caterer. The path traversed by this stream includes
the source GRS, the caterer’s receiving context, i.e. sink, and the intermediate network-
and application-level routers that forward data to it. Sample services executed on this path
include (1) filtering applied to the event stream, so that only events of interest (e.g., events
that carry information for a specific flight or airport) are delivered to the caterer, and (2)
format translation applied to each event, so that its representation can be interpreted by
the caterer.
Data abstraction. The basic data abstraction in the SPLITS model is a self-describing
application-level data unit. A data unit is self-describing through information embedded in
the data unit’s header, which can specify the data size and format, i.e. layout, offsets, and
sizes of the application-level data fields that comprise the data unit, as well as the data
unit’s membership and position in a set of similar data units from the same source(s) or
for the same destination(s). This information defines a data tag with two parts: one that
defines the application-level data represented by the data unit, the other that determines
its membership in a group, based on network- and/or middleware-level protocols. In the
Delta Airlines application, data units correspond to Delta’s business events - internal Delta
messages that are exchanged between different components of the Delta OIS. Each Delta
event has a binary representation that carries information about the event’s type in the
form of a format identifier. The format identifier, along with lower-level protocol headers,
make up the data tag.

A data unit may be represented as a sequence of one or more data fragments, all of
which, except for the last one, are of size fragment size. Each fragment is tagged with a

fragment tag that uniquely binds a fragment to a single data unit, and to a specific position

25

data unit

/ sequence of fragments

data tag frgm tag frgm tag frgm tag
data tag
content content content content

data tag — describes data unit format, size, layout, and membership in group of units

fragment tag — binds fragments to data unit and identifies position in the sequence
stream - collection of data units where tag.field = one of values

stream identifier - the field offsets and values that are common for all data units in the stream

activity - operations performed on input data unit depending on data values and state
operation are: consume, modify, replicate
input is data unit or data fragment
state is internal (per data tag) and external (per context)
internal state includes history (counters), tag information (fields to access), parameters (to compare against)

external state includes context state and configuration

queue - connect outputs and inputs of activities

service - partially ordered graph of activities interconnected via queues that is associated with a stream
the input is defined through the input stream identifier
the graph defines the possible order of execution of activities

actual path taken depends on data and state values at each activity

Figure 5: Abstractions used in the programming model.

in the sequence of fragments that compose the data unit. The first fragment in the sequence
is the only one that has to contain the data tag corresponding to the application-level data
unit.

A single application-level data unit can have multiple representations as a sequence of
fragments. For instance, an application-level data unit can be represented through a series
of memory buffers that contain portions of it. Each buffer has an identifier binding it to
the specific application-level data it represents, and identifying the buffer’s position in the
sequence. The same application-level data unit can be represented as a sequence of network
packets. The header information in each packet uniquely identifies the application-level
message to which the packet belongs, as well as its sequence number. In this case, the
fragment can be an IP packet, an Ethernet frame, or one the MAC-layer packets of which
the Ethernet frame is composed, for instance. In both representations, the data tag is
contained only in the first fragment. All subsequent fragments are tied to it through their
fragment tags.

Computational abstraction. We refer to the basic computational unit used in our model

as an activity. An activity has one input - the data unit to which it is applied, and one

26

or more outputs. An activity can perform one or more elementary operations on a data
unit: consume, modify, or replicate a data unit. Whether or not a data item is consumed
or replicated, or how it is modified depends on its content, as well as the activity’s internal
and ezternal state. Each activity can access and manipulate its internal state, which in-
cludes historic information (e.g., counters), information about the data unit currently being
processed, such as data tag, size, offsets of fields that need to be accessed, and parameters
that can further specify the exact operations to be performed. In the Delta example, an
activity filters out the Delta events that are not relevant for a specific flight. Here, the
internal state represents the fragment counters necessary to access the specific offset of the
data field that corresponds to the flight number and the specific flight number of interest
to the application. The actions taken are either to consume the event or to replicate it
to a single output. External state is a collection of system-wide properties that may be
accessed and manipulated by more than one activity or by other application components.
These include information about the processing context in which the application executes,
the global state that defines the execution of the underlying communication protocols, etc.

Some activities can be associated with more than one data tag. In such cases, a subset
of internal state may be required for each data tag, in order to specify any differences in the
operations that need to be performed. For instance, an activity that reduces the update
frequency by consuming every nth data item can be used on Delta events that update
terminal displays, or on FAA flight position updates. However, while it may be allowed
to halve the frequency of display updates, FAA regulations may specify that only one in
ten FAA position updates can be ignored. The internal state is then used to maintain the
counters and the parameters for both data types independently.

An activity is incremental with respect to a data fragment if executing it on the entire
application data unit results in the same outcome as when executing it on each fragment
in the sequence separately. Such is the case with activities which, when determining which
operation to perform, and how to perform it, only require information contained in the
current fragment. Furthermore, an activity can be incremental with respect to multiple

fragment sizes. For instance, IP forwarding is incremental with respect to a 64B MAC layer

27

packet, since all information required to determine the next hop address is contained only in
this fragment. Similarly, it is also incremental with respect to a fragment that corresponds
to an Ethernet frame. The Delta filtering activity is incremental with respect to a 64B
MAC-layer packet as well, since the offset of the flight number field is such that this field
fits within a single 64B fragment. The Delta format translation activity is not incremental
with respect to any fragment size, since it needs access to different fields of the original
Delta event, whose layout is neither consecutive, nor aligned on some constant offset.

Given the above, the properties of an activity include:
e the fragment sizes with respect to which it is incremental;

e the input data items with which it can be associated, whose type and sizes are defined

through the data tags;
e the operations performed on the input data item;

e the number of outputs, and data tags (and sizes) associated with each output (as a

function of the input data tag);
e the internal state it accesses and manipulates for each of the data tags; and
e the subset of external state it requires.

Communication abstraction. Activities interact with one another through shared queues,
which connect their inputs and outputs. A queue is a communication abstraction, similar
to channels or pipes found in other programming models [106, 51]. Two primitives enqueue
and dequeue are used to deliver data to and from the queues. Multiple activities can act as
sources or sinks for the same queue.

Each queue is defined by the data units it can contain, its sinks, sources, and its capacity.
The queues in our model are a communication abstraction only, we do not specify whether
there should be data copying involved with the queue operations, or whether data can
be exchanged by reference only. A queue can be an array of memory buffers containing
application-level messages or pointers to messages, or it can be the sequence of packets

delivered on an incoming/to an outgoing connection, etc.

28

4.2.1 Data Streams and Services

Data stream. The collection of data items for which specific fields in the data tag have
specific values, or sets of values, define a data stream. The fields in the tag that unify the
data items in a stream can be solely the application-level portion of the data tag, such
as format identifier, or information about the path endpoints, such as source and sink
addresses, or a combination of both. The subset of the data tag shared by all items in a
stream represents a stream identifier.

For instance, in the Delta OIS, all FAA data events share the same format identifier

‘FAA’. A stream of all FAA events is then the collection of all data units where the format
field in the data tag matches the value ‘FAA’. A stream of all data from a set of sources is
the collection of all data items where the data source field in the data tag matches one of
the source addresses.
Services. The collection of activities applied to data units with a certain tag, and the
queues that connect them, define a service. A service can be represented as a partially or-
dered graph of activities (see top part of Figure 6). Each path through the graph represents
a possible order of execution of the activities. The specific path taken depends upon the
exact operations executed by each activity, which depend on the data tag, its content, and
the external and internal state.

The activities that compose the service can be deployed and executed at one or multiple
processing contexts. We next define how the deployment of services is supported by this

model.

4.3 Activation Points

The data path through a context involves the following operations: data is delivered to
the context, its destination is determined, and data is delivered from the destination. A
data destination is always a queue. The queues that connect activities in different contexts
are multiplexed on top of the communication channels that connect these contexts, such
as shared memory queues, for instance. Within each context, queues connect activities

mapped to well-defined activation points. Activation points are locations in contexts where

29

Ai activity

qi queue

Ci context

streamld

q1 q2 q4

Figure 6: Control graph representing a service and its deployment on three processing
contexts.
activities can be executed.

Typically, activation points are associated with data unit granularity, i.e. an activity
can be executed only after the entire application-level data unit is delivered to the con-
text. However, since incremental activities can operate on each data fragment separately,
activation points can also exist at fragment boundaries. Specifically, if data is delivered
to/from the context as a sequence of fragments with respect to which an activity is incre-
mental, the activity can be executed ‘immediately after’/‘just before’ the data fragment is
received /forwarded.

In order to illustrate this, we use the following examples. The activity that filters Delta
events based on the flight number is incremental with respect to a 64B MAC-layer packet.
This activity is invoked at the activation point that follows the receipt of each MAC-layer
packet. For all packets preceding the one that contains the flight number, the activity will
simply perform state updates. When the activity determines that it has the packet with the
appropriate information, it compares the flight number with its parameters. If this fails,
the activity will ‘consume’ the entire Delta event by discarding all MAC-layer packets that
have been previously placed in memory, and all subsequent ones that belong to the same
Delta event. An entirely different example is an application-level service, such as the Delta
format translation, which is not incremental. This service’s activity can only be executed at

activation points that exist after the entire application-level data is available in the context.

30

Service deployment. The deployment of a service includes (1) mapping the activities that
represent the service onto activation points in the same or different contexts; (2) mapping
the queues via which the activities communicate onto the inter- and intra-context commu-
nication channels that connect the corresponding application points; and (3) determining
the stream identifier for the stream(s) to which the service will be applied.

Consider a service S, associated with a stream with tag ¢, and represented as a graph
of activities (see Figure 6). For service S, activity A, may be mapped to activation point
Ap, associated with fragment f, if A, is incremental with respect to the same fragment f.
Next, communication channels must exist, that connect A, to other activation points, where
activities adjacent to A, in S exist. The input and output queues of A, are mapped to these
channels. Finally, for each stream data unit, the value of the tag ¢t must be accessible at
Ap. The state maintained at A, (look-up tables, rulesets, etc.) is adjusted to contain the
specific values of ¢ for which A. executes.

To illustrate this we present the following example. A sample service used by Delta Air-
lines is one that performs format translation of business events pertaining to specific flight.
The data stream processes by this service is a stream of Delta-internal flight events, identi-
fied through their format descriptor. This service contains an activity that performs filtering
based on the flight number, which is incremental with respect to MAC-layer packets, and a
format translation activity that operates on entire Delta business events. The deployment
of the service requires that two activation points are identified, one with granularity of
MAC-layer packets, and another that operates on entire application-level messages, along
with the communication channel (e.g. shared memory pipe) that connects them. Once such
activation points are selected, their internal state is updated to associate the Delta events’
format descriptor with the corresponding activity (i.e., filtering or reformatting, depending
upon the activation point). As a result, Delta internal events are filtered based on the value
their ‘flight number’ field, as soon as they reach the first activation point. The remaining
substream is reformatted at the second one.

Classification. Multiple activities may reside at an activation point. Each of these ac-

tivities can potentially operate on more than one data tag. Therefore, at each activation

31

point, it is necessary to classify a data item or a data fragment, and determine which, if
any, activity should be invoked. Since activities are part of a service that operates on a data
stream, the classification mechanism requires the ability to (1) identify the stream identifier,
(2) based on the classification rules, determine the corresponding activity, and (3) apply
the same classification decision to the entire application-level data. The classification can
be performed on data fragments or data units. The decision on how to classify the data is
determined for each application-level data unit, based on specific fields in its tag. The same
decision then needs to be associated with each fragment that corresponds to that data unit,
without necessarily repeating the lookup process.

The subset of the fields in the data tag, based on which the classification is performed, is
very application-dependent. The fact that there can be multiple activities at an activation
point, associated with services that apply to different streams, whose identifiers are based
on combination of communication- and application-level information, can make the design
of the classification process very challenging [2]. For instance, for applications concerned
with network-level services, the classification is performed based on protocol-related fields
in the data tag, such as source and destination addresses, or protocol types. For the Delta
application, however, the classification process is based on the format identifiers that define
the business events exchanged in the system.

Furthermore, classification may need to be performed along multiple fields in the data
tag. For instance, in order to apply the Delta filtering service only on Delta internal flight
events for a set of specific destinations, the classification process needs to access both the
data format and destination address fields in the data tag, and compare them against encod-
ings for all possible format-address pairs. This can result in a large search space, necessary
to maintain classification actions for all possible possible values of the classification param-
eters, and can make the classification process inefficient and time consuming. Therefore,
our model specifies that the classification process associated with the receipt of data items
(or data fragments) in a context, the default action taken by it, and the parts of the data
tags which can be accessed by it, is determined by the application, based on the services

that will ultimately be deployed at activation points in the specific context.

32

4.4 Concrete Implementation of the Model

The SPLITS programming system uses the model presented in Sections 4.1-4.3 to enable
the dynamic deployment of application-level services on distributed systems composed of
host-ANP nodes that have multiple contexts. Data stream sources and sinks can be external
nodes communicating with the host-ANP node through the ANP-resident network inter-
faces, or application components executing in one of the host-ANP contexts. A data unit
is defined by the application-level data exchanged between sources and sinks, and its tag
consists of an application-level format description and network-level information identifying
the source and sink. Each data unit is represented as a series of fragments that correspond
to Ethernet RUDP frames. Furthermore, data is delivered to the receiving and from the
transmitting ANP context as a series of MAC-layer packets. Fragments corresponding to
these MAC-layer packets are also supported. The fragment tag for Ethernet messages cor-
responds to the first 16B in each frame that contain the Ethernet and RUDP headers. The
fragment tag for each MAC-layer packet is the state value provided by the IXP1200 MAC
interface that indicates the Ethernet frame to which the specific MAC-layer packet belongs.

An activity is represented as a stream handler, and a service is represented as a series of
stream handlers executing in one or more host-ANP contexts. The granularities with which
the current implementation of SPLITS associates activation points is on 64B MAC-layer
packet, Ethernet frame, or entire application-level message (i.e., a data unit). The receiving
and transmitting contexts have multiple activation points associated with fragments corre-
sponding to a MAC-layer packet, an Ethernet RUDP frame, or an application-level data.
All remaining contexts have only one activation point associated with application-level data
units.

The incoming channels for the Rx context and the outgoing channels for the Tx con-
texts are the ANP’s network interfaces, which deliver data at the granularity of MAC-layer
packets. The communication channels between all other contexts on the host-ANP node
are shared memory buffers. The queues connecting stream handlers in different contexts
are mapped to these buffers. The communication channels between activation points in

the same Rx or Tx contexts are represented by shared variables that track the transfer of

33

control between the protocol processing stages.

There can be multiple services simultaneously executed on an ANP. For each stream
data, the classification process maps the data tag (stream identifier) to the service that needs
to be invoked, i.e. to the stream handler that implements the service at that activation point.
The deployment of a service involves either the deployment of a new stream handler at an
activation point, or in the allocation of handler internal state for the data tags that define
the stream. In both cases, a handler identifier identifies the mapping between a stream
identifier and the stream handler. In this manner, the same stream handler can be reused
to execute on behalf of different services.

Details regarding the implementation of stream handlers and SPLITS are presented in

the following chapters.

4.5 Relationships with Other Models

The SPLITS programming model is sufficiently expressive to enable higher level program-
ming models to be mapped to it. In addition, it represents a generalization of lower-level
programming models, such as those operating at the network-level, and applications built

with such models can be represented seamlessly.
4.5.1 Models for Network-level Services

The active networking model represented through the PLAN programming language [46],
and Intel’s programming model [51, 54] developed specifically for the network processors
used in our work are network-level models. In PLAN, active messages that correspond to
network-layer packets represent data units, and they cannot be further fragmented. We
deliberately support fragments such as lower-layer packets, since this is the granularity
with which application-level data will become available in the processing context. Each
active message is tagged with an active identifier, and a stream is a collection of active
messages tagged with the same active ID. Activities are represented as active codes that
are executed at activation points called execution engines. The classification process maps
an active ID to the corresponding active code, and delivers the message to the appropriate

execution engine. The active codes can only process messages tagged with one active ID.

34

Communication between execution contexts implies that messages are retagged with a new
active ID, and reclassified. In our model, activities within the same context share context
state, and avoid repeated reclassification. In order to implement application-level services
with active codes, they would need to execute protocol processing in order to construct
the application-level message, even if the activity is incremental with respect to an active
message fragment. This is because the data tag used in PLAN, the active ID, maps data
units to services, but does not bind active messages into an application-level message. If
multiple service components are to perform different application-level processing, then each
the application-level data unit would have to be reconstructed repeatedly.

Both programming models proposed by Intel, MicroACEs and microblocks [51, 54], sup-
port only network-level services, associated with the network-level headers of the packets
that are handled. A network-level service is deployed as a collection of activities that ex-
ecute on the separate processing contexts on the IXP, termed microengines. Data units
correspond to network packets, and their tags to network headers. Activation points exist
at the granularity of MAC-layer packets in receiving contexts, and at network packet layer
granularity in all other contexts. A stream is a collection of all network packets to which the
service can be applied. Packets tagged with headers for which the service is not supported
(e.g., data from a specific source or from an unknown source, packets with different protocol
types, etc.), are removed from the path, and are not processed by any of the IXP-resident
activities. These packets may be directed to an external control context (such as the Stron-
gArm/XScale core or the host) for exception handling, or simply discarded. All activities
jointly execute one service, and all packets are processed by all activities. The model does
not support distinct data paths through the contexts, nor does it permit the operation
of a single activity to replicate the data unit and apply different processing to different
replicas. The implementation of application-level services with this model is not feasible
since classification is performed only on network packet boundaries and with network-level
information.

The objectives of the PLAN and IXP models are to be expressive with respect to

35

network-level services, and to enable efficient implementations by optimizing resource al-
location for the targeted domain. The implementation of network-level services will have
better scalability properties compared to our model, since we provision resources for main-
tenance and manipulation of application-level state, processing, and content. However, the
specific implementation of our model demonstrates that even with such increased expres-
siveness, we can meet the efficiency requirements for the application domain in which we

advocate the use of host-ANP nodes.
4.5.2 Models Used with Streaming Applications

Higher-level programming models, such as those developed specifically for streaming appli-
cations [104, 27], or publish/subscribe models [30, 100], for instance, can be easily mapped
to the SPLITS model. The stream identifier used in streaming models maps to the stream
identifier used in our model. A data unit corresponds to each stream data item. Stream
operators such as splitters and filters can be represented with activities that are associated
with the appropriate data unit. Merging of streams can be represented either through use
of the queue abstraction and an activity that performs the corresponding modifications. In
addition, it may occur that the streams that need to be merged can be expressed with a
single stream identifier, in which case the queue abstraction is not necessary. These models
do not specify the possibility of associating stream operators with fragments of the stream
data item.

Publish subscribe models like Echo [30] may be mapped as follows. A data channel is
represented with an activity. An activity replicates each input data item for each of the
subscribers. The stream identifier on the input stream represents a union of the tags of all
data sources for that channel. For typed channels, the stream identifier also includes the
data format identifier. The group of subscribers on a single channel defines its outputs. A
new channel can be derived by creating a new activity, and ‘subscribing it’, connecting it
to one of the outputs of the activity representing the original channel. The classification
process maps the source of each data item to the activity that corresponds to the channel

on which the data should be published.

36

Finally, our model can be used to represent frameworks for composable services, such as
microprotocols [11]. The microprotocols are stackable components with well defined inter-
faces, and are used to represents complex services and their properties. Each microprotocol
implements a specific property, and is defined as a collection of event handlers which are
invoked when a particular event occurs. Using the SPLITS model, a microprotocol can
be represented as an activity associated with a collection of data tags. Each data tag
corresponds to the types of events that can be handled by the microprotocol. Different
microprotocols are interconnected via event delivery channels, represented with queues. Fi-
nally, by enabling activities to operate with different granularity, the SPLITS model can
be used to represent composite network protocols as well as composable application-level

services.

37

CHAPTER 5

STREAM HANDLERS

Based on the programming model presented in Chapter 4, we define stream handlers, the
basic computational unit of application-specific actions, to represent the activity applied
to streaming data in the execution contexts belonging to the host-ANP nodes. In this
chapter, we discuss the different types of stream handlers that can be embedded at various
activation points along the stream data path through the host-ANP node, their interfaces
and properties, and give examples of handler implementations. The goal is to present the
possibility of using stream handlers to represent application-specific processing that can be

executed in the fast path, and to also discuss the limitations of the approach.

5.1 Concept and Definitions

A stream handler is a lightweight, parameterizable, computational unit applied to stream
data [40]. A stream handler represents an activity that can be deployed at an activation
point on the data path through the host-ANP node, and executed in addition to basic
actions like message assembly, fragmentation, and forwarding.

As with the activity it implements, a stream handler can be associated with data units
or fragments of data units of specific types, i.e., with specific ‘tags’. A stream handler
can operate on an entire application-level data unit, and (1) consume it, (2) modify it, or
(3) generate new data item(s). In addition, stream handlers may also access and manip-
ulate state that reflects the runtime conditions and the progress in the processing of the
application-level data stream, at the concrete contexts where they are deployed. The exact
actions taken by a handler at runtime are based on the data it processes, its type and
content, and the internal state that represents rules, parameters, and progress information
associated with the specific data type. Stream handlers may be parameterized, so that their

operation is further determined by runtime checks on actual parameter values at activation

38

points.

Services are implemented with stream handlers that correspond to the activities of
which the service is comprised. An activity can have multiple representations based on
the activation points where it can be executed; therefore, multiple stream handlers can be
associated with it, each corresponding to implementations at different activation points.
Hence, a service can have multiple implementations that involve different stream handlers,
depending on the activation points of the activities that compose it. These implementations
may differ in their resource requirements and performance characteristics, due to differences
in the properties and resource requirements of each of the handlers involved.

A rich set of application-level services can be implemented by deploying stream handlers
to all parts of the data path, at any of its execution engines. On the ANP, stream handlers
can be associated with the receive or transmit process of the data path through the ANP,
or can be asynchronously applied to memory-resident application-level data.

Simple handlers implement network-centric functionality like routing and firewalling,
executing code that uses network headers. More interesting stream handlers implement
content-based filtering or mirroring, which means that they access payload data beyond
the packet header and interpret the values of specific application-level fields, or they per-
form format transformations, which may require them to access and manipulate an entire
message payload. Complex payload manipulations, however, are typically implemented by
compositions of multiple stream handlers. For instance, the stream handlers implementing
the Access functionality discussed in Chapter 2 (see Figure 2) range from simple ones that
implement forwarding or filtering based on application-level content, to ones that perform
data format translations. Handlers can then be composed to implement a service like for-
mat translation of stream data that meets some user-specific criteria, similar to the service
evaluated in Section 8.3.5.

In addition, stream handler functionality can also be executed at the host, as kernel-
or user-level handlers. This is important for complex services that require host-resident

resources like floating point units or database accesses. At the host side, stream handlers

39

are represented by user-level functions and are invoked with the granularity of application-
level messages, i.e. after an entire message has been received and assembled in the host’s

memory, or before it is passed to the send-side protocol code.
5.1.1 Accessing Application-level Data

Stream handlers require the ability to access, interpret and manipulate application-level
information stored in memory buffers, or delivered as a sequence of network packets. To do
S0, it is necessary to provide handlers with information about the data layout and type or
format, and to ensure that there is sufficient protocol support to guarantee that the result
of handler execution impacts the entire application-level message.

Application-level data is described with compact binary data format descriptions [30,
17], which provide to handlers information about the structure and layout of the data they
manipulate. The use of formats enables us to duplicate for packet bodies the elements that
make it easy for NPs to perform header-based operations: known header formats, offsets,
and types and sizes of fields. Stream handlers rely on such encodings to access the correct
parts of the data or data fragment (e.g., MAC-layer packet(s), or memory buffers) on which
they operate. Limitations of our work is that stream handlers currently use static encodings
of data formats. Explicit data format representations (see [17] for a detailed description
of these efficient binary formats) are used to obtain the correct field offsets, and to access
the stream data as necessary, in a similar manner as other approaches use fixed header
definitions to support header-based processing.

In order to execute application-level functions, stream handlers depend on the availabil-
ity of underlying protocol code that assembles application-level data units, and the ability
to interpret the structure of the data byte stream (i.e., protocol-related headers and packet
properties) and access relevant packet body contents. For the current IXP platform, the
IXP1200s, we rely on an RUDP-like protocol to efficiently implement the reassembly and
fragmentation of application-level data in IXP memory on per flow basis [14, 60]. Our
RUDP implementation is based on top of Ethernet frames, whose headers are extended to

include fields such as message and frame sequence numbers, and End-Of-Message (EOM)

40

and Start-of-Message (SOM) bits to denote the first and the last Ethernet frame in an
application-level message. We rely on RUDP because previous work has shown that TCP
processing cannot be supported with the resources available on this platform [98]. For next

generation IXPs, we expect to use standard protocols provided by the vendor.

5.2 Stream Handler Implementation

A stream handler represents an activity at a specific activation point. Therefore, its im-
plementation concretizes the properties that define the corresponding activity. We next
discuss how these properties have been translated in the stream handler implementation,
the runtime state and operations necessary to enable the correct stream handler invocation,
and the resource requirements they present.

Input streams. Stream handlers are associated with data units with specific tags, and
the tags used in our implementation are the binary format descriptors discussed above.
These format descriptors determine the data type of the application-level data units to
which the stream handler can be applied, or the output types it can produce. The same
format descriptor is also used to identify the data streams with which a specific service is
associated, i.e. it also represents the stream identifier. For instance, in the Delta OIS both,
the data type and the stream identifier is defined with the format descriptor of the Delta
business events.

The SPLITS model also specifies that an activity can be associated with multiple data
types, i.e. data items with different tags. A stream handler is represented at an activation
point as a sequences of instructions, located at a specific address in the contexts’ instruction
store. Instances of the same stream handler applied to different input streams, i.e., data
items with different tags, share their representation - sequences of instructions, but are
distinguished by a different stream handler identifier. The stream handler identifier reflects
the runtime mapping between the data tag, i.e. stream, and the stream handler - the activity
executed on the stream data. That is, different stream handler identifier are associated with
the same service when it is executed on a different stream.

Internal state. In addition, a subset of the handler’s internal state is associated with each

41

stream. The size of this internal state is both application- and implementation- specific. It
contains information maintained by each handler for each active stream, defined through
the stream handler identifier, contains state regarding the processing progress, such as
data counters, or partial results that are maintained across different data items. Part of
the internal state are the parameters that further specify processing actions taken for that
stream. For instance, a filtering handler will have a separate identifier and state for a stream
consisting of FAA data vs. updates for external caterers, and maintain separate parameters
for each one of them.

The implementation of the internal state is such that the handler can branch directly into
the portion of state that is associated with the specific stream handler. This is maintained
as part of the configuration state that translates handler identifiers into the location of the
internal state with which the stream handler operates. In addition, internal state may be
maintained for all instances of the same stream handler (that have different identifiers).
This is necessary to associate handler parameters with all streams that can be processed by
that stream handler.

Handler outputs. A stream handler is also defined by the type and number of outputs that
it produces. In most cases, the output of a handler can be produced by directly modifying
the original data item, and in such cases no additional memory needs to be allocated by
the runtime. For instance, a filtering handler will simply forward the input data item,
when the filtering action is not taken. The Delta format translation, and the layout of
the Delta business event are such that the update event for cateres can be generated by
directly writing over the input Delta data. The amount of memory required when the
handler outputs cannot be produced from direct modifications of the input data, depends
on the number and type of outputs. An example of such handler is evaluated with the
OpenGL image cropping service, evaluated in Section 8.3.4. The output size of this handler
is determined by the bounding box against which cropping is performed.

Queues. Stream handler that implements a specific service component, i.e. activity, is
also defined by the abstract queues that connect its outputs to next activities in the service

graph representation. These queues correspond to the communication channels between

42

the various activation points that are available in the runtime. The queues are defined by
the data fragments that can be atomically enqueued and dequeued. A stream handler may
not enqueue data on the queue, unless the entire fragment is available. For a queue that
is defined for application-level data units, the entire sequence of fragments that represents
the data unit has to be available, before it is enqueued.

A stream handler requires the ability to determine the specific communication channel
to be used by its outputs. This is done by maintaining configuration parameters that
represent the current mapping of the abstract queues to the data buffers used for inter-
context communication. When a service is reconfigured so that a stream handler at a
different activation point implements a required activity, the affected queue mappings need
to be updated so as to use the appropriate supported communication channel.

External state. The external state required by a handler is represented through a set of
state variables that track the processing progress on the data path, and configuration buffers
that specify the service deployment. Both of them may be accessed by the stream handler
code in order to determine the processing taken. This state is maintained as part of the
context where the handler’s activation point resides. Some parts of the external state may
only be read by handler. For instance, the configuration state that represents the runtime
service deployment are determined by the host application, and are used by the handler to
determine the next context and the corresponding queue. Other parts, such as the progress
in the data stream processing, may also be modified by the handler’s operations. For
instance, the stream handler may determine that a data item should be consumed, which
is then reflected in the external state, so as to notify other stream handlers that may be
involved in the processing of the same data.

Incremental activities. Finally, a stream handler which represents an incremental ac-
tivity can operate on one data fragment at a time. These handlers can only be associated
with activation points where data is delivered with the same fragment granularity. Typi-
cally, such activation points exist at the data receiving and transmitting contexts, where
the fragment is defined by the underlying network layers. The fragments on which the han-

dlers operate are associated with an application-level message and therefore, have the same

43

stream and handler identifiers. Hence, they are processed by the same stream handler, with
the same state. The internal state can also be used to maintain partial results from the

fragment processing.

5.3 Stream Handler Invocation

Next we discuss the implementation of activation points, the actions taken to enable stream
handler invocations, and the state maintained.

On the ANP, the stream handler representation that can be executed in a particular
context, resides at some specific location in the instruction store used by this context. The
stream-specific state with respect to which the handlers actions are further defined, resides
at a specific state location, typically represented as an offset within the handler’s internal
state.

Therefore, the actions taken at an activation points, necessary to invoke a handler on
an input data item, are to determine the corresponding handler and state locations. In
our implementation, the handler location is expressed as offset in the instruction store
relative to a jump instruction. The execution of the jump instruction results in a branch
to the first instruction in the stream handler code, and represents transfer of control to
the handler. Upon completion, the handler returns control to the activation point (again
through jump to a predetermined address). The outputs of its processing are then passed

onto the appropriate queues.

5.3.1 Classification

Stream handlers are executed within activation points. The functionality executed at these
activation points includes the appropriate runtime checks to determine the matching be-
tween the data tags and available stream handlers, to retrieve the corresponding parameters
and additional configuration state, and to deliver the results from the handler processing
to the appropriate consecutive context(s).

In order to invoke the appropriate handler, incoming data is classified based on the
classification state (e.g., rulesets, lookup tables), maintained at the corresponding con-

text. Figure 7 represents the basic functionality executed at activation points on Rx/Tx

44

or X threads on the IXP ANP. The call get_sh_info() performs a lookup in the context’s
configuration state to determine which handler should be invoked, if any. This state con-
tains entries with values [handlerId, handlerOffset, stateOffset] that represent the
stream handler instance invoked for the specific stream (stream handler identifier), its rep-
resentation in the instruction store (handler offset) and its internal state (state offset). The
classification process maps the stream data to an entry in this configuration state based
on the stream identifier. Presently, we implement the configuration state in chip-resident
memory. In addition, we support the use of hash tables to encode larger classification
rulesets.

While the classification process used in our work uses only the data format descriptor
to distinguish among streams, it can be extended to include additional information, such
as data source or destination. This will pose additional requirements on the space size of

the state used by the classifier and/or its implementation (e.g., multi-level hash tables).
5.3.2 Enabling Activation Points

The receive and transmit functionality on the host-ANP nodes is executed by the ANP-
resident Rx and Tx contexts. The network interfaces on the ANP deliver Ethernet frames
as a sequence of MAC-layer packets. The RUDP protocol code executed at the Rx contexts
determines the sequence of MAC-layer packets that correspond to an Ethernet frame, and
the sequence of Ethernet frames that correspond to an application-level data unit. Similarly,
the Tx contexts execute the reverse operations. The data path through the host-ANP node
may traverse all or some of the remaining available contexts, either on the host or the
ANP, however, at all these context the entire application-level data is already available in
memory. Therefore, at the Rx and Tx contexts we define activation points for activities
that are incremental with respect to the MAC-layer packets and Ethernet frames. Stream
handler implementations of activities associated with these two supported fragments can
be deployed and invoked at the respective activation points. In addition, at all contexts,
including the Rx and Tx, we define activation points where activities that operate on entire

application-level data units can be executed.

45

Rx/ Tx:

get_sh_info[apld, strmd, sh_id, sh_offset, sh_stateAddr]
.if (sh_id == NULL_HNDLR) br[continue#] . endif
junp[sh_of fset, shO#], targets[shO#, shl#, ... shn#]

conti nue#:
.if (nmegState == EQOM
check_new_confi g(apl d)
.endif

X

dequeue(api d, nmsgAddr, queuel d)
get_sh_info[apld, strmd, sh_id, sh_offset, sh_stateAddr]
junp[sh_of fset, sh#0], targets[sh#0, sh#l, ...sh#n]

conti nue#:
i f (ctx == 0)

.if (msgState == EOM
check_hot _swap(apl d)
check_new_confi g(apl d)

.endi f

.endif

Figure 7: Activation Points at Rx/Tx and X threads.

46

At each context, activation points require configuration state to determine the handler
that needs to be invoked to process the stream data. In addition, the activation point
provides the resources necessary for the stream handler execution. We next discuss the
runtime support required to enable activation points at the respective points, the state

maintained and actions taken which result in the appropriate handler execution.
5.3.3 Receive Contexts

There are three possible activation points which can be embedded within the protocol
processing executed at the Rx context. The basic operations of the protocol code executed

in this context, involve the following:

1. The first MAC-layer packet that corresponds to an application-level data unit is re-

ceived.
2. MAC-layer packets are received until a complete Ethernet frame is received.
3. Ethernet frames are received until a complete application-level data item is received.

4. The application-level data unit is forwarded to the next context on the data path

(e.g., host application waiting on receive, transmit context, etc.).

These steps do now show any header-based operations necessary to determine that the
application-level data is correctly assembled from the MAC-layer packets and Ethernet
frames. Namely, Ethernet frames and application-level data is assembled in memory by
protocol code that operates on header fields containing sequence numbers, source and sink
addresses, etc. References to the frame/message currently affected by the protocol pro-
cessing are maintained in state variables frmAddr and msgAddr, respectively. Two other
state variables, frmState and msgState, indicate whether the current operations involve
the first and/or last fragment in the Ethernet frame or application-level data. In our imple-
mentation, the first and last MAC-layer packet in an Ethernet frame are identified through
hardware support, and the first and last Ethernet frame in a message are distinguished
through the values of the End-Of-Message (EOM) and Start-Of-Message (SOM) bits in the

RUDP header.

47

The protocol code is extended with three activation points, associated with the receipt
of a MAC-layer packet, an Ethernet frame, and an application-level data unit. The com-
munication between handlers in these activation points is by passing a reference to the data
or data fragment they require. The variables frmAddr and msgAddr, set by the underly-
ing protocol, represent the corresponding communication channels. Synchronized access
to these variables is enabled through frmState and msgState, respectively. For instance,
data is delivered to the activation point associated with the receipt of an Ethernet frame,
only when frmState indicates that the last MAC-layer packet which belongs to that frame
has been processed. In order to determine the stream identifier, i.e. data tag, and invoke
the appropriate handler, activation points also require the ability to determine the first
fragment in an application-level data. A reference to the first fragment is provided through
msgAddr.

There can be multiple messages ‘in transit’. State is required to map the protocol-level
message identifier to the corresponding buffer (that resides at msgAddr) where fragments
from the message are to be stored. Our RUDP implementation does not implement time-
outs, and relies of the fact that all fragments will arrive before the message buffer needs to
be reused. We can select one of the following choices: (1) if an SOM is detected, and the
previous RUDP message is not fully assembled, it is discarded (the same happens on the
start-of-Ethernet frame signal if the present Ethernet frame is incomplete), or (2) to main-
tain a window of number of messages that can be in transit, and then discard messages only
when necessary, based on some policy (e.g., lowest sequence number). Both choices allow
data to be lost potentially, but with different probabilities. In the first choice, the window
size is one, and data delivered to the activation points is ordered. In the second choice, in
order to guarantee that data is delivered to stream handlers in order, the state and param-
eters requirements may increase as O(n) with respect to the window size. Alternatively, it
may be specified that data can be delivered out-of-order to stream handlers, which will then
have to determine internally the correct order based on network sequence numbers. This
too can result in O(n) state increase. Our implementation is based on the first choice. In

addition, we deliver a sequence of fragments to the next stage whenever the last fragment in

48

the sequence is received, without verifying that indeed all internal fragments have arrived.

This poses some additional constraints:

1. a handler implementing an incremental activity may need to reinitialize its state each

time it starts processing a new application-level data; and

2. a handler may need to perform some form of ‘type checking’ to determine that the
data received matches the format description (we maintain size for each sequence of
fragments, but it may not be fixed since format can specify variable-length fields;
therefore, ‘type checking’ has to be performed with application-specific knowledge

available at the handler).

While these constraints are introduced due to limitations of the available protocol sup-
port, we believe that both should become the policy, rather than the exception, and that
a handler should have the ability (1) to verify the correctness of the data - perhaps us-
ing some application-specific metrics, and determine ill-formed messages as those discussed
in [43], (2) to discard the results of its current processing by consuming the incorrect data,
or to implement some other set of operations when this condition occurs, i.e. introduce an
exception arm in the service graph, and (3) to reset/reinitialize its state when necessary.

Examples of receive-side stream handling include content-based routing, filtering, or
monitoring. Format translators of limited complexity may also be executed by receive stage
threads. The goal of executing stream handlers with data fragment granularity is that
based on the application-specific data formats, further optimizations can be performed on
the data path, in the sense that a handler can be invoked as soon as the necessary data fields
are received. In this manner, potentially unnecessary memory accesses can be avoided, per
application-level data unit fast-path execution can be sped up, and higher throughput can

be achieved.
5.3.4 Transmit Contexts

As the complexity of the stream handler and the amount of state information it requires
increase, Rx-side processing is no longer feasible. An alternative to dedicating a separate

thread to execute the stream handler, is to combine the execution of the stream handler

49

with the transmission process. Such transmit-side processing is useful whenever all or most
of the data unit needs to be received before the handler can be executed. It is particularly
efficient when data can be modified as it is being sent out, which reduces the loads imposed
on ANP memory by avoiding double-copying.

There are three possible activation points in the Tx contexts: (1) when the entire
application-level message is delivered to the context for transmission, (2) when the Ethernet
fragment is determined, and (3) just before each MAC-layer fragment of which the Ethernet
frame consist is passed to the network interface transmit buffers. Data is delivered to the
Tx context through FIFO queues of addresses of memory buffers containing application-
level data items. For each data item, the classification process at the first activation point
determines the data tag, which is used at all three activation points to identify and execute
the appropriate handler.

Stream handlers associated with the data transmission process, perform updates to
memory /register locations representing data header or content, ‘just before’ it is sent to
outgoing network ports. Multiple copies of the same data can be sent to multiple desti-
nations, while maintaining a single copy of the application-level data in memory. This is
useful for the efficient implementation of multicast customized based on destination. Again,
explicit format representations are used to access the desired portions of the stream data
unit.

On the IXP, we support two runtime implementation of the Tx context. First, one queue
can be associated with each thread on the microengine executing the transmit side protocol.
In this case, each thread presents a Tx context. The second implementation uses one queue
shared among all 4 transmit threads, and the microengine to which these threads belong,
represents a context. This enables more efficient implementation of data replication services.
Consecutive data items are processed concurrently, in separate threads, where the stream
handler executed by these threads implements the data replication. Thread synchronization
guaranteed by the hardware round-robin, non-preemptive scheduling mechanisms.

At all activation points, a stream handler can also determine that the data should

not be sent, i.e., the operation executed is to consume it. The decision to consume the

50

data can be driven by type checking or other application-specific decision implemented by
a stream handler. Making a decision that a data item should be discarded in a stream
handler execution in one activation point, may require the execution of some protocol-
specific code to mask the missing protocol packets from the receive-side protocol code at
the other endpoint. In our case, no action is taken upon message discard; the code simply
skips over the remainder of that application-level message and retrieves the subsequent one.
The start of message reset ensures that relevant parts of the internal state, such as packet
and frame counters and addresses, are properly reinitialized. The receiving end will have
to deal with potential partially received message. However, this can be detected and dealt
with at the application level, using application-specific information.

A similar set of configuration state and variables to the ones used in the receive contexts
is necessary to track and coordinate the transmission process with the different activation
points. The Tx-handlers also perform state initialization when they start processing a new
application-level data item, or the first fragment of which it consists. If necessary, type
checking can also be performed. The destination address of the packets delivered to the
network can be determined using handler-specific routing tables, maintained as part of
the Tx-handlers internal state. However, it is possible that all Tx-handlers share the same
‘global’ routing table, or list of ‘group’ member addresses for implementation of functionality

such as multicast, for instance.
5.3.5 Memory-resident Contexts

The remaining contexts on the ANP and on the host may also be included on the data
path. Activation points at the X contexts on the ANP or at the host kernel- or user-
level can run a wide variety of stream handlers, ranging from simple ones that implement
forwarding or filtering based on application-level content, to complex handlers that perform
data transcoding or format translation, and involve data copying. For applications that
require complex stream handlers, it is necessary to dedicate separate X contexts to the
execution of the handler’s code. This is due to (1) the physical limitation of the instruction

store associated with the microengines, and (2) the fact that a greater degree of concurrency

51

Rx: X
Lif ((cntPkt == 43) && (cnt Frime=0)) nove[fltno_of fset, 43]

Jif ($x0 == flight_no) dram to_regs[$$x0, nmsgAddr, fltno_offset, 1]
di scard_nsg[nsgAddr] .if ($$x0==f1i ght _no)
.endi f di scard_nsf [nsgAddr]
.endif _endi f
TX:

nmove[fltno_of fset, 43]
dram to_regs[$$x0, nsgAddr, fltno_offset, 1]
Jif ($$x0 1= flight_no)
di scar d_nsg[nsgAddr]
.endi f

Figure 8: Examples of Rx, X and Tx implementation of a stream handler.

on the critical path increases the sustainable rate of throughput.

Memory-resident transform handlers, X handlers, are executed on separate microengines
that do not run any other protocol-specific fast path processing. These handlers operate on
fully assembled application-level messages, and interact with the runtime through controlled
access to the memory-resident FIFO queues available on the ANP. Each queue is identified
by the context to which data is delivered. This information is used to map logical queues
from the service graph to physical queues on the ANP. The mapping is determined at service
deployment /reconfiguration time, by host-side application components, where information
about both, the service and the processing contexts exists.. The configuration state at each
context specifies the queues onto which the outputs from a stream handler processing should
be placed.

Memory-resident handlers are less constrained in terms of the permitted operations
and the order of accesses into the data payload, compared to the Rx and Tx handlers.
Similarly to the Tx contexts, our implementation allows the X context to be configured
as four X contexts concurrently executed by a microengine, each with a separate input
queue, or as one X multithreaded context. Therefore, a stream handler implementation
at an X context can use one or all of the microengine threads. Namely, each of the four
microengine threads loaded on the specific microengine can process concurrently separate
data units (i.e., application-level messages), or all four threads can jointly perform single

application-specific task on one application-level message.

52

For instance, the data reformatting required in the Delta Airlines application for sharing
Delta internal events with external catering systems can be implemented as four concurrent
stream handlers reformatting Delta events. Thread synchronization and controlled access
to queues is required to ensure correct execution.

More complex functionality, particularly when larger messages are concerned, can be
sustained by allowing the handler programmer to use all four microengine threads to im-
plement the data processing. This is the case with the image cropping handler used in an
OpenGL pipeline, which performs simple computations, but accesses large portions of the
application-level data. The particular example evaluated in Section 8.5 ‘touches’ all of the

application-level message.
5.3.6 Resource Requirements

The properties of a stream handler establish its resource requirements in terms of memory
and computational cycles. They can be divided into a set of compile-time and run-time
requirements.

At compile time, resource requirements are defined by the size of the stream handler
implementation at a specific activation point, i.e., the amount of instruction store required
to represent the handler, the state that needs to be maintained for each of the data types
that can be processed by the handler, its size, and the number, type and size of outputs
that result from the handler processing.

The runtime requirements of a handler define its performance cost. The performance
cost is a function of not just the compile time resource requirements at specific activation
points, but also of a set of platform conditions (e.g., processing speeds, memory and inter-
connect speeds, etc.), and runtime conditions, such as current loads, incoming data rates,
the sizes and frequencies of the different data types represented in the incoming stream, etc.
Off-line profiling can be used to establish stream handlers’ performance cost under worst
case, or other specific operating conditions, typical for the considered application [93]. The
mechanism presented in Chapter 7 relies on off-line profiling to assess stream handlers’ cost,

and to determine whether its deployment is permissible under the current conditions.

53

5.4 Programming Interface

Next we discuss how application programmers can develop stream handlers that need to
implement specific activities. First, they need to define the application-level streams and the
data tags of which the streams consist, in the context of the application’s tagging system,
e.g., data type, format identifier, network address, or some combination of these. Such
global and per-stream information is maintained in well-defined shared memory locations.
Next, they need to identify the different activities, the data tags they apply to, and the
activation points at which these activities can be executed. Finally, they need to provide
the stream handler implementation for each of the distinct activities, for each activation
point, and identify the data tags for which the particular implementation is valid.

A handler is deployed at some specific offset in the context’s instruction store. It is
invoked with its hndlrId and has access to its internal state stateOffset. The stream
handler’s input is a stream data unit, or a fragment of it, each of some specific size. At
invocation, the activation point provides the handler with a reference to the data it needs
to operate on, and its state. The variables msgAddr and msgState deliver this information
to stream handlers that operate on entire application level messages. It can access any
portion of the application-level message by computing the correct offsets into the memory
buffers pointed by msgAddr. Similarly, frmAddr and frmState provide the interface to
stream handlers associated with Ethernet frame fragments. Rx-handlers that are invoked
with MAC-layer packet granularity, use the variable pktState for state information. At
invocation, the MAC-layer fragment is still partially in the receive buffers at the ANP’s
MAC interface, except for the first 16B, which have been read into the ANP’s registers,
and can be accessed through the transfer register $$x0. If the handler’s operation results
in a data item being consumed, it sets a variable discrdDec to notify the activation point
of its output. Data replication is encoded through the use of outQueues and bufferAddr.
Otherwise, the same variable msgAddr represents its sole output.

These variables are also used to keep track of certain external information, the status

of the data flow on the path through the host-ANP node, and the message receipt and

54

Table 1: State variables available to stream handlers at different contexts on the IXP ANP.

variable description Rx | Tx | X
msgAddr address of current message Y | Y |Y
msgState tracks state of current message Y | Y |N
frmAddr address of current Ethernet frame Y| Y |N
frmState state of current Ethernet frame Y| Y |N
pktAddr address of current MAC-layer packet | Y | Y | N
pktState state of current MAC-layer packet Y| Y |N
frmCnt counter for frames in message Y | Y |Y
pktCnt counter for packets in frame Y| Y |N
discardDec | filtering decision Y | Y |N
outQueue next stage queue Y | N |Y
addrBuffer | additional memory buffer N|N|Y
hndlrId stream handler identifier Y| Y |Y
stateOffset | internal state location Y| Y |Y

transmission process, by maintaining counters for the number of MAC-layer packets re-
ceived from a current Ethernet frame, number of Ethernet frames received from a current
application-level message, and the address and status bits for the packet that is currently
being accessed, as well as additional system state information. All of these are available to
the stream handler programmer. Table 1 lists these variables, and indicates which contexts

are they valid for.

In order to facilitate the development of stream handlers for the IXP, in addition to
the Intel-provided macros, we provide a library of routines that is available to stream han-
dler programmers for implementing the interactions with the host-ANP (SPLITS) runtime.

These include macros for:
e moving data to/from memory, R/TFIFO and registers, such as rfifo_to_regs(),
rfifo to_dram(), dram to_regs(), regs_to_dram(), dram to_tfifo(), etc.;

e accessing handler state, such as: read hndlr state(), write hndlr state(),

copy_hndlr state(), etc.;

e accessing counters, msgAddr, MsgState, pktState, pktAddr, and other context spe-

cific state information maintained in global variables, such as: read var (), write var(),

55

incr_var(), clear_var(), set_var(), etc.;

o discarding the entire application-level message - discard msg(), which affects the
global variable discardDec;

e directing the output to specific next context(s) set_queue (), enqueue _queue(), etc.;

and
e memory operations - alloc_buffer (), free buffer(), etc.

Rx-and Tx- handlers can be invoked at the granularity of MAC-layer packets, Ethernet
frames, or application-level messages. On the IXP1200, on the Rx-side, eight 4-byte registers
are available for inspecting and manipulating data from the MAC-device’ receive buffers.
The firmware delivers only the first bytes of each Ethernet frame in registers, and the
remainder of the frame is directly DMA’d to the correct memory location. A stream handler
programmer can use routines such as rfifo_to_regs() and rfifo_to_.dram() to alter the
default behavior and access other portions of the frame and message. On the transmit side,
the firmware invokes handler update routines at the beginning of each Ethernet frame it is
about to transmit. A set of routines for accessing portions of the memory resident message
are made available to the stream handler programmer, which are used to modify arbitrary
portions of the message. FEight 4-byte registers are available for this process, therefore a
single memory access can affect one DRAM line.

Unlike traditional application-level handlers, which operate solely on application data
‘on top of’ the underlying protocols, on the ANP, stream handlers are essentially combined
with the protocol’s execution. Therefore, the protocols used need to be taken into consid-
eration, implying that stream handlers’ programmers are aware of both data and header
offsets, the fragment granularity that activation points are associated with, and of data

delivery to/from the underlying network.

5.5 Summary

This chapter introduced stream handlers, lightweight, parameterizable computation units
which can be used to implement a rich set of application-specific activities on ANPs. Stream

handlers can be efficiently embedded at well-defined activation points on the data path

56

through the ANP, thereby enabling the joint execution of computations with communica-
tion. Due to the use of data formats to access, interpret and manipulate application-level
information stored in memory buffers, or delivered as a sequence of network packets, stream
handlers can be integrated with the receive- or transmit-side protocol processing. As a re-
sult, application-specific action can be executed with lower delays, unnecessary loads can be
detected and prevented from affecting the system in a more timely manner, and even data
increasing services can be supported efficiently by avoiding repeated copying and protocol
stack traversals. Furthermore, by enabling services to execute on the ANP, applications
benefit from the optimized NP hardware, its efficient support for large data movement and
built-in hardware parallelism, even for computationally intensive processing performed on

application-level data in ANP memory.

57

CHAPTER 6

SPLITS - SOFTWARE ARCHITECTURE FOR
PROGRAMMABLE LIGHTWEIGHT STREAM
HANDLERS

The following chapter presents the SPLITS software architecture which enables the use of
stream handlers on the integrated host-ANP platforms and its components, and discusses
the manner in which application-specific services can be dynamically deployed and config-
ured onto the joint host-ANP contexts. SPLITS - Software architecture for LIghtweighT
Stream handling, creates the activation points on the stream data path through the host-
ANP nodes, where stream handlers implementing application-specific activities can be in-
voked. It also provides an interface to the application through which both the data path,

and the processing applied along the data path can be modified dynamically.

6.1 SPLITS Framework

The SPLITS software architecture permits hosts to place selected communication services
onto their ANPs, and to combine their execution with host-side application code. This en-
ables a service to be (1) offloaded from a host node onto the ANP, (2) split across multiple
execution contexts on an ANP, or (3) split across a host node and its ANP’s processing
engines. Offloading requires multiple service representations, suitable for host vs. ANP
use, and splitting requires a service to be composed from multiple stream handlers that
interact via well-defined interfaces, somewhat like the micro-protocols developed in previ-
ous research [11]. SPLITS permits handlers to interact across multiple execution contexts
through controlled access to the shared memory buffers that contain application-level mes-

sages. We next describe the major components of SPLITS.

58

application components

SPLITS

host-ANP interface

host 0S and ANP firmware

host and ANP execution contexts

Figure 9: Position of SPLITS with respect to other layers.

6.2 System Components

In order to enable the use of stream handlers for execution of application-specific actions
on the host-ANP nodes, and to utilize the programming model presented in Chapter 4 to
develop application-specific services, we develop the software architecture SPLITS. SPLITS
resides on top of the host and ANP firmware (see Figure 9), which, at minimum, establishes
a shared communication channel between them. The objectives of SPLITS are to deliver

the following capabilities:

e Identify the execution contexts on the host-ANP platform available to the application,
and determine the default functionality that they implement. For instance, identify
the contexts that are responsible for delivery of data to and from the host-ANP node
(i-e., execution of the communication protocols), and the contexts that are available
for execution of arbitrary application components.

e Establish data paths through the host-ANP nodes, which can traverse some, or all
of the available execution contexts. This requires the creation of communication
channels, such as shared memory buffers, between the distinct execution contexts on
the host and the ANP.

o Identify distinct data streams, using application-specific classification rules, and asso-
ciate them with specific data path through the host-ANP node.

e Distinguish the activities that need to be applied to a specific stream, determine the
data fragment size for which each activity is incremental, and identify the contexts

where it can be executed.

59

e Define the activation points residing in each execution context, and enable their run-
time reconfiguration, in terms of the activities that can be executed at each activation
point, the data streams that they are associated with, and their interaction with other
activation points, in the same or in separate contexts.

e Support mechanisms to associate the appropriate implementation of each activity,
i.e. stream handler, with the specific activation point, and to dynamically deploy or
reconfigure it.

e Monitor the resource availability and performance levels at each execution context,
for the data paths established through the host-ANP node.

e Use performance costs and resource requirements associated with different implemen-
tations of the same activity for specific stream and activation points, and dependent
of the runtime resource utilization and the current performance requirements, select

an admissible alternative.

Figure 10 depicts the host- and ANP-resident SPLITS components. The receive and
transmit functionality is executed by designated contexts on the ANP. The Data Buffers
represent the communication channels associated with each contexts, through which data
can be delivered to it from other contexts on the host or the ANP. The Control Buffers
represent the communication channels associated with the host and each of the contexts on
the ANPs, and are used for exchange of control information related to runtime configura-
tion or monitoring. The Data and Control Management components ensure synchronized
and reliable access to the shared channels. The host side Application components can be
executed by a single user-level context. In addition, not shown in the figure, there can be
multiple concurrent execution contexts on the host, at both user and kernel levels. Informa-
tion about runtime resource utilization is gathered and maintained by a Resource Monitor.
The Constraint Verifier component drives the control mechanisms, and dictates the dynamic
configuration of data paths and the processing applied along those paths, with considera-
tion of the resource availability and requirements. The Control Manager implements the

exchange of control messages with the ANP-resident contexts. The host-ANP interface, at

60

Application

Resource Constraint
Monitor Verifier
Control
Manager
Resource state ANP-host HOST
interface ANP
Control Mgt DataMgt
Control <—T L Data
Buffers Buffers

Figure 10: System components.

minimum enables the movement of data across the host-ANP boundaries, necessary for the
exchange of both, stream data units, and control messages. In addition, it can export other
runtime state information about the ANP or the host system which can be used for more
efficient implementation of the control mechanisms.

In the following sections, we focus on the IXP1200-based implementation of SPLITS,
and we describe in greater detail its components and the interactions necessary to enable the
dynamic deployment and reconfiguration of application-specific functionality with stream

handlers.

6.3 SPLITS on Host-IXP1200 Nodes

On the IXP1200 ANP, multiple microengine threads execute the receive- (Rx) and transmit-
(Tx) side protocols, and/or implement the stream handler functionalities assigned to them.
Our current implementation assigns one Rx and one Tx thread for each of the four Eth-
ernet ports present in the IXP1200. Two microengines do not run any designated system

components; their 8 threads can be dedicated solely to handler execution.

61

6.3.1 Data Buffers

All data packets manipulated on the ANP are stored in Data Buffers residing in ANP
memory (we use SDRAM-resident buffers on the IXP1200). Our current implementation
uses almost all of the available SDRAM memory for storing data packets. The buffers
are fixed in size, and the address of each buffer, number of valid bytes, and additional
parameters are maintained in buffer descriptors (or handles). The descriptors of all free
buffers are maintained in a SRAM resident freelist. The Data Buffers are accessed via a
set of SRAM resident queues shared by the ANP contexts, implemented as circular arrays
of buffer descriptors. The SRAM queues are used both to coordinate the ANP’s multiple
execution contexts and to exchange data with host-resident handlers.

The SDRAM buffer size is fixed at compilation time. This implies that for messages
smaller than the buffer size memory trashing will occur, and that larger messages will
occupy several, potentially uncontiguous buffers. Since all data buffers constituting a single
application-level message need to be passed to the next context, (i.e. enqueued/dequeued)
atomically, buffer descriptors will need to be stored at each context until the full message is
assembled, and the enqueue/dequeue overheads will be larger, due to longer locking period
(more copies need to be made into the circular array), and additional checks necessary to
determine whether all buffer descriptors belonging to the same application-level message
have been enqueued/dequeued.

To minimize the negative impact of buffer-size mismatch, the buffer size should be set
to a value that corresponds to the messages expected in the application. While this is
not realistic in a general case, it is feasible in specific application contexts, such as those
evaluated in this work. Another alternative is to maintain separate buffers for streams with
different data size. Ultimately, a dynamic memory management utility should be developed,

that will allocate and adjust buffer sizes to the specific messages.
6.3.2 Data Management

Data Management functionality includes the control necessary for (1) the shared access to

the ANP-resident memory buffers, (2) their safe reuse, and (3) the exchange of data between

62

the ANP and the host, i.e. PIO or DMA transfers between the host and the ANP memory,
also involving SDRAM data queues. We use two ANP threads to monitor and distribute
locked access to the SRAM queues, and to ‘free’ unused DRAM buffers, and two threads
to coordinate the host-ANP data movement, similarly to the host-IXP interface on top of
which SPLITS is built [68].

Part of the Data Management functionality is the maintenance and controlled access to
the SRAM-resident queues. The application-level messages stored in IXP memory, whether
delivered on the incoming ANP ports or from the host, can be accessed by other execution
contexts through these shared queues containing data buffer handles. The queue entries
(1) can be dequeued by the Tx threads as messages are forwarded to their destination,
(2) can be passed to the host node, or (3) can be processed by one of the memory-resident
handlers on the IXP. The queues identify the path of a stream through the integrated node’s
execution contexts, i.e., whether the stream is forwarded to one of the IXPs outgoing ports,
directed to the attached host, or queued for additional processing at one of the deployed
memory resident handlers running in separate threads. Each queue is associated with its
sink context and is identified through a unique queue identifier. SPLITS has six default
queues which include: four queues for the outgoing ports — TX0_QUEUE - TX3_QUEUE,
a queue for the host - HOST_QUEUE, and a reserved queue, currently used for collecting
runtime statistics — STAT_QUEUE. The implementation of SPLITS that uses one transmit
queue for all four Tx threads has only one TX_QUEUE. Additional queues exists for each
of the other available contexts, identified with Xi_QUEUE. These identifiers are mapped
to bits in a 32-bit queue bitmap, which encodes the next context on the data path. The
threads that monitor the queue accesses manage the locks for all updates to the queues’
head and tail pointers, which are maintained in on-chip memory. The queue identifier is

used to index into this data structure.
6.3.3 Control Buffers

Interactions between the ANP and the application host node involve exchanges of control

messages, similar to those described in [88]. For instance, a control message can contain

63

Table 2: Control message exchanged in SPLITS.

[apId, streamId, hndlrId, qBitmap] configures the data path by
selecting an activity, and
establishing the next contexts

[hndlrId, hndlrOffset, configures the activity, i.e. handler,

hdnlrParams, hndlrState] by specifying its parameters or
initialization state

[apId new, apld old, specifies the contexts that need to be

hndlrState] hotswapped, and the new object file

representing its implementation

parameters, one example being an identifier of the stream handler to be associated with
a certain data stream. A small portion of the IXP memory is designated to implement
SRAM- and on-chip-resident Control Buffers for enabling such control communications.
The Control Buffers are used for exchange of control messages between the host and the
ANP. Table 2 provides descriptions of the control messages we support. These are divided
into three sets, based on the tasks for which they are used. The first two sets are exchanged
through SRAM control buffers between the host and each of the ANP contexts, and are used
to modify the stream data path, the contexts it traverses, i.e., the next context queues onto
which data is to be delivered, and the processing applied at activation points on this data
path. The latter can be modified in two ways - a handler can be activated or deactivated, or
new parameters can be passed to an already active handler. The last set of control message
is exchanged between the host and the StrongArm core, and the operations triggered by
these messages also require shared Control Buffers - mailboxes, between the StrongArm
and each of the IXP’s contexts for which hotswapping is enabled. The involvement of the
StrongArm core is necessary since the host cannot directly load new codes onto the IXP.

The dynamic hotswapping process is explained in Section 6.5.3.

6.3.4 Control Management

Control Management involves the exchange of configuration information between the host

and some or all of the ANP’s execution contexts. Examples include parameter updates

64

for ANP-resident stream handlers provided by the host and the transfer of monitoring
information from ANP to host. The idea is to enable host-resident functions to direct the
operation of stream handlers running in the ANP’s fast path. Such control interchanges are
implemented with Control Buffers manipulated via mailbox-based access functions.

Host-ANP interactions are implemented so as to avoid any unnecessary perturbations
to the fast data paths maintained by the ANP. They utilize only a single, dedicated con-
trol thread on the IXP, which polls a mailbox shared with the host at some configurable
frequency. Upon change, the control message is interpreted to determine the context to
which it needs to be delivered, it is placed into the corresponding on-chip resident con-
trol mailbox, and the execution context affected by this change is signaled through a 2 bit
semaphore-like mechanism. For instance, if a new Rx-side handler is to be enabled, then
the control thread will signal the Rx-thread associated with the port to which the stream
data is delivered. Similarly, a X context performing stream cropping will be signaled if new
bounding box coordinates are to be used. The correctness of the concurrent accesses to the
shared semaphore is guaranteed through the use of atomic bit-wise instructions, supported
on the IXP hardware.

The configuration parameters are cached in IXP registers at each context, and are
updated only upon change. The value of the semaphore is checked only at the beginning
of new application-level messages. Memory access is required to retrieve new control values
only upon host-initiated reconfiguration or upon switching among streams. The parameters
values are copied in the context’s configuration buffers for that handler, and the thread
execution proceeds.

The control messages are set by the host, where information about the current ANP
configuration and service deployment, as well as the application requirements are available.
The IXP does not permit the host to manipulate the on-chip memory directly, therefore we

use the indirect channel described above.

65

6.3.5 Host-side Components

On the host side, the deployment and configuration of handlers is managed by the Constraint
Verifier. Depending on information about resource availability, provided by the Resource
Monitor, the Constraint Verifier configures the data flow through the host-ANP node, as
well as the multiple stream handlers which are to be applied along that path. Changes in
application interests or in runtime operating conditions translate into requests to reconfigure
stream handler deployments along the path; they are therefore, directed to Constraint
Verifier. The host-side Control Manager is directly involved in the exchange of message

with the ANP-resident contexts. These components are further discussed in Chapter 7.
6.3.6 Deploying Stream Handlers onto the Host-ANP Data Path

In the Rx and Tx threads, the stream handlers and activation point code, as well as the jump
tables are fixed at compilation time, and are loaded jointly with the protocol-processing code
in the instruction stores of the respective microengines. The memory-resident handlers can
be compiled separately with code that implements the X-context’s activation points, and
can be deployed onto one of the IXP’s free microengines at any time during the execution.

Fixed-size memory buffers are available to each handler for maintaining state across
packet and message boundaries. Different handlers have different state size requirements,
which can be met by designated registers, fast on-chip memory, or SRAM buffers. Currently,
SPLITS stores handler state in statically allocated buffers, and we have evaluated the trade-
offs of different state location options. Our future work will investigate the possibilities for

dynamic allocation of different memories and state caching techniques.

6.4 SPLITS API

SPLITS enables us to dynamically deploy and configure stream handlers at activation points
along the data path, thereby modifying both, the functionality implemented on this path,
and the processing context it traverses. This section presents the interface available to
applications to enable their interaction with SPLITS.

Our default configuration assumes that data delivered to any of the ANP’s interfaces

66

hostAccess
host
ANP j]]
Host queue L ANP queue Transmit queue
Transmit
Receive II ’—>

Figure 11: Data path.

(i.e., ports) is forwarded to the host-resident application. Similarly, all data from the host
is forwarded to its destination through the ANP. The default host-ANP path is as follows.
Rx threads on the ANP receive the data, execute the core RUDP-protocol functionality,
assemble the application-level message, and enqueue it onto the host queue. At the host, the
message is eventually delivered at the application layer, appropriate processing is performed,
and, if necessary, the message is then further transmitted. The transmission processes
packetizes the message into packets and enqueues it onto the appropriate transmit queues.
The packets are ultimately sent out by the ANP’s Tx threads.

Table 3 presents the SPLITS API used to reconfigure this data path. The API call
stream define () allows the application to identify the application-specific stream in which
it is interested, by associating with it classification rules as pairs of tag fields and values.
In this case, upon initialization, only data items from the defined streams will be deliv-
ered to the host-resident application component. Application-level data is passed to/from
the application through data receive() and data_send() calls that are built on top of
the raw_sockets-based host-ANP interface, that implements of our version of the RUDP
protocol.

Application-specific services associated with one or more of the defined streams are
represented as sets of abstract activities. An activity can have multiple representations
based on its execution context. The API call service_define() is used to establish the
chain of activities that represent the service, and handler register() is used to associate
the corresponding activities with their stream handler representations for various activation
points. This call determines the stream handler identifier, state and offset that is used by
the SPLITS runtime.

The SPLITS API provides to applications the ability to reconfigure a stream data path

by deploying stream handlers, i.e., to associate different handlers with different activation

67

Table 3: SPLITS host-side API.

stream define (strmId, tagOffset, tagValue)
data_receive (strmld, databuffer, size)
data_send (strmId, databuffer, size)
service define (strmId, [actvId, apId])
handler register (strmId, actvId, apIld, hndlrId, offset,
initState, hndlrProfile)
datapath config (strmId, actvId, apId, [next_apId])
handler config (strmId, actvId, apId, params)

points on the data path. datapath config() ensures that any new context is correctly
included on the data path, and that stream data that needs to be processed by stream
handlers at this context, is placed onto the corresponding queue.

The APT also permits applications to change parameter values associated with activation
points, thereby providing them with the ability to dynamically tune data path behavior.
The idea is to enable direct application-level control of what operations are applied to the
data path and how these operations are applied, thereby permitting the application- and
client-conscious path behaviors critical to modern distributed applications. An activity can
be reconfigured using the API call handler_config(), which delivers the new parameters
to the execution context that currently executes it, or initiates the hotswapping process, if
necessary.

In order to enable the functionality exported by the API, SPLITS maintains certain
state about the application, and the current runtime operations. Table 4 represents each of

these mappings.

6.5 Dynamic Reconfiguration

In order to best utilize platform resources and match current application needs, stream
handlers need to be deployed and configured dynamically. While handler selection and

parameterization rely on runtime resource monitoring, constraint checking, and resource

68

Table 4: State maintained by SPLITS runtime.

Name Mapping

Streams [strmId] — >

array of currently deployed [actcvId, apId]

Activities | [actvId, strmId] — >

array of possible [apId, hndlrId, offset, hndlrProfile]
Resources [ctx, apIld, actvId, headroom, istore, memory]

management mechanisms, reconfiguration is triggered by the host node to which the NP
is attached. It can be initiated in response to changes in system resources or in end user
interests, and its primary purpose is to permit applications to adjust the behavior of the
services they use. For instance, as client’s interests shift to different data in a remote scien-
tific visualization, parameters can be used to identify the new coordinates of corresponding
regions to be selected for forwarding to the client from each image in the stream. Or, as
request loads increase on a server system, the host can change the level of data downsam-
pling applied by the ANP-resident stream handler on a data stream, as permitted by the
application.

The modes for dynamic reconfiguration supported by SPLITS are motivated by the
physical limitations on the IXP architecture. Instruction store modifications are permitted
only when the context associated with that instruction store is inactive, i.e. the microengine
needs to be stopped before any instruction store changes can occur. This requirement im-
plies that the services implemented by the stopped microengines’ threads would need to be
interrupted, which can result in data losses, excessive buffering delays, or service degrada-
tion. For instance, existing approaches that enable low-level reconfigurability, such as the
reconfigurable port extenders described in [103], during reconfiguration support only the
baseline functionality of data forwarding. Similarly, on the IXP 1200s, with the Netbind [20]
tool for dynamic network-centric datapath extensions (i.e., extensions that operate on the
packets’ headers only), extensions are enabled by pausing the microengine while performing

the reload, and the reported downtimes are on the order of several milliseconds.

69

SPLITS reconfigurability options give a much more flexible architecture, where reconfig-
urability and placement of application-level stream handlers is supported even in the basic
datapath. In addition, it supports true dynamic code deployment and activation, with
downtimes that are orders of magnitude smaller than those measured with Netbind, and
are practically unnoticeable.

The remainder of this section discusses the reconfiguration options supported by SPLITS.
Handler selection and parameter reconfiguration are the only two modes allowed on the
baseline path, in the Rx and Tx threads. This introduces some overheads on the fast path,
(evaluation results report minor), but gives reconfigurability options there as well. Dynamic

hotswapping is only allowed in the X contexts.
6.5.1 Handler Selection

Applications can identify and dynamically choose among the currently loaded (i.e., the
microcode is already compiled with the object file residing in a specific microengines’ in-
struction store) handlers on the ANP.

On the IXP, the preloaded handlers are available to a single microengine only, since
instruction stores are not shared. This is not a problem for the Rx and Tx threads, since
the implementation of a single service that can be invoked at their activation points differ.
However, if the remaining two microengines (or more (5) in the SPLITS design for the
next generation IXP processors) need to share the pool of handlers, multiple copies of each
handler need to be present in each instruction store.

A handler deployment can result in new context being included in the data path, or
in changes at activation points at multiple contexts (e..g, moving the filtering functionality
from the Rx to the Tx thread). Changes in the context traversed by the data path, i.e.
other than the core Rx and Tx threads, are implemented by executing datapath_config(),
which passes the appropriate control message to the corresponding context. The host-side
Constraint Verifier ensures that the new target context has already been activated and the

appropriate handler deployed, before making any modifications in the queue parameters.

70

A status field in the control messages used by SPLITS assists in synchronizing the mod-
ifications at multiple contexts on the data path. In tells the first context on the newly
created/configured data path to mark the first message, so as to notify subsequent contexts
that it is safe to retrieve the new configuration parameters. The marking is implemented
by setting a bit in the first message’s buffer handle. All subsequent contexts will not apply

the new configuration parameters until the marked message is received.
6.5.2 Parameter Reconfiguration

The physical limitations of the size of the instruction store limit the number of stream
handlers that can coexist as pre-loaded. In order to further increase the supported recon-
figuration space, SPLITS permits parameters to be passed to currently active handlers,
thereby tuning and customizing their operation. This allows the application to adapt the
ANP’s actions to runtime changes in application needs and operating conditions. For in-
stance, in the SmartPointer application, based on the stages of the experiment and the
scientists’ interest in different types of molecules, the imaging server generates renderable
images that represent different views of the ongoing simulation’s output.

Parameters are passed from the host-side application component through the API call
handler_config(), and the runtime ensures that the new parameters will become effective
at the start of an application-level message. This avoids possible inconsistency due to
processing of the same data with different parameters.

Our assumption, and a restriction on the programmer, is that the parameters layout in
control memory is such that it can be interpreted in a handler-specific manner. Currently,
a change in a single parameter will require that all other parameters are also re-written.
Alternately, the parameters can be represented as an array of offsets and values, and ad-
ditional interpretation can be performed to determine which exact parameter needs to be

overwritten.
6.5.3 Dynamic Reloading

In order to best utilize resources and match current application needs and platform re-

sources, stream handlers need to be deployed and configured dynamically (hot swapping of

71

handlers). While handler selection and parameterization rely on runtime resource monitor-
ing, constraint checking, and resource management mechanisms, reconfiguration is triggered
by the host node to which the NP is attached. It can be initiated in response to changes
in system resources or in end user interests. Its primary purpose is to permit applications
to adjust the behavior of the services they use. Simple reconfigurations involve changes to
stream handler parameters, as with the remote graphics service described in Section 8.5 that
adjusts image cropping to the current viewing area desired by an end user. More complex
configurations require the dynamic exchange of the stream handlers used on a data path.
Such hot-swapping must be sufficiently fast to avoid observable data path downtime, and
it must be done such that state information (if any) is correctly passed from the old to the
new handler.

Hot-swapping consumes additional ANP resources. In our current IXP1200 implemen-
tation, for instance, there are two microengines available solely for use by stream handlers.
Our hot swap implementation uses one of these microengines to run current stream handlers
while using the other one for hot swapping. This implies that the actual downtime for han-
dler processing is equivalent to the costs of stopping one of the microengines and starting
the other one. Measurements show that this can be done in about 28-30 microseconds. The
newly loaded handler code loads any state information saved by the swapped handler from
the memory. The drawback of this method is that one of the IXP1200’s (few) microengines
must be kept idle for hot-swapping. We expect this constraint to be less onerous in future

IXP products.

6.6 Summary

The software architecture presented in this chapter, SPLITS, enables the dynamic creation,
deployment, and configuration of application-specific services on host-ANP nodes. It defines
activation points on the host-ANP contexts where application-specific activities, i.e. stream
handlers, can be executed, and establishes communication channels which enable the data
exchanges among these activities, necessary for the implementation of variety of services.

SPLITS provides applications with the ability to configure services to be fully contained on

72

the ANP, or to span the host-ANP boundary. The latter is necessary in order to deal with
the limited ANP resources, and sustain services which require computationally intensive
tasks, or interactions with system components not available on the ANP, such as disks and
floating point units, or software.

Finally, SPLITS addresses the dynamics in applications’ behavior, interests, and op-
erating conditions, by supporting mechanisms for service reconfigurability along several
dimensions. Applications can dynamically select the contexts involved in the service execu-
tion, the stream handlers that implement one or more service components, or the specific
parameters within which they operate. The specific implementation of SPLITS demon-
strates that such reconfigurations can be executed efficiently and with practically negligible

overheads, even when costly operations such as hot-swapping are required.

73

CHAPTER 7

SPLITS SUPPORT TOOLS

In order to enable the dynamic interaction of applications with the SPLITS runtime,
SPLITS depends upon additional functionality implemented by a set of support tools. Such
functionality is necessary to ensure that the newly deployed service can be executed within
the platform resources, and that the runtime reconfigurations will not cause disruptions
in the service-levels that are presently maintained. This chapter introduces these support
tools, and conceptualizes the required information exchanges among the applications and

the runtime, necessary for delivering the specified functionality.

7.1 Constraint Verifier

For reasons of programming complexity and system safety and security, end users cannot di-
rectly map stream handlers into ANPs. Instead, end users specify suitable stream handlers,
but these handlers are ‘deployed’ only after being approved by the host-resident Constraint
Verifier unit (see Figure 10). The Constraint Verifier is the main interface point for the
application component that utilizes the SPLITS runtime, and all API calls are directed to
it.

The main purpose of the Constraint Verifier is to determine whether a service reconfig-
uration can be performed, and to permit only those reconfigurations that satisfy a set of
constrains. In order to do that, it requires the following functionality:

1. access information regarding the current system configuration - the application-level
streams and the services registered with the runtime which manipulate these streams,
the activities of which the services are composed and their set of alternate stream
handler representations, and the processing contexts that are currently involved in
their execution;

2. determine the service requirements and current operating conditions, such as incoming

74

data rates, and current memory and computation loads;

3. determine the resources available in the runtime under these conditions, in terms of
both memory, and excess of computational cycles that can be allocated at each context

to additional stream handler processing, without degrading the service levels;

4. perform constraint checking and assess the eligibility of a newly presented stream
handler or handler parameters, to be deployed at a specified activation point along
the data path, in terms of the service specification and the handler’s resource require-

ments; and

5. drive the execution of the control mechanisms and the exchange of control messages
with the ANP resident contexts, which enable path reconfigurations in terms of both,

the stream handlers executed on the path, and the contexts that the path traverses.

The application interacts with the SPLITS runtime via the API presented in Table 3.
At initialization, the state maintained by the Constraint Verifier is initialized to represent
the deployed SPLITS runtime, the defined data paths, and the preloaded stream handlers.
All of the APT calls used to reconfigure the runtime are directed to and executed under the
control of the Constraint Verifier unit. In this manner, it is ensured that the appropriate
updates can be performed to the initial state, and the Constraint Verifier will have an
accurate representation of the runtime configuration, the data paths, the stream handlers
applied along the path, and the activation points, i.e. contexts that execute additional
stream processing functionality. The deployment of new handlers, and their reconfiguration
via one of the methods presented in Section 6.5, is initiated by the application, but the
Constraint Verifier unit prepares and triggers the exchange of control messages with the
targeted execution context.

The primary objective of the Constraint Verifier is to ensure that any reconfiguration
of the runtime is feasible and will not cause any disruption in the presently sustained
service levels. The Constraint Verifier unit performs the necessary constraint checking
to ensure that the reconfiguration requested by the application can be met within the

resources available on the ANP. These constraints are verified by matching the runtime

75

resource availability and service requirements with the set of compile-time and run-time
properties that define the handler. Unlike the host, we are particularly concerned with
the ANP, due to its built in physical limitations. Therefore, the reconfiguration must
satisfy several requirements. First, the stream handler’s representation must fit within the
instruction store limits on the ANP. Second, the memory required for the execution of
the new stream handler, its parameters, state, and operational memory, must be within
the memory designated on per handler basis by the SPLITS runtime. Finally, the run-time
performance cost of the new handler must fit within the ‘headroom’ available on the specific
execution context.

If ANP-level resources are not available, handlers are executed on the host, with a
corresponding potential performance cost. Otherwise, the Constraint Verifier ensures the
correctness of the reconfiguration, by generating control messages so that the appropriate
contexts on the ANP load and/or activate the corresponding handler, and that any new
context is correctly included on the data path. Furthermore, the actions implemented by
these steps need to be performed atomically at an application-level message boundary, i.e.
a single application-level message has to be processed either on the ‘old’ data path, or on
the newly configured one. In addition, the Constraint Verifier ensures that each activation
point that did not previously belong to the ‘old’ path is enabled with the appropriate
configuration parameters prior to enabling the ‘new’ path.

Finally, the Constraint Verifier unit needs to enforce certain rules with respect to handler
composition. For instance, one rule is that if the underlying protocol frame includes the
data size, a Tx-side handler can be executed only if the new size is made available at the
start of the application-level data, perhaps by a separate ‘pre’ handler, based on some
runtime state. Other rules place restrictions on handler placement that ensure the correct
implementation of the the application-level service graph. In general, rule sets are composed
of multiple subsets. One subset is target-dependent, varying according to the specific ANP
architecture used. Another subset concerns handler composition, to enforce certain inter-

handler dependencies or data exchanges, for instance. A more general treatment of rules

76

and constraints applied to handler composition may be found in related work on micro-
protocols [11].

The system state and available resources are maintained by the Resource Monitor.
Therefore, each time a reconfiguration is permitted, the Constraint Verifier also notifies

the Resource Monitor, so that the appropriate state updates can be performed.

7.2 Control Manager

The host-side Control Manager performs the synchronized mailbox accesses to communi-
cate control message to ANP contexts (IXP microengines or the StrongArm). It delivers
messages from the Constraint Verifier, and ensures that messages are delivered to all con-
cerned contexts, in the appropriate order. For instance, it ensures that the first activation
point affected by the path reconfiguration ‘mark’ the last application-level message before
the reconfiguration actions are executed. Fach subsequent context on the ‘old’ path will
update its configuration parameters only after it processes the ‘marked’ message.

The Control Manager can also deliver resource updates from the ANP to the host-side
Resource Monitor, however, the current SPLITS implementation does not support this type

of data exchanges.

7.3 Resource Monitoring

In order to implement the designated functionality, and to allow the deployment and re-
configuration of stream handlers on the data path, the Constraint Verifier unit requires
information regarding the resources available on the host-ANP node, under the current
operating conditions and for the specific service requirements on each data path. The host-
side Resource Monitoring unit (Figure 10) tracks the available ANP resources. For each
ANP context, this unit maintains information about the currently active handlers, the avail-
able excess of cycles that can be dedicated to additional processing, and the memory that
can be made available for handler use. Upon new handler deployment and/or parameter
reconfiguration, these values are adjusted to reflect the current availability of host-ANP

resources.

7

Our current model assumes static distribution of the available ANP memory that can
be designated to active handlers at distinct activation points. In the multi-level memory
hierarchy on the IXP NP, with each level the amount of memory which can be made
available for handler processing increases with each hierarchy level, however, the accesses
to it become more costly in terms of performance. At initialization time, application-
developers should configure SPLITS to allocate the appropriate amounts and locations of
handler memory, based on the application-specific requirements. For a specific SPLITS
configuration, we also determine the total number of cycles in each context, that can be
allocated for additional processing (i.e., headroom), which can be easily implemented with
the existing IXP programming tools [50, 68]. These initial values represent the initial
resource state on the ANP, and the Resource Monitor continues to update it.

Our current solution maintains information regarding the resource availability under
most critical operating conditions, e.g., the highest data rates that can be delivered at the
ANP network interfaces, and upper bound of the performance costs of currently deployed
handlers. A more robust resource monitoring facility is needed to maintain a more accurate
image regarding the runtime resource utilization on the ANP. Such a facility should deliver
accurate and timely updates regarding actual data rates and processing and memory loads
on the ANP, that are classified based on the individual streams that are currently handled
on the ANP. The development of the mechanisms necessary to integrate such knowledge into
the Constraint Verifier, and to ensure that we can respond to changes in these conditions
in a safe and timely manner are beyond the scope of this work, and remain open for future
research.

Our present implementation of the functionality supported by the Constraint Verifier
is somewhat limited. During handler deployment, it performs constraint verification by
comparing the required and available computation cycles at the target context. We do not
implement a profiles database. Instead the required cyclecount is provided directly by the
application, and is trusted to be correct. The Resource Monitor used by the Constraint
Verifier tracks information about available headroom at each context, and the amount is

updated whenever a new handler is deployed.

78

7.4 Stream Handler Profiling

In addition to assessing the available resources, the Constraint Verifier needs to compare
these against the handler’s compile-time resource requirements, i.e., memory and instruction
store sizes, and to ensure that the handler’s runtime requirements (performance cost) can
be met with the available headroom on the stream data path. The available headroom is
the excess of cycles available on the data path that can be utilized while still sustaining the
same throughput levels. The handler performance cost is the amount of cycles it requires
to process the data with which it is associated, on the current runtime, under the current
runtime conditions. In order to avoid service degradation, this performance cost must fit
within the headroom.

The task of determining the handler’s performance cost accurately is highly complex,
since it depends on variety of static and runtime factors. First, the computational cycles
consumed by a stream handler depend upon a set of handler specific properties such as
data unit sizes, fragment sizes it is associated with, number and types of instructions in the
handler representation, etc. However, this number is further effected by runtime conditions
on the ANP, such as data rates, existing computation and memory loads, etc. While the
dependency upon data rates is more easily expressible, the affects of load fluctuations in
different components, on a system with multiple parallel processing contexts, such as the
IXP NPs, are difficult to model. Therefore, we rely on the use of handler profiles to associate
an upper bound on the handler’s performance cost.

Handlers can be profiled using off-line benchmarking, on hardware or using the ven-
dor provided hardware simulators, such as the Intel simulator [52], and used to estimate
upper bounds on handler ‘cost’. Tools available for the next generation processors (ADT
for IXP2xxx) offer even greater flexibility for off-line profiling, and can more easily used to
evaluate the handler performance under specific constrains, such as message sizes, formats,
percentage of data ‘touched’, etc. Such profiles are performed ahead-of-time for specific run-
time conditions, and are maintained in a profiles database that is accessed by the Constraint

Verifier.

79

Determining the performance costs of a stream handler under all possible runtime de-
ployments and operating conditions is not feasible with such profiling mechanism. Such
requirements will burden not only the profiling process, but also the interaction with the
profiles database used.

Our current model uses only ‘worst-case’ profiles. ‘Worst case’, in this context, are pro-
files gathered under the most restrictive operating conditions and service requirements, i.e.
when the ANP’s network interfaces deliver the maximum sustainable data rates, and when
all execution contexts are processing the minimum-sized data items used by the application.
Such profiles determine the upper bound on handler performance. While restrictive, this
is sufficient to enable safe deployment of new handlers, while still satisfying the current
service requirements, and meeting the platform’s resource availability. This approach can
be extended by increasing the profiles spectrum with additional configurations that may
be typical for a specific application, or by extrapolating the performance cost for handlers
with parameters not represented in the profiles database, similarly to the use of profiles for

task scheduling in cluster servers [93].

7.5 Safety, Security, Code Generation

The remainder of this section discusses issues that are not presently addressed in our work,
but that can be addressed by future extensions of the SPLITS model.

Safety. Limited safety guarantees can be made through the use of compiler techniques and
code verifiers to determine the validity of handler memory accesses and instruction store
references. Solutions such as those developed for kernel-level extensions [81, 39, 8], that are
sandboxing untrusted codes in order to isolate their behavior, are difficult to implement
without additional hardware support for detecting protection boundaries. Implementing
runtime checking with compiler-generated wrappers around all memory accesses will still
not present a foul-proof solution, and will cause significant performance overheads. It is
not clear whether strong safety guarantees can be made for arbitrary non-trusted codes for
these platforms.

Security. In SPLITS, handlers are deployed through the host-resident Constraint Verifier

80

unit, and presently we assume that all applications interacting with this unit are trusted.
The Constraint Verifier can be extended to include authentication mechanisms, which will
enable it to identify the application, i.e. the principal with which it interacts. Access control
rights can then be associated with different principals, and the Constraint Verifier will
perform yet another constraint check, so as to allow only trusted applications to reconfigure
the ANP runtime. Other access control policies can also be implemented in this manner.
The Libra model also identifies the use of authentication and access control policies as a
possible solution to addressing security related problems [100].

Code generation. The development of stream handlers is currently conducted by appli-
cation programmers, which need to provide different handler representations for the various
application-specific activities that may be deployed on the ANP. Compiler support can be
used to automate this process. At each activation point, SPLITS defines the invocation
interface for the stream handlers, and the granularity with which application-level data
is delivered to the stream handler. Dynamic code generation for a single activity defined
with some high level language for all application points is not possible, since certain activ-
ities may not have corresponding representations which operate with different granularity.
Therefore, if in addition to the high level representation, the application programmer is
allowed to specify the minimal granularity with which the activity can be performed, then
compiler-level solutions can be developed that will generate stream handler code for the
corresponding activation points. Finally, compiler-level support can be used to implement

some of the safety mechanisms discussed above.

81

CHAPTER 8

EVALUATION

This chapter presents an experimental evaluation of this work using microbenchmarks in the
context of several representative applications. It evaluates the overheads and the benefits of
using hosts with attached network processors, the feasibility and the costs of implementing
various application-level services with stream handlers on ANPs, and the performance and

utility of the proposed software architecture.

8.1 Experimental Setup

The experiments presented are conducted using the aforementioned Radisys ENP2505
boards based on the IXP1200, interconnected via 100Mbps Ethernet links and via a Cisco
2980 switch. Each IXP board is attached to a host node in a cluster of eight Dell 530s with
dual 1.7GHz Xeon processors running Linux 2.4.18. The host and the IXP NP are connected
via a PCI interface, reported to perform at approximately 200Mpbs in both directions [68].
We also use the IXP1200 simulation package SDK2.0, claimed to be cycle-accurate to within
2%.

The data streams used in the experiments are generated from several sources: (1) se-
quences of demo-replays of business data collected at Delta Airlines, (2) scientific data
gathered from a molecular dynamics physics application used in the SmartPointer appli-
cation [109], and (3) OpenGL data representing variable size images. The application
components executed on the cluster nodes use our version of the RUDP protocol built on
top of raw sockets. The same protocol is used on the IXP microengines.

We have evaluate the overheads of the use of host-ANP nodes and the viability of
executing various application-level services on the IXP NP vs. on host nodes, by measuring
the performance metrics along Paths a and b in Figure 12, respectively. In this configuration,

Path b is directed directly to the host’s Ethernet interface, and does not involve any of the

82

b ilab2

| |
| |
ilabl c \ 1d

IXP-ilab2

ilab3

a

Figure 12: Different data path configurations used in experimental analyses.

IXP NP’s components. In addition, we evaluate the performance levels that can be achieved
by implementing different services with stream handlers that execute jointly on hosts and
on their attached IXP1200s. In these cases, performance is measured along Paths ¢ and d
independently, or jointly, along the Path c-d. These experiments evaluated the impact on
load reduction on the host to which the IXP NP is attached, as well as the host’s ability to

perform additional processing by exporting application-specific functionality to the ANP.

8.2 Improved Overlay Network Performance Using Host-ANP
Nodes

The experiments presented in this section evaluate the overheads and benefits of using
network processors attached to hosts for implementing the basic forwarding functionality
required in distributed applications. They also justify our use of multiple activation points

on the data path through the ANP.
8.2.1 ANP-forwarding Reduces Latency and Improves Throughput

As described in Chapter 1, typical configurations of distributed applications use overlay
networks to implement their distribution functionality. The basic functionality of overlay
nodes is to forward application-level messages, with the intent of using application-specific
operations to modify data as it traverses the overlay. The results presented in Figure 13
evaluate the benefits of moving the basic overlay functionality from a host onto its attached
NP. We compare the latency per application-level message for a host-side vs. an IXP-side
deployment of a handler that implements message forwarding, both of which essentially
entail performing a lookup for the next destination address. In Figure 13, both the host-
side and the IXP-side forwarding are performed by a receive-side handler, which retrieves

the next-hop address on the first packet belonging to a new application-level message. The

83

T T T
—— through host 1 stream
—*— through IXP 1 stream
—&~ through host 4 streams
—+= through IXP 4 streams
150 H —&— through host 20 streams
—O~ through IXP 20 streams

Latency (us)

Il Il Il Il Il Il Il Il Il
0 200 400 600 800 1000 1200 1400 1600 1800 200
Size of data events (B)

S}

x10*

T T T
—— through host 1 stream

—k— through IXP 1 stream

1.5 H —©— through host 4 streams
—t— through IXP 4 streams
—A— through host 20 streams
|| =0 through IXP 20 streams

\\
g

Latency (us)
-
\
Lo
*

10 20 30 40 50 60 70 80 90 100
Size of data events (kB)

Figure 13: Data delivery delay for IXP- vs. host-level forwarding.

remainder of the message’s packets are then simply enqueued on the appropriate transmit
queue. We perform multiple runs for streams consisting of 10,000 or 3,000 data items, for
multiple data sizes (for large data sizes we used smaller number of data items per stream).
Observe that for small messages, the IXP-level forwarding results in delays comparable with
host-level forwarding (i.e., within 1%). However, as message sizes increase, the delivery
delay for IXP forwarding is significantly smaller, with up to 30% measured decreases for
tests with only a single stream. Latency reductions are due to efficient packet movements
from and to the network on the IXP and the avoidance of costly kernel stack traversals on
the host. These measurements also demonstrate that ANP-based forwarding scales better
with respect to both increased data sizes and increased numbers of streams. The simple
conclusion is that it is more efficient to implement the data forwarding performed in overlay
networks on ANPs vs. on hosts.

In most application-level overlays, the forwarding decision is applied only after the entire
application-level message is received. Figure 14 compares the throughput levels that can
be sustained when such forwarding is implemented on the IXP, vs. on the host, where it is
implemented on top of UDP. We report the end-to-end throughput attained on Paths a and
b (see Figure 12). In addition, we include throughput measurements for direct UDP data

transfers between two hosts only (Path b?), represented with the line marked ‘UDP direct’

84

100

Throughput (Mbps)

20

—— UDP through host ||

—©— UDP through IXP
—— UDP direct

I I T

I I
2000 4000 6000 8000 10000 12000
Size of data events (B)

10
0

Figure 14: ANP vs. host throughput for UDP socket stream.

in Figure 14. We measure the throughput that can be sustained by forwarding 100,000 UDP
packets of varying sizes through an intermediate host node, vs. an ANP. For the second
case we modify the source’s ARP tables, so that data is delivered to the IXP’s interfaces.
We notice that we can not only sustain higher throughput levels using ANP forwarding,
particularly for larger message sizes, but furthermore, these throughput levels match the
throughput that can be achieved with direct UDP communication between two host-side
network interfaces.

The observed decrease in end-to-end latency and increase in sustainable throughput at-
tained with ANP-side forwarding further motivate the use of host-ANP pairs in the overlays

used by distributed streaming applications.
8.2.2 Importance of Multiple Activation Points on ANPs

The SPLITS model advocates the use of multiple activation points on the host-ANP data
path, and more importantly, multiple activation points on the ANP alone, where Rx, X, and
Tx stream handlers, operating on different data fragment sizes, can be invoked. Previous
approaches, which implement additional functionality on an NP by operating on packet
headers, exploit Rx-side processing by executing the handler’s code on each first MAC-layer

packet of a new Ethernet frame [98, 20]. To demonstrate the importance of identifying

85

Table 5: Effect of handlers on throughput for different sizes of stream data items.

data size \ handler | shy (Tx) | shy (Rx) | she (Tx) | she (Rx)
64B 90.96 93.66 88.12 86.66
2048B 99.45 99.98 98.82 84.14

multiple points on the data path through the ANP where a specific stream handler is
invoked, we present the following results gathered with the Intel simulator.

The results in Table 5 demonstrate the feasibility of Rx-side processing in our imple-
mentation (Rx columns) for simple handlers (sh1), such as filtering stream handlers, which
consist of few memory accesses and comparisons, and which require a limited amount of

state to interpret the data format and maintain limited filtering parameters and state.

However, as the complexity of Rx-side handlers increases or as the data structures in
the incoming data stream become more complex, and/or as the evaluation of filtering pa-
rameters requires multiple accesses in the packet stream and the maintenance of additional
state, a point is reached at which Rx-side filtering is no longer feasible. Specifically, Rx-side
processing has limited use when the transformations of the incoming stream depend on val-
ues of data fields embedded in subsequent MAC-packets, demonstrated by the throughput
degradations observed when a complex headers (sh2) is used on the receive side (see Table 5,
sh2(Rx)). Rx-side filtering is appropriate only for simple handlers, which operate on small
portions of the application data. In comparison, high throughput levels are attained with
Tx-side filtering, even for complex filters that operate on an entire data message (Table 5,
sh2(Tzx)).

The last set of experiments demonstrates the importance of transmit-side stream han-
dlers, by evaluating an implementation of a per-client customized multicast. The graphs in
Figure 15 represent the achieved throughput when the original stream is sent to n clients
without any modifications (mcastO), when Rx-side handlers perform the n transformations
needed to customize the single stream for each client and thereby, generate n customized

copies of the original data (mcastRx), or when the Tx-side handlers simply customize the

86

100

100

T T T T
- simple complex
| handler -] handler
951 — 95~ -
oF | |] %0
851] — 85- [
< 80f < 80fF [
s s
F H
£ 75f £ 75f L
Ei Ei
o o
= =
= 7o+ = 7ot
651 1 651
60 1 60
55 Hl mcastO |5 551 Hl mcastO |5
[mcastTx [mcastTx
[mcastRx [mcastRx
50—— —— 50—— ——
2 4 8 2 4 8
Number of clients Number of clients

Figure 15: Client-customized multicast.

outgoing stream as it is being copied from memory and sent out (mcastTx). Note that
such non-memory-intensive stream customization is possible only with Tx-side handler ex-
ecution. Repeating this evaluation for two stream handlers that generate different levels
of memory load, we find that the use of Tx-side stream handlers results in a per-client
customizable multicast solution with efficiency within 10% of a non-customized multicast.
The use of Rx-side handlers offering the same functionality, on the other hand, results in
substantial degradation in the achieved throughput levels, offering performance that varies
significantly based on the number of multicast clients.

These limitations motivate our design to support multiple activation points on the data
path through the ANP, where stream handlers with different complexity and resource re-
quirements can be executed. More detailed evaluations of the various tradeoffs between

handler complexity and activation point can be found in [40].

8.3 Application-specific Services on ANPs: Feasibility and
Limitations

The experiments described in this section demonstrate the feasibility of implementing
application-level services of varying complexity using stream handlers on the IXP NP. They

also evaluate and the costs associated with certain handlers, as function of their memory

87

and data access requirements.
8.3.1 Efficient Support for NP-based Services

This section compares the achieved throughput for host vs. IXP implementations of a set
of services commonly required by distributed applications. The experiments are conducted
by evaluating the execution of a set of application-level services implemented as stream
handlers on the ANP on Path a, and a matching user-level representation of the same
service on the host, along Path b. The results presented in Figure 16 show the measured

throughput for the following services:
e data forwarding (route);
e mirroring of the original data stream to multiple destinations (mirror);
e filtering based on application-level content (filter);
e mirroring different views of the original data based on the destination (mcast);

e applying fixed processing for each application-level message, such as updates to set of

data fields (delta); and

¢ applying complex customizations to the entire original stream data before it is for-

warded (transform).

The IXP implementation of these services uses one or more stream handlers, executed by
the Rx and Tx execution contexts only. This still leaves another two microengines unused
(i.e., as available resources) on the IXP1200. There are no additional computational loads
on the host CPU.

Throughput measurements are gathered for two modified data streams from an original
stream gathered at Delta Airlines, so that they consist only of 1.5kB or 50kB data items.
Observe that for both sizes of data items, the IXP implementations for data forwarding, mir-
roring and application-level filtering, deliver better throughput compared to their host-side
equivalents. The cyclecounts for these services are much smaller than the available head-
room in the context in which they are executing. This explains why sustainable bandwidth

i1s not decreased.

88

-
[
o

T
I 1.5kB - host
[1.5kB-IXP

Throughput (%)
N
© o
o o

T T

| |

©
=}
T
I

Il Il Il Il Il
route mirror filter mcast delta trasform
Stream handlers

~
o

110

T
Il 50kB - host
[] 50kB-IXP

Throughput (%)

route mirror filter mcast delta transform
Stream handlers

Figure 16: Handler complexity and sustainable throughput for set of services.

More interestingly, note the significantly higher throughput levels sustained for IXP-side
implementations of data-increasing services, such as mirror or mcast. By executing these
services as Tx-side handlers on the IXP, we avoid additional data copies, and we apply the
data customization incrementally and as late as possible, just before its transmission.

Finally, these measurements show that while certain data transformations can be effi-
ciently sustained on the direct Rx-Tx path (see the bars marked ‘delta’ in Figure 16), as
the complexities of transformations increase, the throughput rates begin to drop, i.e., the
cyclecount of the additional processing increases beyond the available headroom (see the
bars marked ‘transform’). Furthermore, the ‘delta’ transformation has a slightly higher cost
when applied to the smaller 1.5kB messages. This is a result of the smaller ‘headroom’ that
is available on the fast path for smaller message sizes.

In summary, depending on the available resources, a variety of services can be efficiently
supported on ANPs like the IXP1200. More importantly, data-increasing services proven
costly when implemented on hosts, can be executed very efficiently when performed on
the IXP. The performance improvements resulting from such ANP-side implementations
are further enhanced by the fact that these services are off-loaded from the host, thereby
permitting its resources to be used by other application components. We also show that the

benefits of ANP-side processing are limited by the available resources and complexities of

89

101

95

90 -

85

80 T

75r q

Throughput

701 T

65 Rx i

60 —— Rx:SRAM
—©- Rx:DRAM
—%— Tx:SRAM

55 —©— Tx:DRAM [
—— X:SRAM
-~ X:DRAM

50 I Il Il Il T

0 1000 2000 3000 4000 5000 6000

Amount of memory accessed (B)

Figure 17: Stream handler performance cost as a function of the amount and type of
memory accessed.
stream handler. This motivates our design of SPLITS and its support for deploying services

across host-ANP boundaries.
8.3.2 Impact of Memory Accesses on Handler Placement

The stream handlers evaluated in the previous subsection represent basic functionality that
can be extended to implement a variety of application-level services. One dimension in
which the stream handler properties are affected based on the activity that it implements is
the frequency and duration of memory accesses. Memory may be used to maintain handler
parameters, or access and manipulate state or portions of the application-level data item.
The results presented in Figure 17 represent the performance implications of deploying
stream handlers with various memory requirements at different activation points on the
ANP. In the experiments conducted, we vary the amounts of memory accessed by each
handler, and the memory location - SRAM vs. DRAM.

Results indicate that there is a greater cycle budget associated with the X and Tx
execution contexts on the IXP NP, and that stream handlers deployed at these contexts
can execute larger numbers of memory accesses and, therefore manipulate more data, while
still meeting throughput requirements. The amount of memory that can be accessed by Rx

handlers is much more limited, and throughput levels drop sharply if this limit is exceeded.

90

Il Unicast
[Multicast

L L L L
1.5kB/host 1.5kB/iXP 10kB/host 10kB/IXP
Stream data size / IXP vs. Host

Figure 18: Performance gains for data increasing services.

Therefore, handlers with higher memory requirements should never be associated with the
receive-side processing. In addition, results demonstrate the higher costs of DRAM vs.
SRAM accesses, i.e. a smaller amount of DRAM memory can be accessed before the
throughput levels begin declining. Consequently, both the amount and type of memory
manipulations (e.g., state vs. data) should be taken under consideration when determining

the appropriate activation point for a handler.
8.3.3 ANP-handlers Improve Performance of Data Increasing Services

The following experiment is conducted to evaluate the overheads incurred by data increasing
services, such as replication or multicast. The measurements present the execution time
to perform unicast, i.e., merely forward the application-level data stream, vs. multicast
actions, that transmit each data item to multiple (in this case two) destinations. The
results compare the execution times for unicast and multicast stream handlers deployed
at the intermediate node on Paths a and b, at the IXP or host, respectively. The same
tests are repeated for streams with data sizes of 1.5kB and 10kB. The total execution time
represents the amount of time required at the destination to receive the entire data stream.

The unicast implementation is executed equally efficiently on the IXP as on the host,

since they are both bound by the performance of the data source, whose data rate does not

91

25 b

Throughput (Gbps)
N
T
|

151 T

Hl 320x240
[640x480

[1024x768
T T

320x240 320x240 400x400 640x480 320x240 400x400 1024x768
Bounding box size

Figure 19: Evaluation of an image cropping handler.

fully stress the host’s or IXP’s capabilities. The multicast implementation on the IXP uses
the hardware-supported contexts that execute the repeated data retransmissions concur-
rently, and without requiring additional data copies. Therefore, the measured performance
for the IXP multicast handler is at the same level as the unicast handler. The host-side
implementation of the same activity results in 32% and 48% increases in transmission times
for the two data sizes evaluated.

The results show that implementing data increasing services such as multicast can de-
liver better performance to applications. Therefore, applications dependent upon such ser-
vices, for instance, for achieving greater availability or fault tolerance, can attain significant

performance improvements through the use of ANPs.
8.3.4 Memory-intensive Services on ANPs

The next experiment demonstrates the IXP’s ability to perform computationally intensive
services, by evaluating a service used in remote graphics/visualization. This service crops
OpenGL-produced images sent to clients using bounding boxes, and is computationally
intensive due to the repeated memory accesses into the image data to perform comparisons
for each 12B pixel. The idea is to experiment with the ANP’s ability to perform per-

client data customization, with this service’s intent being to allow end users to reduce the

92

bandwidth requirements of incoming graphical data by selecting the viewing regions of
current interest.

The experiments conducted here measure the bit-rates at which images of varying sizes
can be cropped against certain bounding box coordinates, using the two free microengines
on the IXP1200 running SPLITS. Parameters center the bounding boxes with respect to
the images, which requires the stream handler implementing this service to inspect every
12B pixel to determine its relationship to the bounding box. The results presented in
Figure 19 reflect the bit-rate at which the service itself can be performed, without including
its assembly in IXP memory and defragmentation for transmission.

We evaluate the performance of the IXP-based cropping handler with data images
preloaded in IXP memory, and we find that even lower-end platforms like the Intel’s IXP1200
can efficiently perform such data intensive tasks at rates that reach 3.75Gbps (Figure 19).
Similar behaviors can be observed for other stream handlers, such as ones implementing
security-related censorship functionality, by not allowing a portion of an image’s data to be
viewed by individual end users, for instance.

The host-based implementation of the same handler, while performing satisfactorily with
respect to sustainable throughput, requires 99.95% of the host CPU resources. This moti-
vates service providers to move this type of functionality off host CPUs or server systems,
thereby freeing their computational resources for other application components, while still
maintaining service levels.

Two conclusions from these results are the following. First, even a complex service
operating on most of the application-level message’s payload can be implemented in the
IXP1200 at bit-rates that far exceed the aggregate throughput this ANP can deliver. Sec-
ond, it is important for ANP-level services to have access to application-level parameters,
such as bounding box values. In this example, bounding box parameters significantly affect
service times and throughput levels. More generally, parameter selection can be used to

tune performance levels to current operating conditions.

93

110 T
Hl All flights, host
[Allflights, IXP
[select flights, host

1051 | m select flights, IXP 7

100 b

95 - —

851

Normalized hroughput (Mbps)

80

(] Ll
1 stream 4 streams
Number of data streams

70

Figure 20: Efficient XML-based data transformation on the IXP. Benefits of parameter
selection under increased loads.

8.3.5 XML-based Data Transcoding Stream Handlers Are Feasible on ANPs

Consider the operational information systems used in large companies, which interact with
external service providers that cannot be given access to all of a company’s internal in-
formation. In the case of an airline, for example, when interacting with caterers, only
information such as flight number, airport code, assigned gate and its anticipated change,
and meal counts are exchanged. This information must be extracted from the internal
flight events used in the airline’s information system, formatted and forwarded to caterers.
The operational quality of such an application depends on the ability to efficiently perform
such data format translations, on the timely delivery of data at predictable data rates, and
the accuracy with which the newly formatted data matches client interests and capabili-
ties. Therefore, it is necessary to selectively apply format translation functions, only to
the necessary subset of the data stream. Furthermore, as services evolve, or as third-party
providers change, efficient upgrades of format translation operations are needed, and such
upgrades cannot disrupt or degrade the service quality offered by the system.

The results presented in Figure 20 demonstrate the ability of host-ANP pairs to effi-
ciently perform certain data format transformations. We use a replay of binary represen-

tations of an original XML stream gathered from a large company. Its encoded data sizes

94

range from 360 to 420 bytes. The resulting events to be shared with the external client
(e.g., a caterer) are 72 bytes each. Throughput measurements correspond to the rates at
which data can be received and transformed, normalized by the sender’s rate. The first two
bars represent the throughput at which the host and the IXP, respectively, can perform the
XML-based transcoding of all data in the original stream. The next two bars present the
throughput at which only the flights originating at a specific airport are transcoded. This
is accomplished by first applying a filtering handler, which discards all other events, and
then applying the handler that performs the data format transformation. The same tests
are repeated under increased network loads by adding additional Delta streams.

We observe, first, that in all cases, the IXP is better capable of performing services like
these compared to the host. This is because it can efficiently access both header and payload
data and extract only those fields required for the output format. The results in Figure 20
also demonstrate the importance of dynamic configuration (via parameter changes) under
increased loads. The ability to extract from the original stream only the required events
and to filter out the rest on the IXP, improves performance so that maximum data delivery
rates can be met. The ability to filter out unnecessary data also improves the performance
of the host-based implementation of the same service, but it still lags behind the IXP-based

implementation by 12%.

8.4 Deploying Services on Host-ANP Nodes with SPLITS

So far, this chapter has demonstrated the feasibility of implementing a variety of application-
specific services with stream handlers, presenting the performance costs and benefits associ-
ated with them. In this section we evaluate the use of the SPLITS implementation based on
hosts that run standard Linux kernels and the Radisys IXP1200 ANP. We analyze the ability
to dynamically deploy and configure new services on the data path through the host-ANP
node, the impact of executing service components on the IXP on the host’s performance,

and the limitations of the current implementation.

95

8.4.1 Efficient Handler Deployment and Configuration

Experimental results indicate that the functionality in SPLITS which enables the dynamic
deployment and configuration of services can be implemented efficiently. We do not foresee
a requirement for high-rate reconfiguration requests, which means that experimentation
focused on evaluating the end-to-end impact of the dynamic reconfiguration, and not the
delay with which the reconfiguration request is executed.

Specifically, results indicate that reconfiguration overheads are practically negligible.
That is, the overheads of performing the additional checks at activation points to support
the dynamic reconfiguration do not impact the sustained throughput of the baseline func-
tionality, and they add only negligible delays. The cost of actually performing the reloading
of new configuration parameters depends on the preset parameters size (as discussed in
Chapter 6), however, it is amortized over the subsequent stream data messages. Therefore,
it does not impact the measured sustained throughput. The cost associated with dynamic
hot-swapping is the downtime during which one microengine is stopped, the necessary state
is copied, and the new microengine is started. Experimental measurements evaluate this
time to be on the order of 28-30 microseconds, and has no noticeable impact on the end-
to-end performance. Note that copying is required only for the relatively small amount
of runtime state maintained in microengine registers, which is related to the processing
progress in the data stream, such as message counters. The reconfiguration is performed at
message boundaries, therefore, most of the registers can simply be reinitialized in the new
context. All other state is maintained in on- and off-chip memory, and remains accessible
from the ‘new’ microengine without additional copying.

These results demonstrate that we can efficiently enable dynamic reconfiguration of the

application-level processing applied on the host-ANP nodes, with negligible overheads.
8.4.2 CPU OfHoading

In some of the experiments conducted to evaluate our SPLITS implementation, we use
standard benchmark applications to generate additional loads on the host node. Specifically,

we used the applu benchmark from the SPEC CPU200 suite and the Linpack n=1000

96

benchmark [28]. This provides additional information about the increase in CPU availability
as a result of both: (1) the offloading of services, or service components executed by stream
handlers on the ANP, and (2) the reduction in the loads imposed on the host’s networking
and memory subsystems when data filtering activities are performed on the ANP. The
host’s CPU availability is estimated through the time, i.e. Mflops, that is available for
the execution of these benchmarks. The measured results indicate two facts. First, CPU
availability increases when stream handlers are offloaded on the ANP or when the amount of
data delivered to the host is reduced by the ANP stream handler. Therefore, host resources
are more readily available for execution of other application components. Second, the
percentage increase in CPU availability exceeds the percentage decrease in amount of data.
This is due to the removal of loads from the host’s networking and memory infrastructure.
The result indicates that applications benefit from ANP-side service execution also due to
the lower delay with which the service is invoked on the ANP, which in turn decreases the
impact of specific events (e.g., unnecessary data, or ill-formed messages) on the remainder

of the system.

8.5 Importance of Split Services Across Host-ANP Bound-
ary
The second application with which we evaluate the proposed architecture is a distributed
scientific collaboration. Data streams generated by a time-consuming, data-intensive molec-
ular dynamics (MD) simulation are delivered to an imaging server. Based on the stages
of the experiment and the scientists’ interest in different types of molecules, the imaging
server generates renderable images which represent different views of the ongoing simula-
tion’s output. The generation of these images is a computationally intensive task, involving
floating point and matrix arithmetic. It imposes substantial loads on the server CPU and
on its I/O and memory infrastructure. Once computed, images are forwarded to multiple
clients or groups of clients. Depending on the clients’ networking and platform resources,
or interests, the imaging server needs to further manipulate the image representation, such

as downsampling the color encoding, performing cropping operations to match the client’s

97

T
—+ 1.5k: IXP and host
—O- 1.5k: host only
—— 50k: IXP and host
6| 09— 50k: host only A
—— mixed sizes: IXP and host -
—A- mixed sizes: host only -

Tagged events over time

Figure 21: Importance of service deployment across Host-ANP boundaries.

view point, etc.

The experiments conducted using the SmartPointer application evaluated both, Path ¢ -
the delivery of molecular dynamics data to the image server, where its image representation
is generated, and Path d - the customization of the generated image and its transmission

to clients. The following subsections discuss our observations.
8.5.1 ANP Handlers Reduce Loads Delivered to Host Components

The graphs in Figure 21 demonstrate the performance gains attained by using ANPs to
apply IXP-resident filtering stream handlers to select the subset of the simulation data
stream of current interest to the scientists interacting with it. These measurements are
gathered for three data streams: one includes the binary representation of the original
molecular dynamic data with data sizes varying between 1.5 and 30 kilobytes, and the
other two are altered MD streams that consist of 1.5kB and 50kB stream data. The service
evaluated is applying the MD bond server computation to molecules of specific type only.
For each data stream, we measure the processing times for a set of tagged events, in two
cases. In the first case, the data stream is delivered directly on the host’s network interface,
and both the filtering and the processing code are applied to it at the host’s user level. In

the second case, the data stream passes through the host’s ANP, where the filtering handler

98

is applied to it, and only the resulting substream is delivered to the host.

These results demonstrate the importance of removing some service components, such
as filtering, from the host, and onto the ANP: (1) it decreases processing times and (2) it
reduces the latency perceived by the end-users for all of the three cases considered, with
gains reaching 40% in the tests that involve 50kB data sizes (see top two lines in Figure 21).
These gains are due to the offloading of the filtering handler from the host and delivering
to the host only the data required by it, thereby eliminating unnecessary host-side protocol

stack traversals and I/O loads.
8.5.2 Benefits of Offloading Even Non-communication Related Handlers

At the imaging server’s egress side, we are concerned with graphics-related data manip-
ulations. The results in Figure 22 evaluate the IXP’s ability to perform computationally
intensive image manipulation services on behalf of the host, by using a stream handler
that crops OpenGL-produced images using bounding boxes. The stream handler used to
implement the cropping functionality is the same as the one evaluated in Section 8.3.4.
The experiments conducted here measure the time required to crop and transmit the
image. When this service is implemented on the network processor, the host sends the full
image to the ANP, where cropping is performed, and the resulting image is sent out on the
ANP’s network interface. This same service is also implemented on the imaging server’s
CPU, and the performance of the two implementations is compared. In the experiments,
we crop 1MB images against bounding boxes that reduce image size by 10 to 40 percent.
The results presented in Figure 22 reflect the performance gains due to the reduced
execution time of the service when using the ANP for cropping. Gains are particularly
visible when the host’s CPU is heavily loaded (which is not unusual for the imaging server)
and reach up to 40%. To simulate increased loads and assess the utilization of the CPU
resources by the image cropping and sending, we run the standard benchmarking tool
linpack [28] on the host, and record the Mflops that it reports to have available. The number
decreases when the host executes the cropping, i.e. less resources are available for running

other application-level codes. These results also indicate the importance of dynamically

99

180

160

120

=

1S)

=]
T

©
o
T

Processing time (ms)

@
=)
T
I

—— IXP cropping w/o load
201 —x— IXP cropping w/ load []
—©- host cropping w/o load

—+— host cropping w/ load
T

Il Il Il
0 10 20 30 40
Percentage of image cropped (%)

Figure 22: OpenGL pipeline service.

updating certain application parameters, such as the bounding box coordinates used in this
experiment. This permits the ANP-resident service to better meet the end-user’s bandwidth
and latency requirements.

Limitation of the PCI-based interconnect. Another observation from Figure 22 is the
high penalty for using the PCI interface for host-ANP data movements. When cropping is
implemented on the host, the CPU crops the image and sends a (possibly much) smaller
image to the network device (via the PCI interface), thereby reducing total execution time.
In the ANP implementation, the host has to send the entire image to its ANP, which limits
the ANP’s cropping performance to the PCI throughput. Hence, as the cropping window
size decreases, the performance of the host implementation starts increasing, whereas the
performance of the ANP implementation is dictated by the data rates delivered from the
PCI interface and does not change significantly.

With ANP’s becoming more powerful, it is highly unlikely that the ANP will ever be a
bottleneck in the processing of application-level data. However, even if faster system-level
interconnects replace the PCI bus used in our implementation, the movement of application-
level processing onto ANPs needs to be done in consideration with the resource (i.e., band-

width) availability at the host-ANP interconnect.

100

8.6 Summary of Results

The experimental results presented in this chapter demonstrate the utility, feasibility, and
importance of implementing application-level services using NP-level stream handlers. Spe-
cific services used by a variety of large-scale distributed applications can be implemented
with lower latencies and at higher throughput on ANPs rather than hosts. Services that
perform poorly when executed on hosts at application level can be implemented efficiently,
and ‘value-added’ services can be implemented at no additional costs as perceived by end
users. Even complex services like graphics operations performed in OpenGL pipelines can
be executed with high performance on an ANP.

Also efficiently executed on ANPs are data format translation and transcoding services,
like those currently implemented with XML and XSLT in web services. Toward this end,
we experimentally evaluate implementations of data format translations like those required
in an e-commerce application.

Two other capabilities of host-ANP pairs are shown important. First, to be gener-
ally useful, it must be possible to have runtime host-ANP interactions, such as dynamic
parameter selection to control the sustained performance levels. Second, our final results
demonstrate the importance of ‘splitting’ services across host-ANP pairs and the limita-
tions presented by the use of the PCI-based host-ANP interface. While already needed
for tasks like runtime ANP control, the SPLITS architecture provides a model with which
services can be mapped to host-ANP pairs, to effectively use their joint resources, and to

dynamically cooperate to provide suitable end user functionality.

101

CHAPTER 9

RELATED WORK

The objective of SPLITS and stream handlers is to deliver to applications the dynamically
reconfigurable communication and application-level services they require, so as to attain
better resource utilization, to adapt more efficiently to the current operating conditions, or
to address changes in application policies and end-user interests. Our approach is to create
integrated platforms consisting of hosts and their attached network processors, and utilize
the joint host-ANP resources. Services are represented as compositions of stream handlers
which are created and deployed on hosts and on the ANPs, thereby extending the core
networking functionality of these devices. The goals and the approach used in our work is
related to many past and existing research efforts, in both industry and academia. With
some we share similar objectives but differ in the context or the level at which solutions
are developed. Others are related to us due to the use of similar target platforms, or the
application domain addressed. This chapter surveys the related work, by classifying it into

several groups based on the specific similarities with the work presented in this thesis.

9.1 Dynamic Service Customization in Streaming Applica-
tions

9.1.1 Middleware-level Customization

Extensive research in both industry and academia is targeting the delivery of ‘useful’ infor-
mation to end users, by means of customizing the data source, or data stream itself [82, 3].
These approaches rely on peer-to-peer systems such as Chord [101], or Paste [29], or publish-
subscribe infrastructures like ECho and JEcho, and Gryphon [30, 114, 113], to create the
overlay networks used for the data distribution functionality.

The overlay used may be as simple as the front-end/back-end distinctions made in

large-scale server systems [91, 36], or they may extend across multiple Inter- or Intra-net

102

nodes [6, 101]. Overlay networks [3, 101, 6, 22] have already established the utility of pro-
cessing stream data ‘in transit’, for media transcoding [36, 90], for sensor data selection
and fusion [35], and for handling the large data used in distributed scientific collabora-
tion [109, 110]. Both peer-to-peer and publish-subscribe systems [101, 108, 113] permit
applications to dynamically customize their data streams. For instance, multimedia data
is routinely customized with data compression methods, and web applications manipulate
data streams via web proxies, multicast methods, etc. [22, 72].

Our work is complementary to this research. Our goal is to offer such systems per-
formance benefits by mapping some of the middleware- and application-level services they
require onto programmable network processors. This is particularly important, since appli-
cation-level implementation of data stream customizations suffers from significant overheads
due to the repeated protocol-stack traversals to and from the application layer, and the
loads imposed on the host’s CPU and I/O infrastructure. Furthermore, experimental re-
sults presented in this thesis demonstrate that many application-specific customizations can

be executed more efficiently on ANPs.
9.1.2 Kernel-level Extensions

The performance limitations of delivering dynamically customizable application-level ser-
vices in high data rate applications, has motivated the development of kernel-level support
for specialized services [81, 39, 78, 8]. These approaches typically rely on the availability
of safe, yet expressive subsets of standard languages for implementation of application-level
services, and the underlying OS support for dynamic linking and safety checking at the
host. Our future work will consider the use of language support to provide higher level of
safety in SPLITS as well.

Compositions of fine-grain modules, along with dynamic code generation and software
feedback, is used in the Synthetix project to achieve specialized kernel-level optimizations,
e.g., in the communications protocols, which will result in optimal performance under given
system conditions [81]. Such specializations can be used to adapt the functionality imple-

mented at different nodes in the system to the current network conditions, and to achieve an

103

efficient scheduler for placing data on the network, for instance. We believe that exchange
of feedback information can be used to tune handler parameters.

Similar solutions to efficient and safe kernel-level specialized services are developed in
the other efforts such as SPIN or KPlugins [39, 8], or the KECho kernel-level event delivery
system, needed to support high data-rate applications built on top of publish/subscribe
infrastructures. Kernel-level application-specific service extensions can be used at host-ANP
nodes, to create vertical platforms that offer to applications more tradeoffs in performance

vs. resource availability, required to address a larger set of service requirements.

9.2 Modular Frameworks and Service Compositions

Stream handler compositions are similar to those performed in modular frameworks for dy-
namically generating higher-level services from simpler components [67, 11, 80, 96]. Unique
to our approach is the deployment of these components (i.e., of stream handlers) across the
host/ANP boundary, depending on current service requirements and available system and
network resources.

Existing research has already evaluated the use of composing complex and/or cus-
tomized computations and/or properties through modules. Coyote and Ensamble are ex-
amples of modular frameworks for building configurable, higher-level services from micro-
protocols [11, 67]. For instance, in [47], Hiltunen et al. use microprotocols for constructing
highly configurable fault-tolerant distributed services. The motivation for offering compos-
able services in these systems is to optimize the data path so that it includes only the
modules required by the application. Cactus is an instance of the Coyote framework which
supports customizable, dynamic quality-of-service control [48]. Our research would benefit
from such work to construct modular and perhaps, dynamically composable higher-level
protocols that could more flexibly leverage application semantics when dynamically adapt-
ing event mirroring and the levels of consistency and synchrony maintained across replicated
commercial servers.

CANS [38] and Active Streams [18] are two examples of application-level infrastructures

that support dynamic service compositions by injecting application-specific components into

104

the data path through the network, and adapting them to the system conditions. These and
other similar approaches are concerned with the ability to share and reuse service compo-
nents, and deliver application-specific services, capable of run-time adaptations, necessary
to deliver end-to-end quality-of-service. The experimental results in Chapter 8 demonstrate
that NPs can be used to execute many application-specific service with better QoS proper-
ties than standard host. Our work is similar to these approaches in that we also consider the
deployment of service components to deliver more efficient services, however the paths that
are primarily addressed by SPLITS are those internal to the host-ANP node. In addition,
developers of SPLITS applications can benefit from stream handler repositories, similar to
the component repositories used with these, and other component-based approaches.

Protocol Boosters [33, 96] is another modular framework for flexible creation of com-
munication protocols from components. The framework relies on programmable network
infrastructure to insert the protocol modules along the data path though the network, and
realize the customized communication. The host-ANP nodes proposed in this thesis can
deliver this infrastructure to applications. Other modular frameworks targeting network
services, include the Click modular router and the Scout OS [56, 69, 76], which target the
creation of high-performance networking paths using general-purpose processors, or the Dy-
namic Hardware Plugins, developed by Turner et al. [103], which utilize hardware plugins
(Port Extenders) implemented as reconfigurable logic, to extend the core functionality of a
Gigabit switch.

Several research projects concerned with composable frameworks include extensive sup-
port for verifying the correctness of the composite service or protocol [67]. As part of the
Ensamble project, formal specifications for the micro-protocols have been developed, which
are used for verifying correctness and perform optimizations of the protocol code. SPLITS
can benefit from similar formal specifications for stream handlers, in order to improve the
safety guarantees which can be delivered to applications. The availability of such tools is

particularly critical for the ANP, due to lack of hardware supported protection mechanisms.

105

9.2.1 Split Services

Complementary work demonstrates the utility of executing compositions of various protocol-
vs. application-level actions in different processing contexts. Examples include splitting the
TCP/IP protocol stack across general purpose processors and dedicated network devices [15,
85, 87], or splitting the application stack as with content-based load balancing for an http
server [7] or for efficient implementations of media services [90]. Our work addresses the
benefits of split service implementation across multiple execution engines. Furthermore, we
generalize specific solutions to arbitrary sets of services by designing a software architecture
and support for splitting services across hosts and their attached programmable network
processors. The intent is to benefit from the efficient data movement mechanisms available
on network processors, from their ability to access packet header and payload data at low

costs, and from their built-in parallelism.

9.3 Extensible network infrastructures

9.3.1 Device-level Research

There are numerous interface designs for closely coupled network devices, such as pro-
grammable network processors or line cards, to host nodes, using OS-controlled map-
pings [88, 102, 103, 96]. The motivation is to take advantage of the ‘network-near’ nature
of these devices vs. hosts, and implement transaction services, synchronization functions
and service- (e.g., for RPC) or system- (e.g., for Linux) specific optimizations of protocol
stacks and of the data movement and buffering associated with message communication.
Similar argument is made for use of specialized devices for attaining intelligent disks, that
can execute application-specific I/O functionality with much improved performance levels
over standard hosts [55, 59, 1]. SPLITS has similar objectives, since it aims to deliver
performance benefits to applications from the use of specialized hardware on the ANP, to
offload hosts, and to enable more efficient implementation of some services by coupling

computations with communication.

106

9.3.2 Active Networks

Research with active networks has explored the possibilities of extending and customizing
the behavior of the network infrastructure to meet application needs [106, 62, 5, 92, 102].
The use of stream handlers on attached network processors is similar to active networking
approaches in the sense that it aims to exploit the programmability in the networking
infrastructure, and to dynamically associate application-specific codes with select data flows.

The use of active identifiers in the active messages and capsules, in systems such as
ANTS, CANEs, and Libra [100, 92, 106], for determining the activity which needs to be
applied to specific packets is similar to the mappings between the data tags and the stream
handler identifiers used in SPLITS. The Execution Environments and Active Applications
used in the Libra framework for developing composable active network services [100] is
similar to the activation points and the stream handlers invoked deployed at these points
in our work.

These approaches provide an extremely general mechanism to adapting communications,
and raise many safety and security concerns. In order to address these concerns, while still
meeting the data rate requirements at the targeted shared networking devices, the active
networking approach imposes restrictions on the service complexity and on the data accesses
it can perform. Therefore, it is better suited for network-level services, performing network
header-based operations.

We differ from active networking approaches by focusing on the ‘edges’ of the network,
and by forming closed, controlled environments consisting of the host and the attached NP.
In this manner we avoid many of the safety and security issues raised in the context of active

networks, and still offer the needed dynamically customizable services to applications.
9.3.3 Use of Network Processors for Application-specific Services

Our work is related to existing research that exploits the programmability of network pro-
cessors in several different domains. Earlier work with programmable network processors
mainly focuses on providing network-centric NP functions based on the header contents

of the incoming traffic. Examples include NP-level software routing, firewalling, low-level

107

intrusion detection, packet classification and scheduling, network monitoring, software mul-
ticast, and service differentiation across different traffic classes [98, 20, 116, 56, 63, 102].
Application-level services previously realized on NPs include load-balancing for cluster
servers, the proxy forwarding functionality servers need, and payload caching [7, 112]. These
approaches are focused on delivering performance improvements to web servers, and the
implementation the NP-level functionality relies on access to the http header. With our
approach, these and many other services can be implemented on ANPs or jointly by ANPs

and hosts, independent of the specific protocol- or application-level headers being used.

9.3.4 IXP-based Research

IXP-based improvements for wide area applications are attained by enabling packet header-
based customization of an incoming data stream, thereby offering services such as software
routing, network monitoring, etc. The Vera programmable software router developed at
Princeton [98] enables applications to reconfigure the router functionality and implement
application-specific routing decisions and firewalling policies. Similarly, the DiffServ IXP-
server allows applications to specify the service classes differentiated by the server in an
application-specific manner [64]. Both approaches rely solely on network-level information
embedded in packet headers to perform the specific functionality. The same types of ex-
tensions can be implemented with Rx stream handlers in our model. Furthermore, we
can base this functionality of application-level header, and perform content-based routing,
firewalling, or service differentiation.

The Netbind system is closest to our work [20], in the sense that it is concerned with ex-
tending the packet’s data path, except their focus is on routing functionality which requires
access to IP headers only. The reconfigurability supported by Netbind is rather costly, and
assumes stopping and restarting of the IXP microengines. We believe that by limiting the
IXP’s scope as a ANP, we can reserve some of its resources, i.e. microengines, to enable
more efficient reconfiguration mechanism, without causing service interruption.

Another set of research developments targeting the IXP NPs, is the development of

programming environments that will facilitate the analyses of performance implications

108

of various packet processing actions. The Shangri-La programming environment under
development at UT Austin [57] is one such example. A component of this project focuses on
analyses of the system requirements for enabling fine-grained adaptation in the IXP runtime,
such as online reconfigurations of microengines’ instruction store, or enabling/disabling
system components upon request. While this work aims to detect the system requirements
imposed by networking applications, application-level services using SPLITS can benefit
from more flexible NP designs.

Other research efforts exploit the programmability of the IXP NPs to develop efficient
security services, such as intrusion detection [26, 71, 24], resource discovery in peer-to-
peer networks, or deliver services for a specific application domain, such as video-quality

adjustments for video multicast [111] or quality provision [115, 19].

9.4 Programming Models

Finally, the SPLITS programming model is similar to other programming models that are
used to represent computation in network-level services, such as the model adopted by
the active networking community [46] and the programming model developed by Intel,
specifically to express the development of communication-services on the IXP NPs [51, 54].
The active networking model represented through PLAN [46] and Intel’s programming
model that was developed specifically for the network processors used in our work are
network-level models. The PLAN model does not prohibit higher level activities, these
are constrained by the safety and security problems of the operational environment. Both
programming models proposed by Intel, MicroACEs and microblocks, support only network-
level activities, associated with the network-level headers of the packets that are handled.
All activities are associated with all network-level packets on the data path, to form a
single multi-stage pipeline. There are no distinct queues that enable separate flows, except
for special exception cases. In Chapter 4 we established the SPLITS and these lower-level
model. In addition, we mapped to the SPLITS model higher-level models used for streaming
applications, such as Spidle and Streamit [104, 27], or for publish/subscribe systems such

as ECho [30]. This demonstrated the generality of the SPLITS model, and further supports

109

our claim that a rich variety of services can be deployed on the host-ANP resources.

110

CHAPTER 10

CONCLUDING REMARKS

This chapter summarizes key conceptual and experimental contributions of this dissertation,

and discusses some opportunities for future research directions.

10.1 Contribution

The main contributions of this research are the creation of SPLITS, a Software architecture
for Programmable LIghtweight Stream handling, and its key abstraction - stream handler.
SPLITS enables the joint use of standard hosts and their attached network processors and
creates integrated host-ANP platforms. We explore the idea of using NPs closely tied to
host nodes, thereby creating a computational platform that can deliver increased efficiency
for variety of applications and services. The goals are to attain improvements in end-
user application performance, to more efficiently utilize server capacity, and to offer new
services at no or little additional performance overheads perceived by end users. SPLITS
enables the dynamic creation of data paths through the host-ANP execution contexts, and
the dynamic creation, deployment, and reconfiguration of application-specific network- and
application-level processing on streaming data.

The stream handlers used by SPLITS represent lightweight, parameterizable, computa-
tional units. They can be applied at various points of the stream data path through the
host-ANP platform, thereby enabling a rich set of application specific services. Stream han-
dlers rely on the use binary format descriptors for accessing application-level data, which
enables us to duplicate for packet bodies the elements that make it easy for NPs to perform
header-based operations: known header formats, offsets, and types and sizes of fields. As a
result, stream handlers can be integrated with the receive- or transmit-side protocol process-
ing. Therefore, application-specific action can be executed with lower delays, unnecessary

loads can be detected and prevented from affecting the system in a more timely manner,

111

and even data increasing services can be supported efficiently by avoiding repeated copying
and protocol stack traversals. Furthermore, by enabling services to execute on the ANP,
applications benefit from the optimized NP hardware, its efficient support for large data
movement and built-in hardware parallelism, even for computationally intensive processing
performed on application-level data in ANP memory.

We demonstrate that programmable network processors are highly capable of perform-
ing certain classes of application-specific processing on actual data content. However, the
classes of services supported are limited due to the resource limitations on the NPs. The
proposed software architecture integrates the host and the ANP resources, and creates a
computational and communication platform that can deliver performance improvements to
application services that can benefit from the NPs customized hardware, while still sustain-
ing arbitrary services on the host’s general purpose node. Furthermore, this architecture
enables the dynamic deployment of application specific actions across host-ANP boundaries,
and their reconfiguration, so as to best match the current platform resources and changes
in application needs. Finally, we identify additional support tools required by SPLITS to

better address the dynamic interactions required by the targeted applications.

10.2 Future Directions

This thesis opens several opportunities for future research directions. Some are directly
connected to the present status of SPLITS, while others are related to the investigation of
issues raised by SPLITS in other contexts.

Our short term research goals, include exploring the possibilities of implementing sup-
port services on top of SPLITS that will enhance middleware systems, such as those used in
publish/subscribe systems, and using the mapping described in our work. Specifically, we
are interested in evaluating the performance impact of using vertically integrated customiza-
tions, at host-, kernel-, and ANP-level, to the systems ability to maintain QoS requirements
in the face of highly dynamic operating conditions. This also includes the development of
a SPLITS implementation based on the next generation network processors.

Most of the open question raised deal above all with the dynamic reconfigurability

112

aspects of SPLITS. First, compiler solutions are needed for dynamic code generation, nec-
essary for a truly general reconfigurable system. Such compiler tools can be extended with
some profiling ability, so as to estimate the resource requirements and performance costs of
the handler. In addition, tools for runtime generation of binary format descriptions for the
target ANP architecture are needed, which can be accomplished from user-accessible com-
monly available data description standards like IDL or WSDL, Java classes, or well-formed
XML-based data descriptions, such as XML schemas.

Finally, the safety and security functionality required by SPLITS, and programmable
networking devices, in general, should be addressed before a commercially viable implemen-

tation of this system can be considered.

113

[10]

[11]

REFERENCES

ACHARYA, A., UyvsAL, M., and SALTZ, J., “Active disks: programming model, algo-
rithms and evaluation,” in Proceedings of the 8th International Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS VIII),
(San Jose, CA), 1998.

Agere Systems, The Case for a Classification Language. White Paper, 2003.

Akamai Technologies, Inc., The Business Internet: A Predictable Platform for Prof-
itable E-Business. White Paper, 2004. http://www.akamai.com.

ALEXANDER, D. S., ARBAUGH, W. A., Hicks, M. W., KAKKAR, P., KEROMYTIS,
A. D., MOORE, J. T., GUNTER, C. A., NETTLES, S. M., and SMmITH, J. M., “The
SwitchWare active network architecture,” IEEE Network Special Issue on Active and
Controllable Networks, vol. 12, no. 3, 1998.

ALEXANDER, D. S., MENAGE, P. B., KEroMYTIS, A. D., ARBAUGH, W. A.,
AnagnosTAKkIS, K. G., and SMITH, J. M., “The Price of Safety in An Active
Network,” Journal of Communications and Networks (JCN), special issue on pro-
grammable switches and routers, vol. 3, pp. 4-18, Mar. 2001.

ANDERSEN, D. G., BALAKRISHNAN, H., KAASHOEK, M. F., and MoORRIs, R., “Re-

silient Overlay Networks,” in Proc. of 17th Symposium of Operating Systems Princi-
ples (SOSP-17), (Banff, Canada), 2001.

APOSTOLOPOULOS, G., AUBESPIN, D., PERIS, V., PRADHAN, P., and SAHA, D.,
“Design, Implementation and Performance of a Content-Based Switch,” in Proc. of
IEEE INFOCOM 2000, vol. 3, (Tel Aviv, Israel), pp. 1117-1126, Mar. 2000.

BERSHAD, B., SAVAGE, S., PARDYAK, P., SIRER, E. G., BECKER, D., FIUCZYNSKI,
M., CHAMBERS, C., and EGGERS, S., “Extensibility, Safety and Performance in the
SPIN Operating System,” in Proceedings of the 15th ACM Symposium on Operating
System Principles (SOSP-15), (Copper Mountain, CO), 1995.

BHATTACHARJEE, B., AMMAR, M., ZEGURA, E., SHAH, V., and FEI, Z.,
“Application-Layer Anycasting,” in Proceedings of INFOCOM’97, (Kobe, Japan),
1997.

BHATTACHARJEE, S., CALVERT, K., and ZEGURA, E. W., “An architecture for active
networking,” in Proceedings of High Performance Networking (HPN), (White Plains,
NY), 1997.

BuATTI, N. T., HILTUNEN, M. A., SCHLICHTING, R. D., and CHiu, W., “Coyote:
A System for Constructing Fine-Grain Configurable Communication Services,” ACM
Transactions on Computer Systems, vol. 16, pp. 321-366, Nov. 1998.

114

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[25]

BHOEDJANG, R., RUHL, T., and BAL, H., “Efficient Multicast on Myrinet Using
Link-Level Flow Control,” in Proceedings of International Conference on Parallel Pro-
cessing, (Minneapolis, MN), pp. 381-390, 1998.

BHOEDJANG, R., RUHL, T., and BAL, H., “User Level Network Interface Protocols,”
IEEE Computer, vol. 31, no. 11, pp. 53-60, 1998.

Bova, T. and KRIVORUCHKA, T., “ Reliable UDP Protocol - Internet Draft,” Feb.
1999. draft-ietf-sigtran-reliable-udp-00.txt.

BrAuN, F., LOCKWOOD, J., and WALDVOGEL, M., “Protocol wrappers for layered

network packet processing in reconfigurable networks,” IEEE Micro, vol. 22, pp. 66—
74, Jan./Feb. 2002.

Bussg, 1., BEFFNER, B., and SCHULZRINNE, H., “Dynamic QoS Control of Multi-
media Applications Based on RTP,” Computer Communications, 1996.

BUSTAMANTE, F., EISENHAUER, G., SCHWAN, K., and WIDENER, P., “Efficient

Wire Formats for High Performance Computing,” in Proc. of Supercomputing 2000,
(Dallas, TX), Nov. 2000.

BusTtAMANTE, F., EISENHAUER, G., WIDENER, P., ScHwWAN, K., and Pu, C.,
“Active Streams: An Approach to Adaptive Distributed Systems,” in Proc. of 8th
Workshop HotOS-VIII, (Elmau/Oberbayern, Germany), May 2001.

CALVERT, K., GRIFFION, J., and WEN, S., “Lightweight Network Support for Scal-
able End-to-End Services,” in Proceedings of SIGCOMM’02, (Pittsburg, PA), 2002.

CaAamPBELL, A. T., CHOU, S., Kounavis, M. E., STACHTOS, V. D., and VICENTE,
J. B., “NetBind: A Binding Tool for Constructing Data Paths in Network Processor-
based Routers,” in Proc. of IEEE OPENARCH’ 02, (New York City, NY), June 2002.

CARZAGINA, A., ROSENBLUM, D. S., and WoLF, A. L., “Design and Evaluation of

a Wide-area Event Notification Service,” ACM Transactions on Computer Systems,
vol. 19, no. 3, pp. 332-383, 2001.

CASTRO, M., DRUSCHEL, P., KERMARREC, A.-M., NANDI, A., ROWSTRON, A., and
SINGH, A., “SplitStream: High-Bandwidth Multicast in Cooperative Environments,”
in Proc. of 18th Symposium of Operating Systems Principles (SOSP-18), (Bolton
Landing, NY), 2003.

CHANDRA, P., CHu, Y.-H., FisHER, A., GAo, J., Kosak, C., Ng, T. E.,
STEENKISTE, P., TAKAHASHI, E., and ZHANG, H., “Darwin: Customizable Resource
Management for Value-Added Network Services,” IEEE Network, vol. 15, no. 1, 2001.

CHARITAKIS, 1., PNEVMATIKATOS, D., MARKATOS, E., and ANAGNOSTAKIS, K.,
“S2I: a Tool for Automatic Rule Match Compilation for the IXP Network Proces-
sor,” in Proceedings of the 7th International Workshop on Software and Compilers

for Embedded Systems (SCOPES 2003), (Vienna, Austria), 2003.

Chelsio Communications, The Terminator Architecture. White Paper, 2004.

115

[26]

[27]

CLARK, C., LEE, W., SCHIMMEL, D., ConTIis, D., KONE, M., and THOMAS, A.,
“A Hardware Platform for Network Intrusion Detection and Prevention,” in Proceed-
ings of The 3rd Workshop on Network Processors and Applications (NP3), (Madrid,
Spain), 2004.

CoNsEL, C., HAmMDI, H., REVEILLERE, L., LENIN SINGARAVELU, YU, H., and Pu,
C., “Spidle: A DSL Approach to Specifying Streaming Applications,” in Proceedings
of the 2nd International Conference on Generative Programming and Component En-
gineering, (Erfurt, Germany), Sept. 2003.

DONGARRA, J. J., BuncH, J. R., MOLER, C. B., and STEWART, G. W., LINPACK
Users’ Guide. Philadelphia, PA: Society for Industrial and Applied Mathematics
(SIAM Publications), 1979.

DRUSCHEL, P. and ROWSTRON, A., “Pastry: Scalable, distributed object location
and routing for large-scale peer-to-peer systems,” in Proc. of the 18th IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware 2001), (Hei-
delberg, Germany), Nov. 2001.

EISENHAUER, G., BUSTAMANTE, F., and SCcHWAN, K., “Event Services for High

Performance Computing,” in Proc. of Ninth High Performance Distributed Computing
(HPDC-9), (Pittsburg, PA), Aug. 2000.

EXchip Technologies, Network Processor Designs for Next-Generation Networking
Equipment. White Paper, 1999.

FEGgHALI, W., BURRES, B., WOLRICH, G., and CARRIGAN, D., “Security: Adding
Protection to the Network via the Network Processor,” Intel Technology Journal,
vol. 6, no. 3, 2002.

FELDMEIER, D. C., MCAULEY, A. J., SMITH, J., BAKIN, D., MARCUS, W., and
RALEIGH, T., “Protocol Boosters,” IEEE JSAC, Special Issue on Protocol Architec-
tures for 21st Century, vol. 16, pp. 437-444, Apr. 1998.

Fruczynski, M. E., MARTIN, R. P., Owa, T., and BERSHAD, B. N., “SPINE -
A Safe Programmable and Integrated Network Environment,” in Proc. of 8th ACM
SIGOPS European Workshop, (Sintra, Portugal), Sept. 1998.

FrLINN, J., NARAYANAN, D., and SATYANARAYANAN, M., “Self-Tuned Remote Ex-
ecution for Pervasive Computing,” in Proc of 8th IEEE HotOS Conference, (El-
mau/Oberbayern, Germany), 2001.

Fox, A., GRIBBLE, S., CHAWATHE, Y., BREWER, E., and GAUTHIER, P., “Cluster-
based Scalable Network Services,” in Proc of Sizteenth ACM Symposium on Operating
System Principles, 1999.

Fox, G., Wu, W., UvAr, A., and Burur, H., “Design and Implementation of
an Audio/Video Collboration System based on Publish/subscribe Middleware,” in
Proceedings of CTS04, (San Diego, CA), 2004.

Fu, X., SHI, W., AKKERMAN, A., and KARAMCHETI, V., “CANS: Composable,
Adaptive Network Services Infrastructure,” in USENIX Symposium on Internet Tech-
nologies and Systems (USITS), Mar. 2001.

116

[39]

[40]

[41]

[46]

[50]

[51]

GANEV, 1., EISENHAUER, G., and SCHWAN, K., “Kernel Plugins: When a VM is Too

Much,” in Proceedings of the 3rd Virtual Machine Research and Technology Sympo-
sium (VM’04), (San Jose, CA), May 2004.

GAVRILOVSKA, A., MACKENZIE, K., SCHWAN, K., and McDONALD, A., “Stream

Handlers: Application-specific Message Services on Attached Network Processors,” in
Proc. of Hot Interconnects 10, (Stanford, CA), Aug. 2002.

GAVRILOVSKA, A., SCHWAN, K., NORDSTROM, O., and SEIFU, H., “Network Pro-

cessors as Building Blocks in Overlay Networks,” in Proc. of Hot Interconnects 11,
(Stanford, CA), Aug. 2003.

GAVRILOVSKA, A., SCHWAN, K., and OLESON, V., “Adaptable Mirroring for Cluster
Servers,” in Proc. of 10th High Performance Distributed Systems, (San Francisco, CA),
Aug. 2001.

GAVRILOVSKA, A., SCHWAN, K., and OLESON, V., “Practical Approach for Zero
Downtime in an Operational Information System,” in Proc. of 22nd International
Conference on Distributed Computing Systems (ICDCS’02), (Vienna, Austria), July
2002.

GiBBONSs, P. B., Krapr, B., Kg, Y., NATH, S., and SESHAN, S., “IrisNet: An
Architecture for a World-Wide Sensor Web,” IEEE Pervasive Computing.

G, C. D., Kunns, F., LEVINE, D., ScamipT, D. C., DOERR, B. S., , and
ScHANTZ, R. E., “Applying Adaptive Real-time Middleware to Address Grand Chal-
lenges of COTS-based Mission-Critical Real-Time Systems,” in Proceedings of the 1st
International Workshop on Real-Time Mission-Critical Systems: Grand Challenge
Problems, (Phoenix, Arizona), Nov. 1999.

Hicks, M., KAKKAR, P., MOORE, J. T., GUNTER, C. A., and NETTLES, S.,
“PLAN: A Packet Language for Active Networks,” in Proceedings of the 3rd Inter-
national Conference on Functional Programming (ICFP’98), (Baltimore, Maryland),
1998.

HiLTuNeEN, M. A., IMMANUEL, V., and SCHLICHTING, R. D., “Supporting Cus-
tomized Failure Models for Distributed Services,” Distributed System Engineering,
vol. 6, pp. 103-111, Dec. 1999.

HiuTuNEN, M. A. and SCHLICHTING, R. D., “The Cactus Approach to Building Con-
figurable Middleware Services,” in Proc. of the Workshop on Dependable System Mid-
dleware and Group Communication (DSMGC 2000), (Nuremberg, Germany), Oct.
2000.

Husak, D. and GOHN, R., Network Processor Programming Models: The Key to
Achieving Faster Time-to-Market and Eztending Product Life. White Paper. C-Port.
A Motorola Company, 2001.

Intel Corporation, Intel Network Processor Family. http://developer.intel.com/-
design/network/producs/npfamily/.

Intel Corporation, Intel IXA SDA ACE Programming Framework, 2001.

117

[52]
[53]

[54]

[55]

[56]

Intel Corporation, IXP1200: Software Development Kit 2.0, 2002.

Intel Corporation, Intel IXP2400 Network Processor: Flexible, High-Performance So-
lution for Access and Edge Applications. White Paper, 2003.

Intel Corporation, Introduction to the Auto-Partitioning Programming Model Acceler-
ating Custom Application Development on Intel IXP2zzz Network Processors. White
Paper, Oct. 2003.

KeeTON, K., PATTERSON, D. A., and HELLERSTEIN, J. M., “A case for intelligent
disks (idisks),” SIGMOD Record, vol. 27, Sept. 1998.

KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI, J., and KAASHOEK, M. F., “The
Click Modular Router,” Aug. 2000.

Kounavis, M., KUMAR, A., VIN, H. M., YAVATCKAR, R., and CAMPBELL, A., “Di-
rections in Packet Classification for Network Processors,” Network Processors Design:
Issues and Practice, vol. 2, 2003.

KRISHNAMURTHY, R., YALAMANCHILI, S., SCHWAN, K., and WEST, R., “Architec-

ture and Hardware for Scheduling Gigabit Packet Streams,” in Proc. of Hot Intercon-
nects 10, (Stanford, CA), Aug. 2002.

KRISHNAMURTHY, R., SCHWAN, K., and Rosu, M., “A Network Co-Processor-Based

Approach to Scalable Media Streaming in Servers,” in Proc. of International Confer-
ence on Parallel Processing (ICPP), Aug. 2000.

KRISHNASWAMY, V., WALTHER, D., BHOLA, S., BoMMAIAH, E., RILEY, G.,
ToroL, B., and AHAMAD, M., “Efficient Implementation of Java Remote Method
Invocation (RMI),” in Proceedings of the 4th USENIX Conference on Object-Oriented
Technologies and Systems (COOTS), (Santa Fe, NM), 1998.

KuMAR, R., WOLENETZ, M., AGARWALLA, B., SHIN, J., HuTTO, P., PAUL, A.,
and RAMACHANDRAN, U., “DFuse: A Framework for Distributed Data Fusion,” in
Proceedings of ACM SenSys’03, (Los Angeles, CA), Nov. 2003.

LEGEDZA, U., WETHERALL, D. J., , and GUTTAG, J., “Improving The Performance
of Distributed Applications Using Active Networks,” in Proc. of IEEE INFOCOM’98,
(San Francisco, CA), Apr. 1998.

Liao, C., MARTINOSI, M., and CLARK, D. W., “Performance Monitoring in a
Myrinet-Connected Shrimp Cluster,” in ACM Sigmetrics Symposium on Parallel and
Distributed Tools (SPDT), Aug. 1998.

LN, Y.-D., LiN, Y.-N., YANG, S.-C., and LiN, Y.-S., “DiffServ over Network Pro-
cessors: Implementation and Evaluation,” in Proc. of Hot Interconnects 10, (Stanford,
CA), Aug. 2002.

Linsys, Linksys, Broadband and Wireless Networking. http://www.linksys.com.

Liu, L., TANG, W., BUTTLER, D., and Pu, C., “Information Monitoring on the
Wed: A Scalable Solution,” World Wide Web Journal, vol. 5, no. 4, 2001.

118

[67]

[70]

[74]

[75]

Liwu, X., KrEITZ, C., VAN RENESSE, R., HICKEY, J., HAYDEN, M., BirmMAN, K.,
and CONSTABLE, R., “Building reliable, high-performance communication systems
from components,” in Proc. of 17th ACM Symposium on Operating Systems Principles
(S0S5P’99), (Kiawah Island, SC), Dec. 1999.

MACKENZIE, K., SHI, W., McDONALD, A., and GANEV, 1., “An Intel IXP1200-
based Network Interface,” in Proceedings of the Workshop on Novel Uses of System
Area Networks at HPCA (SAN-2 2003), (Anaheim, CA), Feb. 2003.

MOSBERGER, D. and PETERSON, L. L., “Making paths explicit in the Scout operat-

ing system,” in Proceedings of the 2nd Symposium on Operating Systems Design and
Implementation (OSDI), 1996.

OLESON, V., ScHwAN, K., EISENHAUER, G., PLALE, B., Pu, C., and AMIN, D.,
“Operational Information Systems - An Example from the Airline Industry,” in First
Workshop on Industrial Ezperiences with Systems Software (WIESS), Oct. 2000.

OTEY, M., NORONHA, R., PARTHASARATHY, S., and PANDA, D. K., “NIC-based
Intrusion Detection: A Feasibility Study,” in Proceedings of the Workshop on Data
Mining for Cyber Threat Analysis, 2002.

Pa1, V., Cox, A., Pa1, V., and ZWAENEPOEL, W., “A Flexible and Efficient AP-
plication Programming Interface (API) for a Customizable Proxy Cache,” in Proc. of
4th USENIX Symposium on Internet Technologies and Systems, (Seattle, WA), 2003.

PALLICKARA, S. and Fox, G., “NaradaBrokering: A Distributed Middleware Frame-
work and Architecture for Enabling Durable Peer-to-Peer Grids,” in Proceedings of
ACM/IFIP/USENIX International Middleware Conference Middleware-2003, (Rio
Janeiro, Brazil), 2003.

PARKER, M., Davis, A., and HsiEH, W., “Message-Passing for the 21st Century:
Intergrating User-Level Networks with SMT,” in Proc. of MTEAC 2001, 2001.

Path 1 Network Technologies, Professional Digital Video Gateways for the Broad-
caster and Multi-Service Operator: Delivered by Path 1 Network Technologies* and In-
tel Network Processors. White Paper, 2002. http://www.intel.com/design/network/-
casestudies/pathl.htm.

PETERsON, L. L., KArLIN, S. C., and L1, K., “OS support for general-purpose
routers,” in Proceedings of the 7th Workshop on Hot Topics in Operating Systems
(HotOS-VII), 1999.

PLALE, B., ELLING, V., EISENHAUER, G., SCHWAN, K., KING, D., and MARTIN,
V., “Realizing Distributed Computational Laboratories,” International Journal of
Parallel and Distributed Systems and Networks, vol. 2, no. 3, 1999.

POELLABAUER, C., ABAssSI, H., and ScHWAN, K., “Cooperative Run-time Manage-
ment of Adaptive Applications and Distributed Resources,” in Proc. of the 10th ACM
Multimedia Conference, (Juan-les-Pins, France), Dec. 2002.

POELLABAUER, C., SCHWAN, K., AGARWALA, S., GAVRILOVSKA, A., EISENHAUER,
G., PAnNDE, S., Pu, C., and WoLF, M., “Service Morphing: Integrated System-

119

[80]

[81]

[82]

[83]

[84]

and Application-Level Service Adaptation in Autonomic Systems,” in Proc. of the 5th
Annual International Workshop on Active Middleware Services (AMS 2003), (Seattle,
WA), June 2003.

PoONNEKANTI, S. R. and Fox, A., “SWORD: A Developer Toolkit for Web Service
Composition,” in Proc. of the 11th World Wide Web Conference, (Honolulu, HI),
2002.

Pu, C., AUTREY, T., BLACK, A., CONSEL, C., COWAN, C., INOUYE, J., KETHANA,
L., WALPOLE, J., and ZHANG, K., “Optimistic Incremental Specialization: Stream-
lining a. Commercial Operating System,” in Proc. of the 15th ACM Symposium on
Operating Systems Principles (SOSP’95), (Copper Mountain, Colorado), Dec. 1995.

Pu, C., Scuwan, K., and WALPOLE, J., “Infosphere Project: System Support for
Information Flow Applications,” ACM SIGMOD Record, vol. 30, Mar. 2001.

RadiSys Corporation, Radisys ENP-2611 Data Sheet. http://www.radisys.com/files/-
ENP-2611_07-1236-02_0803.pdf.

RAMAN, B. and KATZ, R., “An Architecture for Highly Available Wide-Area Service
Composition,” Computer Communications Journal, special issue on ”Recent Advances
in Communication Networking”, May 2003.

REGNIER, G., MINTURN, D., MCALPINE, G., SALETORE, V., and FooNG, A.,
“ETA: Experience with an Intel Xeon Processor as a Packet Processing Engine,” in
Proc. of Symposium of Hot Interconnects, (Stanford, CA), 2003.

RENAMBOT, L., BAL, H., GERMANS, D., and SPOELDER, H., “CAVEStudy: an
Infrastructure for Computational Steering in Virtual Reality Environments,” in Proc.
of High Performance Distributed Computing (HPDC-9), (Pittsburgh, PA), Aug. 2000.

Rosu, M. C. and Rosu, D., “An Evaluation of TCP Splice Benefits in Web Proxy
Servers,” in Proc. of WWW2002: The 11th International World Wide Web Confer-
ence, (Honolulu, Hawaii), 2002.

Rosu, M.-C., ScawaN, K., and FusimoTo, R., “Supporting Parallel Applications
on Clusters of Workstations: The Virtual Communication Machine-based Architec-

ture,” Cluster Computing, Special Issue on High Performance Distributed Computing,
May 1998.

ROWSTRON, A., KERMARREC, A.-M., CASTRO, M., and DRUSCHEL, P., “SCRIBE:
The design of a large-scale event notification infrastructure,” in Proc of 3rd Interna-
tional Workshop on Networked Group Communication, (London, UK), 2001.

Rov, S., ANKCORN, J., and WEE, S., “An Architecture for Componentized,
Network-Based Media Services,” in Proc. of IEEE International Conference on Mul-
timedia and Ezpo, July 2003.

SA1TO, Y., BERSHAD, B., and LEVY, H., “ Manageability, Availability, and Perfor-
mance in Porcupine: A Highly Scalable Cluster-based Mail Service,” in Proc of 17th
ACM SOSP, OS Review, (Kiawah Island Resort, SC), Dec. 1999.

120

[92]

[93]

[94]

[95]
[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

SANDERS, M., KEATON, M., BHATTACHARJEE, S., CALVERT, K., ZABELE, S., and
ZEGURA, E., “Active Reliable Multicast on CANEs: A Case Study,” in Proc. of IEEE
OpenArch 2001, (Anchorage, Alaska), Apr. 2001.

SENAPATHI, S., CHANDRASEKHARAN, B., STREDNEY, D., SHEN, H.-W., and
Panpa, D. K., “QoS-aware Middleware for Cluster-based Servers to Support Inter-
active and Resource-Adaptive Applications,” in Proceedings of the 12th Symposium
on High Performance Distributed Computing (HPDC-12), (Seattle, WA), 2003.

SHAH, N. and KEUTZER, K., “Network Processors: Origin of Species,” in Proceedings
of the 17th International Symposium on Computer and Information Science (ISCIS
XVII), 2002.

SiTera Corporation, PRISM 1Q2000. Product Brief, 2000.

SwmiTH, J., HADzIC, 1., and MARCUSs, W., “ACTIVE Interconnects: Let’s Have Some
Guts,” in Proc. of Hot Interconnects 6, (Palo Alto, CA), Aug. 1998.

SNOEREN, A. C., CONLEY, K., and GIFFORD, D. K., “Mesh Based Content Rout-
ing using XML,” in Proc. of 18th ACM Symposium on Operating Systems Principes
(SOSP’01), (Banff, Canada), Oct. 2001.

SPALINK, T., KARLIN, S., PETERSON, L., and GOTTLIEB, Y., “Building a Ro-
bust Software-Based Router Using Network Processors,” in Proc. of 18th SOSP’01,
(Chateau Lake Louise, Banff, Canada), Oct. 2001.

STALLINGS, W., “IPv6: The New Internet Protocol,” IEEE Communications Maga-
zine, 1996.

STEENKISTE, P., CHANDRA, P., GAO, J., and SHAH, U., “An Active Networking

Approach to Service Customization,” in DARPA Active Networks Conference and
Ezposition (DANCE), pp. 305-318, IEEE Computer Society, 2002.

STOICA, 1., MORRIS, R., KARGER, D., KAASHOEK, M. F., and BALAKRISHNAN,
H., “Chord: A Scalable Peer-to-peer Lookup Service for Internet Applications,” in
Proc. of ACM SIGCOMM 2001, (San Diego, CA), Aug. 2001.

TAYLOR, D. E., Lockwoob, J. W., SPROULL, T. S., TURNER, J. S., and PARLOUR,
D. B., “Scalable TP Lookup for Programmable Routers,” in Proc. of IEEE Infocom
2002, (New York, NY), June 2002.

TAYLOR, D. E., TURNER, J. S., and LockwooD, J. W., “Dynamic Hardware Plug-
ins (DHP): Exploiting Reconfigurable Hardware for High-Performance Programmable
Routers,” in Proc. of 4th IEEE Conference on Open Architectures and Network Pro-
gramming (OPENARCH’01), (Anchorage, AK), Apr. 2001.

THIES, W., KARCZMAREK, M., and AMARASINGHE, S., “Streamlt: A Language

for Streaming Applications,” in International Conference on Compiler Construction
(ICCC’02, (Grenoble, France), Apr. 2002.

Tibco Software Inc., Tibco ActiveEnterprise: XML Tools. http://www.tibco.com/-
solutions/products/extensibility /.

121

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

WETHERALL, D. J., “Active Network Vision and Reality: Lessons from a Capsule-
based System,” in Proc. of he 17th ACM Symposium on Operating System Principles
(SOSP’99), (Kiawah Island, SC), Dec. 1999.

WHEELER, B. and GWENNAP, L., The Guide to Network Processors. The Linley
Group, 2003.

WIDENER, P., EISENHAUER, G., SCHWAN, K., and BUSTAMANTE, F., “Open Meta-
data Formats: Efficient XML-Based Communication for High Performance Comput-
ing,” Cluster Computing: The Journal of Networks, Software Tools, and Applications,
no. 5, pp. 315-324, 2002.

WoLr, M., CA1, Z., HUANG, W., and SCHWAN, K., “Smart Pointers: Personalized
Scientific Data Portals in Your Hand,” in Proc. of Supercomputing 2002, Nov. 2002.

XiE, Y., O’HALLARON, D., and REITER, M., “A Secure Distributed Search System,”
in Proc. of 11th Symposium on High Performance Distributed Systems (HPDC-11),
(Edinburgh, Scotland), 2002.

YAMADA, T., WAKAMIYA, N., MURATA, M., and MIYAHARA, H., “Implementation
and evaluation of video-quality adjustment for heterogeneous video multicast,” in
Proceedings of The 8th Asia-Pacific Conference on Communications, 2002.

YocuM, K. and CHASE, J., “Payload Caching: High-Speed Data Forwarding for
Network Intermediaries,” in Proc. of USENIX Technical Conference (USENIX’01),
(Boston, Massachusetts), June 2001.

ZuAO, Y. and STORM, R., “Exploiting Event Stream Interpretation in Publish-
Subscribe Systems,” in Proc. of ACM Symposium on Principles of Distributed Com-
puting, (Newport, RI), Aug. 2001.

Zuou, D., SCHWAN, K., EISENHAUER, G., and CHEN, Y., “JECho — Interactive High
Performance Computing with Java Event Channels,” in Proc. of the International
Parallel and Distributed Processing Symposium (IPDPS’01), Apr. 2001.

Zuou, W., LiN, C., L1, Y., and TAN, Z., “Queue Management for QoS Provision
Build on Network Processor,” in Proceedings of the 9th Workshop on Future Trends
in Distributed Computing Systems, (San Juan, Puerto Rico), 2003.

ZHUANG, X., SHI, W., PAUL, 1., and SCHWAN, K., “Efficient Implementation of
the DWCS Algorithm on High-Speed Programmable Network Processors,” in Proc.
of Multimedia Networks and Systems (MMNS), Oct. 2002.

122

VITA

Ada Gavrilovska, was born in Skopje, Macedonia on May 25, 1975. She received her BS
in Electrical and Computer Engineering from the University Sts. Cyril and Methodius,
Skopje in 1998. That summer she joined the Systems Group at the College of Computing
at Georgia Institute of Technology. After obtaining her MS degree in Computer Science in
December 1999, she remained at Georgia Tech, and enrolled in the Ph.D. program.

In July 2004, under the supervision of Prof. Karsten Schwan, Ada completed her Ph.D.
dissertation entitled “SPLITS Stream Handlers: Deploying Application-level Services to
Attached Network Processors”. Her research interest range from distributed systems, to

active middleware, to extensible network infrastructures and active networking.

123

