
Cooperative Concurrency Control
for Write-Intensive Key-Value Workloads

Mark Sutherland
EcoCloud, EPFL

Lausanne, Switzerland
mark.sutherland@alumni.epfl.ch

Babak Falsafi
EcoCloud, EPFL

Lausanne, Switzerland
babak.falsafi@epfl.ch

Alexandros Daglis
Georgia Institute of Technology

Atlanta, Georgia, USA
alexandros.daglis@cc.gatech.edu

ABSTRACT

Key-Value Stores (KVS) are foundational infrastructure components
for online services. Due to their latency-critical nature, today’s
best-performing KVS contain a plethora of full-stack optimizations
commonly targeting read-mostly, popularity-skewed workloads.
Motivated by production studies showing the increased prevalence
of write-intensive workloads, we break down the KVS workload
space into four distinct classes, and argue that current designs are
only sufficient for two of them. The reason is that KVS concurrency
control protocols expose a fundamental tradeoff: avoiding synchro-
nization by partitioning writes across threads is mandatory for high
throughput, but necessarily creates load imbalance that grows with
core count and write fraction. We break this tradeoff with C-4, a co-
design between NIC hardware and KVS software that judiciously
separates write requests into two classes: independent ones that
can be balanced across threads, and dependent ones which must
be queued. C-4 dynamically partitions independent writes with
the NIC to increase the load balancing flexibility of current KVS
designs, and adds a software layer to the KVS to compact dependent
writes into batches. Our evaluation shows that for write-intensive
workloads, C-4 reduces 99th% tail latency by 1.3− 5× and improves
throughput by up to 1.7×.
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tures; • Networks → Network servers.
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1 INTRODUCTION

Key-Value Stores (KVS) are a backbone for online services because
of the broad applicability of their elegant interface. Due to their
widespread use, production KVS must meet extremely demanding
performance constraints, because their latency directly impacts the
response time of user queries that must meet real-time interactivity
requirements. This combination of ubiquity and stringent perfor-
mance needs has driven major research and development efforts to
optimize underlying system layers [7, 54, 61, 71], or even employ
dedicated hardware [44, 58] to boost KVS performance.

Despite the expansion of KVS into new deployment contexts [11],
today’s state-of-the-art KVS are still architected for yesterday’s
workloads. Emerging use cases such as distributed machine learn-
ing [90], publish-subscribe systems [1], or message queues [82]
often have drastically different characteristics than canonical read-
dominated workloads [11, 90]. To quantify, recent studies of pro-
duction KVS traces reveal that >30% of workloads at Twitter have
more writes than reads [90]. Furthermore, the popularity skew
between items is drastically greater than typically assumed, with
50% of workloads exhibiting data popularity skew coefficients be-
tween 1.4–2.5 [90], compared to the vast majority of prior work
considering coefficients near unity [12, 21, 58, 60, 61, 75].

The diversification of KVS workloads has direct performance
implications for server systems: today’s KVS designs drastically
and necessarily under-utilize server hardware due to load imbal-
ance between threads. The underlying cause for such imbalance
is that current KVS statically partition writes among threads, a
necessary design decision for high throughput when deploying
KVS on manycore servers [60, 61, 91]. Write partitioning precludes
any load-balancing framework from operating on writes by design,
which we show can result in up to 1.7× throughput loss, or up to
5× higher tail latency than what should be possible. Therefore, we
conclude that in order to justify the steep cost of keeping data in
memory [25] and fully utilize the capabilities of powerful server
hardware, it is necessary to revisit today’s KVS designs to effectively
handle write-intensive workloads.

We analyze these emerging workloads via a KVSworkload taxon-
omy, and isolate the following two distinct yet common workloads
that create load imbalance. Workloads having light popularity skew
and large fractions of write requests suffer increased tail latency
because of transient queueing events created by the inability to
load-balance writes. In contrast, under extreme popularity skew,
the thread handling writes to the hottest data item is overloaded
and caps the KVS’ throughput despite other threads being idle.

We posit that addressing both problematic workload characteris-
tics requires the system’s load balancer to distinguish independent
from dependent writes, and make decisions accordingly. When
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the workload has many independent writes, static partitioning can
be relaxed because true write conflicts are exceedingly rare. In
contrast, when extreme skew creates frequent dependent writes,
foregoing load balancing and assigning all the writes to a single
thread implicitly enables that thread to perform a single batched
update comprised of the many dependent writes.

Following these insights, we introduceC-4, aCooperativeConcur-
rency Control Co-design of NIC hardware and KVS software that
breaks the tradeoff between write partitioning and load imbalance.
C-4’s NIC hardware additions apply inter-thread load balancing
for independent writes, while still allowing threads to elide expen-
sive locking primitives. When a thread handles multiple dependent
writes, C-4 compacts these writes in software into a single batched
update, boosting all threads’ throughputs via improved locality and
fewer reader-writer interactions.C-4 performs both such operations
while preserving strong consistency guarantees. To summarize, we
make the following contributions:

• We construct a KVS workload taxonomy comprising four dis-
tinct regions, and show that existing designs only sufficiently
accommodate half of the workload space.

• We show that the common issue for both problematic re-
gions is a concurrency control policy relying on static write
partitioning. Using discrete-event simulation, we show such
policies result in up to 5× worse tail latency, and up to 45%
reduced throughput on modern manycore CPUs.

• We introduce C-4, a NIC-software co-design, to address both
problematic workload regions. C-4 outperforms the state-of-
the-art KVS design by reducing 99th percentile latency by
1.3 − 5× and increasing throughput by 1.3 − 1.7×.

We begin by presenting our motivation and KVS workload tax-
onomy in Sec. 2. Then, Sec. 3 quantifies the impacts of the tradeoff
between write partitioning and load imbalance. Sec. 4 and Sec. 5 in-
troduce C-4’s design and implementation. We describe our method-
ology in Sec. 6 and evaluate C-4 in Sec. 7. We discuss related work
in Sec. 8 and conclude in Sec. 9.

2 MOTIVATION

In today’s datacenters, KVS have transcended their traditional use-
cases such as in-memory caching of disk-resident data [10, 29, 73].
Due to the fact that online services demand near real-time response
latencies, KVS must operate with stringent limits on the latency of
their slowest responses, known as the “tail latency” [18]. Therefore,
it is logical for KVS to adopt state-of-the-art proposals promising
reduced network delay, kernel-bypass protocols, and first-class load
balancing [7, 17, 54, 71, 83].

Write-intensive workloads are a critical open challenge in KVS
research, because state-of-the-art KVS systems are often expressly
designed around read-mostly workloads with considerable item
popularity skew [44, 58, 60, 61, 75]. Emerging studies of produc-
tion KVS data have revealed the prevalence of workloads that are
more write-intensive and/or more severely skewed than previously
assumed [11, 90], leading to a natural question: what bottlenecks
prevent today’s KVS from performing ideally on such workloads?
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Figure 1: KVS workload taxonomy, with the blue regions

targeted by C-4.

2.1 KVS Workload Taxonomy

A given KVS workload can be represented by its location on the
cross-product of two axes representing its skewness and write
fraction—knowing a workload’s location is enough to intuitively
describe its characteristics and associated bottlenecks. Fig. 1 shows
these two axes and identifies four regions that serve as a “span-
ning set” of the space. Regions are identified using the nomencla-
ture {𝑅 |𝑅𝑊 |𝑊𝐼 } (𝑠𝑘 |𝑢𝑛𝑖 ) , where the leading letter(s) represent(s)
whether the workload is read-mostly, read-write, or write-intensive,
and the subscript represents whether the data popularity distribu-
tion is skewed or pseudo-uniform.

The two regions lying beneath Fig. 1’s dashed line are well-
studied in KVS literature. 𝑅𝑢𝑛𝑖 workloads are the least challenging—
providing a high-throughput KVS is possible with existing systems
such as memcached [69]. Adding popularity skew moves the work-
load to the 𝑅𝑠𝑘 region, where performance is primarily determined
by the maximum throughput to read the hottest items. Absorbing
the workload’s skew requires the KVS to use a concurrency control
policy supporting concurrent lock-free readers, such asMICA [60, 61],
Masstree [64], RackOut [75], KV-Direct [58], and ccKVS [31].

In contrast, workloads above the dashed line are largely unad-
dressed by current research. The fundamental challenge in both
workload regions is that the increased prevalence of writes creates a
tradeoff between high system throughput and load imbalance across
threads. When writes are plentiful, achieving high throughput man-
dates a concurrency control policy that partitions writes across
threads to avoid synchronization overheads, known as Concurrent
Read, Exclusive Write (CREW [61]). However, such partitioning
necessarily creates load imbalance that leads to either increased
tail latency or throughput bottlenecks.
𝑊𝐼𝑢𝑛𝑖 workloads (e.g., those with ≥ 50% writes) will experience

inflated tail latencies on today’s KVS’ simply because write parti-
tioning precludes any load balancing framework [17, 54, 83] from
acting on 50% or more of the requests. A recent characterization
from Twitter has shown that more than 35% of their production
workloads can be classified as𝑊𝐼𝑢𝑛𝑖 [90], motivating additional
work to handle them with improved tail latency. Facebook also
reports the prevalence of extremely write-dominated workloads
(i.e., having 92% writes) that store ML statistics [11, §4.1].
𝑅𝑊𝑠𝑘 workloads also lack write load balancing, and face two

additional challenges. First, the write load on a small group of items
can be high enough to overwhelm the hottest thread. Although
this challenge has been identified in prior work, the issue has been
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understood to apply to 𝑅𝑊𝑠𝑘 workloads with ∼ 50% writes [44, 60,
75]. However, in light of recent work showing that skew coefficients
are far higher than previously studied [90], static write imbalance
becomes a far more common bottleneck. We demonstrate that such
imbalance can occur even with single-digit write fractions. Second,
the workload’s read-write nature creates high contention on the
hottest cache lines, further decreasing per-thread throughput.

We specifically identify concurrency control policies using static
write partitioning as the underlying cause of both problems. A
theoretically optimal system would allow any thread to serve reads
and writes, leading to completely balanced load. However, enabling
concurrent writers has been shown to reduce KVS throughput by
2× due to the need for atomic instructions for synchronization, and
assumed costs in cache coherence [61].

Furthermore, although emerging frameworks exist that would
enable write load balancing [53, 66], they are unlikely to yield
benefits for in-memory KVS with µs-scale service times. Despite
drastically improving scalability, these frameworks’ use of soft-
ware transactional memory techniques (e.g., version-chaining and
garbage collection) translate to limited performance gains because
of the additional overheads from version management. We con-
firmed this by porting a hash table-based KVS to the Multi-version
Read-Log-Update (MV-RLU) framework [53], and observed that
read and write latencies increased by 1.75× and 2−40× respectively.
Therefore, instead of pursuing write concurrency, we contribute
two insights allowing write partitioning to serve as an enabling
factor rather than an impediment.

Insight 1: Static write partitioning is overly conservative, and can be
relaxed in the vast majority of cases. The only time write partition-
ing is strictly mandatory is when two writes to the same partition
are outstanding at the same time—there is no reason for a write to
partition 𝑃𝑋 to queue behind one to 𝑃𝑌 when 𝑋 ≠ 𝑌 . Load balanc-
ing of independent writes would allow𝑊𝐼𝑢𝑛𝑖 workloads to have
nearly identical tail latency to 𝑅𝑢𝑛𝑖 ones.

Insight 2: Write partitioning naturally creates batches of queued
writes that can be compacted into a single update. In 𝑅𝑊 𝑠𝑘 work-
loads at high load, mandatorywrite partitioning is the common case,
creating an optimization opportunity at thewriter: all queuedwrites
can be compacted into a single update, reducing reader-writer syn-
chronization and cache line access latency. Write compaction has
been previously applied to kernel data structures [9], LSM-based
KVS [2], and commutative transactions [72], but never in KVS with
µs-scale tail-latency Service Level Objectives (SLOs).

By leveraging these two insights, C-4 is the first mechanism
that enables KVS to effectively handle write-heavy workloads. As
top-performing in-memory KVS use some form of static write parti-
tioning [12, 21, 31, 60, 61, 75, 91],C-4 is applicable to all such designs.
C-4’s performance improvements reduce the resources required
for a given load (i.e., fewer servers and/or allocated cores), and
therefore grant significant cost savings in the datacenter because
thousands of servers are dedicated to KVS in production [73, 90].
Having described the challenges created by common concurrency
control choices, we now present a high-level model estimating the
benefits of improved concurrency control for emerging workloads.

…
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2 Load 
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1 Request 
creation 3 Workers & KVS
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Figure 2: Queueing model for a server running a KVS.

3 KVS CONCURRENCY CONTROL MODEL

To quantify concurrency control’s performance impacts, we use
discrete-event simulation of a queueing system modelling a many-
core server running a KVS, whose design is shown in Fig. 2. In Step
1 , the load generator component creates new requests according to
a Poisson process, with configurable inter-arrival times. We model
workloads from Fig. 1’s regions by varying the percentage of writes
and the popularity skew according to a Zipfian distribution with
configurable 𝛾 , as is standard in KVS literature [58, 60, 61, 75].

Step 2 models a load balancer (LB) component which assigns
requests to threads. If the KVS’ concurrency control policy allows
load balancing for this request type (e.g., for reads in CREW), the
LB assigns the request to a thread according to the JBSQ(2) policy,
which approximates a single-queue system [54]. If not, the LB
assigns the request to a thread by statically hashing the key.

Step 3 concerns the worker threads and the KVS itself. Our KVS
model targets a system deployed on a shared-memory multiproces-
sor, using any memory consistency model desired. We model the
KVS as a set of abstract “partitions”, each containing a version num-
ber that is used for reader-writer synchronization with optimistic
concurrency control. Writers atomically increment the partition’s
version at the beginning and end of each update, and readers retry
requests when their version checks fail. Our analysis applies regard-
less of memory consistency model or reader-writer channel. Each
request’s service time is modelled as 𝑆 = 𝑇𝑘𝑣𝑠 +𝑇𝑓 𝑖𝑥𝑒𝑑 , where 𝑇𝑘𝑣𝑠
represents the KVS’ service time, and 𝑇𝑓 𝑖𝑥𝑒𝑑 represents interacting
with the load balancer and network stack. We choose 𝑇𝑘𝑣𝑠 as uni-
formly distributed in the interval [400, 800]𝑛𝑠 to model in-memory
datastores, and 𝑇𝑓 𝑖𝑥𝑒𝑑 = 100𝑛𝑠 to model a hardware-terminated
protocol. See Sec. 6 for methodology details.

3.1 Dynamic Write Partitioning

To demonstrate the effects of Insight 1 for𝑊𝐼𝑢𝑛𝑖 workloads, we
parameterize the model with 64 worker threads, a uniform key
popularity distribution, and vary the write fraction 𝑓𝑤𝑟 from 0 −
100%. Borrowing terminology from MICA [61], we study three
concurrency control policies:

• EREW : A fully partitioned system without load balancing.
All requests are directed with static key-to-partition hashing.

• CREW : Allows concurrent readers and hence load balancing
of reads, but uses partitioned writes. The state-of-the-art for
in-memory KVS [58, 60, 61, 75].

• Dynamic: Maintains concurrent readers, and only treats a
partition 𝑃𝑋 as being in “exclusive write” mode as long as a
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Figure 3: Throughput and tail latency of modelled concur-

rency control policies with a𝑊𝐼𝑢𝑛𝑖 workload.

write is still outstanding to it. After the write is completed, fu-
ture writes to the same partition can be served by any thread.
Allows load balancing of independent writes disallowed by
EREW and CREW.

Fig. 3a shows the maximum throughput each policy can attain
under SLO, and Fig. 3b shows the resulting excess 99th% latency
compared to an ideal system that allows concurrent reads andwrites
without any synchronization overheads. In the rest of the paper, any
mention to SLO refers to a 99th% latency target of 10 × 𝑆 . Each point
in Fig. 3b is calculated by taking the maximum throughput under
SLO of that policy, and normalizing its 99th% to the ideal system at
the same load. We use this methodology to not artificially penalize
policies that reach lower throughput than the ideal system.

The additional load balancing flexibility granted by the CREW
and Dynamic policies impacts both achievable throughput and
tail latency. Fig. 3a shows EREW’s inability to balance load leads
to saturation at 75% of the ideal system’s throughput, regardless
of 𝑓𝑤𝑟 . By allowing concurrent reads, CREW matches the ideal
system’s throughput for 𝑓𝑤𝑟 < 75%. As 𝑓𝑤𝑟 approaches 100, CREW’s
performance converges to EREW due to write request queueing.
Thus, even with CREW concurrency control, the KVS must be run
at lower load to control tail latency. The Dynamic policy is not
constrained by this tradeoff, and matches the performance of the
ideal system regardless of 𝑓𝑤𝑟 .

Fig. 3b shows that CREW’s tail latency matches the ideal system
for a read-onlyworkload, and increases proportionally with 𝑓𝑤𝑟 . For
𝑊𝐼𝑢𝑛𝑖 workloads with ≥ 50% writes, the static write partitioning
of CREW and EREW inflates tail latency by 2 − 5.5×. In contrast,
the Dynamic policy delivers near-identical tail latency to the ideal
system because of its improved load balancing ability. Our model
shows that a dynamic partitioning policy following Insight 1 can
deliver the tail latency of an unattainable ideal system with full
concurrency and no synchronization overheads.
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Figure 4: Modelled throughput of CREW and compaction-

enabled KVS under 𝑅𝑊𝑠𝑘 workloads.

3.2 Write Compaction

To show the impact of static write imbalance for 𝑅𝑊𝑠𝑘 workloads
and the benefit of write compaction (Insight 2), we enhance step 3
of our queueing system as follows: i) upon receiving a new write
request, a worker scans its request queue for writes to the same
key, ii) if found, the writes are buffered into a private log, and iii)
the worker sets a timer to begin a “compaction window”. When
the timer exceeds the KVS’ specified SLO, the worker closes the
compaction window and sends replies to each compacted request.
We defer discussion of the consistency implications to Sec. 4.3.1.

While a compactionwindow is open, anywrites that are collected
in a worker’s private log have service time 𝑆𝑐𝑜𝑚𝑝 = 𝑇𝑓 𝑖𝑥𝑒𝑑 +𝑇𝑐𝑜𝑚𝑝 ,
where 𝑇𝑐𝑜𝑚𝑝 = 100𝑛𝑠 . We set 𝑇𝑐𝑜𝑚𝑝 by measuring the latency of
adding a small struct representing the compacted request to a
pre-sized std::vector on a Xeon E5-2680 CPU.

An 𝑅𝑊𝑠𝑘 workload can arise from various parameter combina-
tions in Fig. 1’s design space, as long as the write load on the hottest
partition(s) is approximately equal to 1/𝑁 where 𝑁 is the number
of workers. Due to the fact that higher write load implies greater
compaction opportunity, we study the entire design space defined
by 𝛾 ∈ [0.9, 1.4] and 𝑓𝑤𝑟 ∈ [0, 80].

Fig. 4a shows the throughput under SLO of a CREW KVS, nor-
malized to the same ideal system introduced in Sec. 3.1. Our results
show that write partitioning becomes a clear bottleneck for the
vast majority of workloads making up the 𝑅𝑊𝑠𝑘 region, because
the heavy skew simply overwhelms the KVS’ hottest worker with
writes. For example, a workload with (𝛾, 𝑓𝑤𝑟 ) = (0.99, 35%) only
attains 56% of its ideal maximum throughput. Our model shows
that, for the highest skews, write partitioning leads to throughput
bottlenecks even with 𝑓𝑤𝑟 in the low single digits. For example,
our model shows that the KVS only attains 66% of its maximum
theoretically sustainable load for (𝛾, 𝑓𝑤𝑟 ) = (1.4, 5%). In compari-
son, Fig. 4b shows the throughput of a KVS with write compaction.
Compaction allows a workload with 𝛾 = 0.99 to match the ideal sys-
tem’s performance up to 𝑓𝑤𝑟 = 55%, and provides a 1.56× speedup
for a workload with (𝛾, 𝑓𝑤𝑟 ) = (1.4, 5%).

The above opportunities are in fact conservative, because our
queueing system does not consider cache or memory access times.
In a real deployment, the CREW baseline would experience sig-
nificant cache contention on the hottest partition(s), degrading
performance faster than shown in Fig. 4a and granting compaction
even greater relative improvements.
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Summary. Our models show evidence that write partitioning
is not necessarily a bottleneck for KVS performance. Following
Insight 1, dynamic write partitioning makes it possible for𝑊𝐼𝑢𝑛𝑖
workloads to attain near-ideal tail latency. Furthermore, following
Insight 2, write compaction can boost throughput under SLO by
1.5 − 2× for 𝑅𝑊𝑠𝑘 workloads.

4 C-4 DESIGN

4.1 System Prerequisites

Our design is tailored to systems featuring hardware-offloaded
protocol stacks offering RPC semantics to applications [17, 39, 54,
57, 86], because they are a better fit for low-latency transports [35,
71]. Hardware offload is mandatory to remove network and RPC
processing overheads, which still cost 1–5µs per RPC [48, 65] and
are prohibitive for µs-scale requests [39, 57, 78]. Additionally, our
work requires NIC-driven load balancing [17, 52], which we extend
to realize dynamic write partitioning.

4.2 Write Balancing for𝑊𝐼𝑢𝑛𝑖 Workloads

Sec. 3.1 demonstrates the tail latency benefits of a concurrency
control policy that enables load balancing for writes, under the
invariant that a partition can only be written by a single thread at
a time. The load balancer can maintain this invariant using a set
of ephemeral partition-to-thread mappings, and dispatch requests
accordingly. Partitions with an active mapping are in “exclusive
mode”, and all writes to them must be sent to the mapped thread,
whereas requests to other partitions can be freely load-balanced.
We call this policy “dynamic Concurrent Read, Exclusive Write”
(d-CREW).

Unlike CREW, d-CREW is a stateful policy, and should be im-
plemented server-side rather than on the clients or in the network.
CREW can be trivially implemented wherever the KVS’ static parti-
tioning function can be computed, such as on the clients [61] or in
programmable networking hardware [54, 93]. However, d-CREW
allows partition-to-thread assignments to frequently change, thus
maintaining the single-writer invariant would require constantly
updating the mappings at every entity making request-to-thread as-
signment decisions. As KVS often receive requests from thousands
of concurrent clients [73, §3.1], broadcasting partition updates is
clearly not scalable.

d-CREW could be implemented in a centralized in-network load
balancer such as RackSched [93], removing broadcasts for partition
updates. However, the increased distance between the load balancer
and KVS threads implies that partitions remain in exclusive mode
for longer than necessary, because responses to write requests
must traverse the network before partition mappings are released.
As prior work has demonstrated that tail latencies increase with
load balancer-to-server distance [54], we conclude that server-side
d-CREW will yield superior performance to an in-network design.

Fig. 5 displays our proposed design to realize d-CREW in the NIC,
by showing two writes𝑊1 and𝑊2 that target KVS partitions 𝑃1 and
𝑃𝑁 . We assume CREW’s static partitioning maps both partitions
to thread 𝑇1, meaning the load balancer must assign both𝑊1 and
𝑊2 to thread 𝑇1. In contrast, d-CREW allows the requests to be
balanced across threads 𝑇1 and 𝑇2, as long as the load balancer has
knowledge of the partition being accessed by each write request.

T1

Partition
Mappings

Load Balancer𝜆

W1 → P1

T2

1

2
W2 → PN

3b

4

…

PN+1

Pm

P1

PN …
3a

Figure 5: NIC additions for Dynamic CREW (d-CREW).

NIC extensions to extract application-level information (e.g., P4 [8]
or FlexNIC [52]) are sufficient to enable d-CREW, and we expect
them to be available in future products.

With d-CREW, the NIC in Fig. 5 unpacks each write’s application-
level header and determines the writes target partitions 𝑃1 and 𝑃𝑁
(Step 1 ). The load balancer then looks into its active partition-to-
thread mappings for the requested partitions and finds no active
match (Step 2 ), meaning that the NIC’s load balancing policy can
freely assign the requests to any thread. The NIC then creates two
new partition-to-thread mappings for 𝑃1 and 𝑃𝑁 , placing them in
exclusive mode (Step 3a ) and making them “sticky” to threads 𝑇1
and𝑇2 as long as each write is outstanding. The writes are then sent
to the threads (Step 3b ) for processing. When the threads send
responses to the writes, the partitions are no longer in exclusive
mode and the NIC can free the two respective partition mappings
(Step 4 ), allowing incoming writes to 𝑃1 and 𝑃𝑁 to be assigned to
any thread.

Introducing d-CREW into the NIC means that the state require-
ments for storing partition-to-threadmappingsmust be small enough
to result in acceptable hardware provisioning, and low enough
access times to meet the NIC’s peak sustainable throughput. To
illustrate, a server handling a workload with 75% writes at an ag-
gressive 200𝑀𝑅𝑃𝑆 , where each request takes 600𝑛𝑠 (see Sec. 3), has
roughly 90 writes outstanding at any given time. Even with over-
provisioning to absorb transient fluctuations, storing a few hundred
mappings only requires a few KBs, which today’s NICs could easily
accommodate.

Implementing “exact match” operations between incoming re-
quests and existing mappings is more difficult, because it tradition-
ally requires Content Addressable Memories (CAMs) [87]. However,
our basic estimate above (confirmed in Sec. 7.1) reveals the number
of mappings to be similar to the size of a CPU TLB. Therefore,
we believe it is feasible to implement partition-mapping hardware
using existing CAM technology. In the worst case where the sys-
tem exhausts all the hardware’s partition mappings, the drastic
mismatch in request arrival and processing rates indicates a load
spike requiring flow control mechanisms to throttle or drop re-
quests [15, 85, 86].

4.3 Write Compaction for 𝑅𝑊𝑠𝑘 Workloads

C-4’s second mechanism, write compaction, addresses both bottle-
necks in 𝑅𝑊𝑠𝑘 workloads, namely: i) static load imbalance created
by the combination of write fraction and skewness that overwhelms
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a single writer, and ii) contention betweenwriter and reader threads
for the cache lines comprising the hottest partition(s). C-4 does so
while maintaining the baseline KVS’ consistency model.

To absorb the load created by highly skewedworkloads,C-4must
achieve drastic speedups for the single thread serving the hottest
partition. NetCache’s authors similarly observed that a single unit
serving requests on behalf of many workers must provide orders of
magnitude higher throughput to handle skewed workloads [44, §2].
However, in our context the hottest thread is not required to handle
both read and write load, because the NIC balances reads across
all other threads. Therefore, the requisite speedup for the hottest
thread drops significantly. Our design takes advantage of the NIC’s
ability to load-balance reads and independent writes, therefore the
request queue of the hottest thread will be full of writes to only the
hottest partition(s), creating opportunities for compacting many
writes into a single batched update.

Intuitively, compacting a given write into a private batch is
faster than writing into the KVS’ underlying datastore, because it
is unnecessary to write any shared cache lines. We estimate that
the possible acceleration 𝐴 of such compaction is:

𝐴 ≃
𝑇𝑏 +𝑇𝑓

𝑇𝑏
𝑁

+𝑇𝑐 +𝑇𝑓
(1)

where 𝑇𝑏 , 𝑇𝑓 , 𝑇𝑐 , and 𝑁 represent the baseline service time, the
fixed time to reply to a request (see Sec. 3), the time required to
collect a single write into an ongoing batch, and the number of
compacted requests, respectively. Using a software compaction
microbenchmark, we measured values for each time parameter that
indicate 𝐴 ≃ 4 is attainable in an unloaded system. Furthermore,
as read-write contention on hot partitions grows at high loads, the
value of 𝑇𝑏 will increase while 𝑇𝑐 remains unaffected as the single
thread dirties no shared cache lines as it gathers writes into a batch.
Our evaluation studies these parameters in Sec. 7.2.

Fig. 6 shows the cooperation between the NIC and the KVS
threads to achieve write compaction. The NIC’s responsibility is
to implement the d-CREW or CREW policy, spreading read load
among all the threads and creating opportunities to compact de-
pendent writes. When the KVS thread pulls a write request from
its private queue, it scans a small number of extra queue slots
to search for any matching writes to the same item (Step 1 ). If
matches are found, the thread opens a new “compaction window”,
and collects all incoming writes to this item into a single update
until the window closes (Step 2 ). Finally, the thread performs the
single combined write to the KVS’ data store (Step 3 ) and sends
all the responses to the compacted writes (not shown). As such a

technique requires only software modifications, implementations
are possible on today’s NICs that can enforce CREW.

The length of the compaction window permitted defines the
achievable acceleration—the higher the number of compactedwrites
𝑁 , the greater the value of 𝐴. We observe that KVS’ tail latency
performance constraint creates an opportunity to finish all the
compacted writes “just in time” before the SLO expires. Even with
a stringent SLO of 10× the average service time, it is possible to
compact upwards of 10 writes into a single window because the
compacting thread is significantly accelerated. However, introduc-
ing compaction implies that all the writes are now invisible to the
readers until the window closes and the final update is applied. We
now discuss how C-4 maintains strong consistency guarantees in
the presence of write compaction.

4.3.1 Maintaining Consistency Under Compaction. We target a
baseline KVS providing linearizability, a strong consistency guaran-
tee that requires a total write order and that the system’s behavior
respects the real-time ordering of requests [37]. Note that lineariz-
ability is a local property, which only applies to single objects (in our
context, keys) in isolation. We do not consider consistency across
multiple keys in this work for two reasons. First, the vast majority
of KVS do not support multi-key updates [31, 58, 60, 61, 64, 75, 91],
following the system design principle to “make it fast, rather than
general or powerful” [56]. Such tasks are better implemented in
higher layers such as transaction lock managers, which have their
own set of related but different consistency models. Indeed, attain-
ing atomically visible multi-key updates requires either serializabil-
ity or strict serializability. We argue that because C-4 maintains
linearizability, it is an equivalent candidate to an existing KVS for
inclusion in a transactional system.

Fig. 7 displays three possible executions of a KVS with write
compaction that demonstrate our key insight necessary to maintain
linearizability. Each operation is expressed as 𝑂𝑝 (𝐴𝑟𝑔𝑠) : 𝐶𝑙𝑖𝑒𝑛𝑡 ,
where 𝑂𝑝 represents a KVS get, set or response, 𝐴𝑟𝑔𝑠 contains
the arguments passed to the KVS (e.g., the key being accessed, and
its associated value for sets/responses), and 𝐶𝑙𝑖𝑒𝑛𝑡 is the client
thread requesting this operation from the KVS.

To argue that C-4 maintains linearizability, we focus on the spe-
cific scenario induced by the addition of write compaction—when a
compaction window is open for key 𝐾 with simultaneous outstand-
ing read requests to 𝐾 . Informally, a system’s execution 𝐸 can be
linearized if it can be transformed into 𝐸′ where two criteria are
respected: (1) 𝐸′ is sequential, meaning that each invocation is im-
mediately followed by its corresponding response, and (2) the order
of operations in 𝐸′ respects all partial orderings in 𝐸 [37]. A partial
ordering is created when the response to an operation 𝑅1 appears
in the execution before another operation 𝑅2’s invocation—all op-
erations that are not partially ordered are concurrent. Criterion (2)
allows such concurrent operations to be re-ordered in 𝐸′, because
they are not constrained by orderings emanating from 𝐸.

To demonstrate, consider the execution 𝐸1 in Fig. 7. In this execu-
tion, clients A and B both attempt to write key 𝐾 with two different
values, while client C reads 𝐾 . 𝐸1 is not linearizable because C’s
get could return the initial value 𝐾 = 0 only if it executed before
both A and B’s sets; however, in 𝐸1 C’s get is partially ordered
after A’s set, therefore a linearizable system must return either
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Figure 7: Executions showing linearizable compaction.

𝐾 = 1 or 𝐾 = 2 to C. A naive write compaction implementation can
result in the exact violation represented by 𝐸1. If a thread opens
a compaction window for 𝐾 after A’s set and responds to A, any
future read operations will return the value in the KVS’ underlying
datastore, despite needing to return A’s set value.

To preserve linearizability, C-4 delays responding to the writes
in a compaction window until it closes, and therefore reads during
the compaction window are considered concurrent and can legally
return the value in the KVS’ datastore. To illustrate, 𝐸2 in Fig. 7
contains the same operations as 𝐸1 with the response to A deferred
until the compaction window closes. Therefore, C’s get is concur-
rent with both A and B’s sets and is not required to be ordered
after either one. Then 𝐸′ is a sequential execution meeting both
criteria for linearizability: C’s get executes “first”, before A and B’s
sets, which close the compaction window and set 𝐾 = 2. For reads
that are ordered before or after a compaction window, C-4’s design
is no different from the baseline, so we omit these cases for brevity.

Summary. C-4 comprises two interrelated mechanisms to han-
dle write-intensive workloads. d-CREW ensures that writes with
true dependence (i.e., to the same partition) are the only requests
which cannot be load balanced, and write compaction allows a
thread to apply multiple dependent writes at once while main-
taining consistency. In a sense, C-4 can be viewed as a hardware-
supported delegation system [63, 84]; the NIC’s support for d-CREW
determines which threads currently have exclusive access to parti-
tions, and “delegates” writes to those threads via its load balancing
mechanism. Software then combines the dependent writes without
the overhead of shuffling requests between threads in traditional
delegation systems.

5 IMPLEMENTATION

We implement C-4 on top of the NeBuLa architecture [86], as it
satisfies both design prerequisites in Sec. 4.1. Our implementation
also applies to a variety of NIC architectures (e.g., the NanoPU [39]
or the RISC-V RocketChip’s integrated NIC [50]). NeBuLa’s NIC is
based on Scale-Out NUMA [74] enhanced with the 𝑁𝐼𝑠𝑝𝑙𝑖𝑡 architec-
ture [16] to accelerate core-NIC interactions, which are particularly
important for manycore servers.

Applications using NeBuLa preallocate a set of buffers for re-
quests that are managed by the NIC and freed by the RPC layer, and
schedule new RPCs or responses using memory-mapped Queue
Pairs (QPs) similar to RDMA’s Virtual Interface Architecture [23].

Upon RPC arrival, NeBuLa terminates the transport protocol and
appends the RPC to a memory-mapped queue of RPCs to be as-
signed to threads. Threads signal their availability to NeBuLa after
completing a previous request, triggering NeBuLa’s load balancing
stages to assign a new request based on the Join Bounded Shortest
Queue (JBSQ) policy [54, 86]. Implementing C-4 requires hardware
modifications to NeBuLa’s load balancing stages, extensions to the
NIC-software interface, and the software implementation of write
compaction.

5.1 Interface Modifications

Both mechanisms comprising C-4 require the NIC-software inter-
face to specify whether requests and their responses correspond
to KVS reads or writes. The NIC requires such information for the
d-CREW policy, to keep track of when a given partition enters
and exits exclusive mode and update its set of partition-to-thread
mappings. The KVS must communicate two additional pieces of in-
formation to the NIC to enable creation of exclusive mappings: first,
how to identify the fields in the application header corresponding
to the key and request type (i.e., read or write), and second, how to
transform the application’s key to a partition identifier.

The key and type field identification information (expressed as
offsets and lengths within request packets’ application-level head-
ers), is communicated to the NIC during the NeBuLa stack’s “setup
phase” where the application’s threads inform the NIC of their
active queues and packet buffers using ioctl system calls. Our
implementation works with a KVS that uses a simple fixed-format
header where the offsets are known in advance, similar to prior
work [48, 52, 61]. If the KVS is built on top of an RPC layer that uses
different application and wire formats (e.g., Protocol Buffers [32]),
extracting the correct offsets requires additional information for
each application format. Prior work that proposes in-memory meta-
data for RPC data transformation [92] would be sufficient to enable
C-4 in this context.

To convert the incoming request’s key to a partition ID, C-4
assumes knowledge of the function 𝑓 () used by the KVS software
to map keys into logical partitions. The granularity of partitions
implicitly dictates C-4’s load-balancing flexibility. Coarser-grained
partitions create more load imbalance, because more unrelated keys
are conservatively considered to be in exclusive mode [20]. C-4
chooses the 𝑓 () used by the KVS software to select hash buckets,
meaning that the minimal load-balancing unit is a few tens of keys.
C-4 communicates the number of buckets to the NIC during setup.

A partition mapped to a thread by C-4 can only be re-assigned
after being released by the application. We therefore modify NeB-
uLa’s RPC layer so that the function for sending an RPC response
takes one more argument, indicating whether the application is
releasing exclusive access. Our implementation always releases
exclusive mappings upon completing a write to maximize load-
balancing opportunities; retaining mappings longer than necessary
to potentially increase locality is an interesting future direction.

5.2 Hardware Additions for Write Balancing

Fig. 8 shows the additions to NeBuLa’s existing pipelines to imple-
ment C-4’s d-CREW, using the example of two conflicting writes
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tions are added in C-4.

that pass through the request assignment stage. All active map-
pings are stored in a small hardware table, the Exclusive Writer
Table (EWT). Each active mapping in the EWT is associated with
the thread holding this partition in exclusive mode, and a counter
tracking the number of outstanding writes to this partition.

When𝑊1 arrives at the load-balancing stage (Step 1 ), dedicated
logic extracts the KVS’ headers to determine if this request is a
write, and what partition must be looked up in the EWT. As there is
no active entry for 𝑃𝑁 , the partition is unassigned and C-4 assigns
the request to 𝑇1 using JBSQ. C-4 then allocates a new entry in the
EWT for 𝑃𝑁 , initializing its counter value to one outstanding write,
and the owner thread to 𝑇1 (Step 2 ). When𝑊2 arrives, its lookup
of 𝑃𝑁 hits the EWT and thus C-4 assigns𝑊2 to 𝑇1, and increments
the outstanding write counter (Step 3 ). After 𝑇1 processes both
writes, it releases exclusive access to 𝑃𝑁 using the RPC response
interface of Sec. 5.1. Each message triggers an access to the EWT
for 𝑃𝑁 to decrement the outstanding write counter (not shown).
C-4 frees the EWT entry after𝑊2’s response, enabling writes to
𝑃𝑁 to be load balanced again.

Fig. 8 also shows the information stored in each field of the
EWT. We provision a 30-bit partition ID and six bits for each of the
outstanding request counter and thread identifier to support up to
64 threads, with each partition supporting up to 64 concurrently
outstanding writes. To quantify the EWT’s cost, we use CACTI
6.5 [59], configured with the following parameters: a 22nm process,
built-in device projections, dynamic power optimization, and a
2GHz frequency (aggressively assuming a write balancing decision
happens every 0.5ns). A 128-entry EWT with the partition and
data widths above requires 0.004𝑚𝑚2 of area and draws 6.85mW of
dynamic power. In comparison, 64-core server chips can consume in
excess of 280W [33], meaning that C-4’s EWT imposes a negligible
overhead of 0.002%, particularly because of the benefits in load
balancing it enables.

The factor dictating the EWT’s scale is the bandwidth-delay
product between the load balancing hardware and the server’s many
cores. In future servers that could handle more outstanding writes
concurrently, the EWT would need more entries as well as wider
thread identifiers. More entries in the EWTwould increase its power
requirements accordingly with its CAM portion—in a deployment
where power is prohibitive, any of the plethora of circuit techniques

Table 1: Parameters used for cycle-accurate simulation.

Cores
64× 4-wide issue OoO ARMv8 @ 2GHz

128-entry ROB, TSO

L1 Caches
64 KB 4-way L1-D and L1-I, 64 B blocks
2 ports, 32 MSHRs, 4-cycle lat. (tag+data)

LLC
Shared block-interleaved NUCA, 64 MB

16-way, 1 bank/tile, 11-cycle lat. (tag+data)
Coherence Directory-based Non-Inclusive MESI
Memory 45 ns latency, 8×25.6 GB/s DDR4-3200

Interconnect 2D mesh, 16 B links, 3 cycles/hop

for low-power CAM devices could be applied [79]. The width of
the request counter and thread identifiers can be increased without
significant concerns for the EWT’s cycle time or power, because
they are both stored in direct-mapped RAM.

Although C-4 only uses its EWT for write balancing, its small
CAM structure can be repurposed for other stateful per-RPC load
balancing decisions, such as mapping specific types of RPCs to
certain threads to increase instruction-cache locality [92], or to
keep certain cores idle to ensure low tail latency [19]. The EWT
can also implement software-installed packet filtering operations
like those used by RSS and Flow Director [43], with the additional
ability to create mappings on demand as traffic arrives.

5.3 Software Support for Compaction

Our software implementation of write compaction is a single mod-
ule residing between NeBuLa’s RPC layer and the KVS itself. To
allow this layer to scan incoming queues for compaction opportuni-
ties, we add an interface to NeBuLa’s RPC layer allowing the caller
to apply a lambda function on each valid incoming request in the
queue, similar to BPF [67]. C-4 scans for compaction opportunities
on every incoming write request. When an opportunity is detected,
C-4 opens a compaction window, records the key being compacted,
and begins buffering all incoming writes to it. Each compacted
request buffers two pieces of information to allow C-4 to send a
matching RPC response when the compaction window closes: i)
the request’s buffer address and size in memory, which NeBuLa’s
transport layer later reclaims, and ii) the sender’s node ID to whom
the response is sent.

To maintain the KVS’ SLO guarantees, we use the processor’s
monotonic hardware clock, that has a known frequency and is read-
able from usermodewith limited overhead [4, 40, 51]. Upon opening
a compaction window, C-4 snapshots the current clock value and
sets the window’s expiration time as𝑇𝑒𝑥𝑝𝑖𝑟𝑦 = 𝑇𝑐𝑢𝑟𝑟𝑒𝑛𝑡+𝑆 (𝑆𝐿𝑂−1),
where we assume the SLO and average service time (𝑆) are known.
C-4 checks the current clock value upon each request’s comple-
tion to determine if the compaction window must be closed. When
the expiration deadline is reached, C-4 applies the final compacted
value to the datastore and then creates an RPC response for each
of the buffered writes.

6 METHODOLOGY

System Organization.We evaluate C-4 with cycle-accurate full-
system simulation of a 64-core processor running Ubuntu Linux



Cooperative Concurrency Control for Write-Intensive Key-Value Workloads ASPLOS ’23, March 25–29, 2023, Vancouver, BC, Canada

0 20 40 60 80 100
Load (MRPS)

0
1
2
3
4
5

99
th

%
 L

at
en

cy
 (μ

s)

EREW
Baseline

RLU
Comp

d-CREW
Ideal

Figure 9: Comparison of KVS throughput under SLO, using

uniform key popularity and 𝑓𝑤𝑟 = 50%.

18.04, using the QFlex simulator [80]. Sec. 6 summarizes our sim-
ulation parameters. Our manycore CPU is representative of to-
day’s server products such as Intel’s Xeon Scalable [34, 49], AMD’s
EPYC [33], Amazon’s Graviton [3, 88], and Huawei’s Kunpeng [89].
C-4’s performance benefits scale with core count, because load im-
balance in a queueing system increases with more workers (cores).

We evaluate a NIC bandwidth up to 500Gbps, because our ex-
periments showed C-4 was not able to reach its CPU IOPS bound
before saturating NIC bandwidth for non-minimally sized KV items.
Such per-server network bandwidth will be available in the near
future, given the current availability of 400GigE products [76] and
IO interconnect capabilities far exceeding NIC data rates (e.g., AMD
EPYC 7763’s 128× PCIe 4.0 lanes deliver 2Tbps of I/O bandwidth).
KVS Software. We use the MICA in-memory KVS [61], start-
ing from the eRPC project’s implementation [46, commit 1bfc7ec],
porting it to NeBuLa and ARMv8 for simulator compatibility, and
adding C-4’s compaction layer, requiring only 105 lines of code. All
experiments use a 64-thread instance with a 819MB dataset of 1.6M
items, having 16B keys and 512B values in 1M hash buckets. We
employ a workload generator which generates client requests with
configurable rate, Zipfian popularity skew, and write fraction, using
a Poisson arrival process. We measure all latencies server-side us-
ing cycle-accurate timestamps inside the simulator. Measurements
begin when a request’s first packet arrives at the NIC, and ends
when its corresponding response’s last packet leaves the NIC.
Evaluated Configurations. We study six different system config-
urations to show C-4’s benefits:
(1) Baseline: The unmodified MICA KVS, running on the NeBuLa

stack and using CREW concurrency control.
(2) EREW: Same as Baseline but using EREW.
(3) Ideal: Same as Baseline, but using a read-only workload, thus

granting maximal load balancing flexibility with no reader-
writer synchronization. Used as an upper performance bound
for workloads containing writes.

(4) RLU and MV-RLU: Modifications of MICA that use the RLU
and MV-RLU frameworks [53, 66] to provide concurrent read-
ers and writers without read-side locking. RLU uses commit-
deferral with degree 16, and MV-RLU adopts ORDO to remove
global logical clock contention [51].
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Figure 10: Comparison of KVS throughput under SLO with

varied 𝑓𝑤𝑟 , using uniform key popularity.

(5) d-CREW: Uses the same KVS as Baseline, and adds C-4’s requi-
site extensions to support d-CREW. Targets𝑊𝐼𝑢𝑛𝑖 workloads.

(6) Comp: Enables C-4’s software compaction support, while keep-
ing static CREW concurrency control. Targets 𝑅𝑊𝑠𝑘 workloads.

Performance Metrics.We evaluate C-4’s performance in terms of
maximum throughput under a 99th percentile latency SLO. We set
a target SLO of 10× the average request service time, as is common
in the literature [17, 45, 54, 83, 86]. As write compaction exposes
a tradeoff between the duration of a compaction window and the
performance benefit of C-4, we also show a slightly relaxed 20×
SLO in the results for write compaction.

7 EVALUATION

We evaluate C-4 by focusing individually on the two challenging
regions of the KVS workload space described in Sec. 2.1, and the
C-4 mechanisms introduced for each one: d-CREW for𝑊𝐼𝑢𝑛𝑖 and
write compaction for 𝑅𝑊𝑠𝑘 . Therefore, we present experiments
showing the impact of each technique on its respective region of
applicability, and show that both techniques have limited impact
outside their target region.

7.1 Dynamic Write Partitioning

We begin by evaluating the tail latency benefits of C-4’s d-CREW
policy. Fig. 9 compares all of Sec. 6’s system configurations except
MV-RLU, using a𝑊𝐼𝑢𝑛𝑖 workload with uniform key popularity and
𝑓𝑤𝑟 = 50%. Only d-CREW closely tracks Ideal up to 91MRPS, because
it provides the greatest load balancing flexibility, only falling back
to the baseline’s behavior if there is a true write-write conflict. In
contrast, all other systems incur excess queueing as load increases.

RLU can only support 10MRPS under a 10× SLO, due to its costly
commit process to write-back logged values – writes that promote
logs run for 10–20µs despite RLU’s commit deferral, forming deep
queues that lead to SLO violations. MV-RLU’s series is not shown
because it cannot even meet the 10× SLO at 4MRPS, the lowest load
in Fig. 9. The reason for its seemingly poor performance is that
versions are cleaned up using complex garbage collection, causing
requests that block behind cleanup operations to stall for ∼ 70µ𝑠 .
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Figure 11: System performance comparison for an 𝑅𝑊𝑠𝑘 workload with 𝛾 = 1.25 and 𝑓𝑤𝑟 = 5%.

However, MV-RLU’s true multi-versioning shows benefits under a
relaxed SLO of 100µ𝑠 , attaining 2.5× higher throughput than RLU.

EREW fares better, delivering 76MRPS under SLO, but only
reaches 80% of Ideal’s throughput because it lacks load balanc-
ing support. Although EREW eschews all software synchronization,
static partitioning results in excess queueing and sub-optimal per-
formance compared to the systems supporting load balancing.

Our results confirm the intuition that write compaction is inef-
fective for𝑊𝐼𝑢𝑛𝑖 workloads. In fact, Comp performs 4MRPS worse
than the baseline, because each thread incurs the additional cost of
scanning its request queue for potential writes to compact, which
is usually fruitless in𝑊𝐼𝑢𝑛𝑖 workloads. Such overheads grow at
high loads—seen as a widening gap between the Comp and Baseline
(CREW) series —due to more entries to scan in deeper queues. The
best-performing systems, CREW and d-CREW, achieve the same
throughput under SLO (91MRPS), with d-CREW achieving 1.3×
99th% latency reduction compared to CREW, by relaxing unnec-
essary queueing—essentially approaching the superior queueing
model of an Ideal system without the associated costs of software
synchronization. Our simulations closely track the expectations set
by our queueing model in Sec. 3.1.

7.1.1 Increased Write Fractions. Fig. 10 shows the throughput un-
der SLO of EREW, baseline CREW, and d-CREW, with a𝑊𝐼𝑢𝑛𝑖
workload as 𝑓𝑤𝑟 increases from 50% to 85%. We show a single line
for EREW because it is insensitive to the workload’s 𝑓𝑤𝑟 . As 𝑓𝑤𝑟

increases, the baseline policy loses load balancing potential and
approaches EREW, creating increased 99th% latency and reduced
throughput under SLO.

In contrast, d-CREW’s benefits increase with higher 𝑓𝑤𝑟 . For
85% writes, baseline CREW cannot balance the vast majority of
requests, leading to a reduced peak throughput of 83MRPS and
5× higher 99th% latency compared to Ideal, closely tracking our
queueing model’s prediction. In contrast, d-CREW nearly matches
Ideal’s performance until its CPU saturation point. Overall, d-CREW
provides 87MRPS under SLO compared to CREW’s 83MRPS, and
3.1× lower 99th% latency at a higher absolute load. At a load of
90MRPS, the Exclusive Writer Table (EWT) has an average of 30
active entries with 𝑓𝑤𝑟 = 50% and 52 with 𝑓𝑤𝑟 = 85%, confirming our

simple estimate in Sec. 5.2 for the EWT’s limited size. The maximum
EWT sizes were 64 and 90 for 𝑓𝑤𝑟 = 50% and 85% respectively.

7.2 Write Compaction

We now evaluate C-4’s write compaction support, targeting 𝑅𝑊𝑠𝑘

workloads. Fig. 11 compares baseline CREW and C-4 with write
compaction enabled, for a highly skewed workload with 𝛾 = 1.25
and 5% writes. Despite the workload being read-dominated, Fig. 11a
shows that the baseline saturates at 76MRPS, because a single thread
is overloaded by writes to a single partition. In contrast, with write
compaction, C-4 scales to 125MRPS under a 10× SLO, and 142MRPS
with a relaxed 20× SLO.

To further explain these performance gains, Fig. 11b plots the av-
erage on-core service time of requests assigned to the hottest thread.
As load increases, the baseline’s service time grows exponentially
because of increased time to invalidate and fetch cache lines for the
partition’s version number and corresponding data. At 76MRPS,
the hottest thread’s service time increases by 2.4× to 908ns, and
remains roughly constant beyond 80MRPS because the network
stack’s flow control mechanism begins rejecting incoming requests
as the KVS saturates. The same trend also occurs for the rest of
the threads, whose average service time grows by 1.6× because the
KVS’ hottest items are repeatedly invalidated from their L1 caches
due to frequent writes.

In contrast, C-4’s write compaction policy inverts the aforemen-
tioned trend. As load increases, the hottest thread’s service time
decreases because compaction directly mitigates the overheads as-
sociated with contention between the single writer and multiple
readers. Beyond 40MRPS, Fig. 11b shows that the hottest thread
begins to open compaction windows and effectively batch writes,
resulting in average service time reduction. Therefore, cache line
contention does not increase despite higher offered load, allowing
the thread’s service time to drop to 243ns. Comparing these results
to Eqn. (1)’s compaction performance model, we measured a 3.7×
service time reduction for the hottest thread with write compaction,
where our model predicts 3.9×. We attribute the difference to soft-
ware overheads in managing compaction window metadata, such
as reading the hardware system timer and checking for impending
SLO violations, which are not captured by the model.
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Figure 12: Per-thread throughput, using the same workload

as Fig. 11 (𝛾 = 1.25, 𝑓𝑤𝑟 = 5%).

Fig. 12 compares the throughput and core utilization for a subset
of the KVS threads, sorted by decreasing throughput, taken at
76MRPS for the baseline and 125MRPS for C-4.1 In the baseline
system, both throughput and utilization are roughly uniform across
threads, with all threads except the overloaded writer attaining
∼ 1.28MRPS. The overloaded writer (Fig. 12’s rightmost data point)
attains < 1MRPS at near-maximal utilization due to its inflated
service times (see Fig. 11b).

WithC-4, both reader and writer threads attain drastically higher
throughput. The 3.7× service time reduction for the hottest thread
translates to lower utilization, in contrast to the baseline where only
the hottest thread utilizes its core while others are idle. This trend
is visible by comparing the utilization of the hottest writer thread
in Fig. 12; we note that the thread moves from having the lowest
throughput, to having the second lowest. With compaction enabled,
the hottest writer improves from 0.92MRPS to 1.66MRPS and sees
its utilization fall to 47% even at higher system load, because it
handles writes more efficiently. Other threads with ranks between
55–63 show the same trend in C-4: rapid write compaction creates
idle periods where other requests could be handled.

C-4 saturates not because of write overload, but due to reads
saturating the threads, which are already serving > 2.3MRPS and
operating near 100% utilization (Fig. 12). Therefore, our implemen-
tation could scale to modestly higher throughput by harvesting
the extra cycles made available by C-4’s write skew absorption
via compaction. Modifications to the underlying NeBuLa stack for
such purposes are possible, which we leave for future work.

Fig. 13 evaluates a workload with 𝛾 = 0.99 and 50% writes, used
by prior work [44, 60, 61] due to its challenging nature. Due to less
cache-resident hot data, the baseline only attains 56MRPS under
SLO, compared to 76MRPS in Fig. 11a. The single overloaded writer
thread is the bottleneck for both workloads. In contrast, C-4 attains
58MRPS under an identical 10× SLO, and 100MRPS under a 20×
SLO. C-4’s drastic jump in tail latency beyond 10MRPS is because
compaction events immediately form the 99th% of this workload.
However, increasing load from 20MRPS to 80MRPS only causes
the 99th% to increase by ∼ 300𝑛𝑠 , indicating that the compaction
windows at lower load are often opened but collect very few writes.
1We show a subset of the threads for readability. Omitted threads fall between the
displayed points.
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Figure 13: Performance for 𝑅𝑊𝑠𝑘 with 𝛾 = 0.99, 𝑓𝑤𝑟 = 50%.

Such behavior is an artifact of our implementation, which only
closes a window upon an impending SLO violation. A software
modification to adaptively close compaction windows early under
low load (e.g., when polling a thread’s CQ yields no incoming
requests) would resolve the early jump in 99th% latency.

7.3 Sensitivity Analysis

Finally, we evaluate the impact of varying MICA’s key and value
sizes on the performance of C-4’s write compaction. We compare
our previous results using 𝛾 = 1.25, 5% writes, and 16B/512B KV
pairs, to a workload using 8B/8B KV pairs (called Tiny) and one
using 16B/128B pairs (Medium). In all workloads, we scaled the
number of KV pairs to keep the same total dataset size, so that the
same overall data fraction is cache-resident. Sec. 7.3 compares the
CREW baseline and C-4 in terms of maximum throughput under
10× SLO, as well as the speedups of the KVS’ hottest compacting
thread and the remaining threads.

As the item size shrinks, the baseline system’s performance in-
creases by 1.8× for Medium and by 3.5× for Tiny items, because
threads spend less time per request accessing data. C-4 benefits
from these service time reductions to a lesser degree (e.g., by 1.5×
for Medium items) because threads only write the underlying data
structure once per compaction window, and compact all other re-
quests locally, which is less sensitive to item size.

The hottest-thread speedup granted by C-4 drops with smaller
KV pairs, as the baseline system’s service times approach the latency
of appending a write to an open compaction window. However, as
the speedup granted to the hottest thread reduces, the impact on
readers becomes the critical performance driver. The hottest thread
only attains 1.1× speedup with Tiny items because our compaction
implementation trades off increased compute latency for reduced
coherence activity. Compaction has higher compute requirements
because it requires many instructions to create the requisite meta-
data and compact its private logs, whereas the baseline can write a
single 8B KV item with a single store instruction. In summary, C-4
provides robust throughput benefits across item sizes, improving
throughput under SLO by 1.4× and 1.33× for Tiny and Medium
items, respectively.
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Table 2: Impact of item size on write compaction.

Throughput @ SLO Speedup
Key/Value
Sizes (B)

Base
(MRPS)

Comp
(MRPS)

Hot
Thread

Other
Threads

8/8 (Tiny) 266 363 1.1× 1.3×
16/128 (Med) 142 190 1.3× 1.3×
16/512 (Lg) 76 125 1.6× 1.6×

8 RELATEDWORK

KVSDesigns.Wegroup KVS systems into two categories: software-
only or NIC-assisted. Representatives of the former include mem-
cached [69], MemC3 [27], Masstree [64], and MICA [60, 61]. All
of these systems reach their peak performance with 𝑅𝑢𝑛𝑖 or 𝑅𝑠𝑘
workloads—in fact, MICA’s authors [60] propose using frequency
scaling on the overloaded core to alleviate the static write imbal-
ance bottleneck in 𝑅𝑊𝑠𝑘 workloads. Frequency scaling alone is
insufficient to absorb 𝑅𝑊𝑠𝑘 ’s load imbalance, but could be added to
C-4 for further performance gains.

NIC-assisted designs enhance the KVS with RDMA, FPGA, or
programmable switch support. However, the vast majority of such
designs do not perform well on write-intensive workloads. The two
best performers in this space are NetCache [44] and KV-Direct [58],
as dedicated hardware performs the entire KVS’ functionality in-
stead of using CPU cores. RDMA-enabled designs include FaRM [22],
HERD [47], ccKVS [31], RackOut [75], and DrTM [13, 14]. The write
imbalances we identify in Sec. 2.1 in a single-node context would be
strictly worse in the multi-node distributed KVS settings targeted
by these RDMA-assisted designs.

Emerging SmartNIC frameworks propose a split-KVS design,
where a small amount of NIC memory stores the KVS’ hottest
items [26, 81], embodying the “small cache, big effect” principle [28].
Like NetCache [44], such designs focus on reads and are inefficient
for write-intensive workloads, because writes are handled on a slow
path to keep the CPU’s main memory up-to-date.

The Minos KVS targets queueing delays created when requests
for small items queue behind those for extremely large items (e.g.,
100s of KBs-MBs). The authors propose reserving dedicated cores
for large-item requests, and re-balancing incoming writes in soft-
ware. Therefore, Minos only supports a CRCW concurrency control
policy and must fall back to using spinlocks on each KVS parti-
tion [21, §4.2]; although acceptable for read-dominated workloads,
the overheads would grow for emerging write-heavy workloads.
C-4’s d-CREW policy could be adapted to accomplish size-aware
load balancing using the EWT, maintaining lightweight concur-
rency control without spinlocks.

LSM-based KVS designs such as LevelDB [2] or RocksDB [70]
have begun to encounter bottlenecks in their in-memory compo-
nent because of the increased speed of storage devices and growing
core counts of server CPUs. FloDB adds another level to the hier-
archy of LSM data structures to support rapid random writes [6].
TRIAD improves LSM performance for skewed workloads by pre-
venting popular keys from being compacted and flushed to stor-
age [5]. C-4 targets orthogonal bottlenecks occurring in systems
where the entire KVS is in memory. A hypothetical combination of
FloDB and TRIAD with a single in-memory level would experience
both bottlenecks presented in Sec. 2.1.

Concurrency and Synchronization. The most applicable works
to our target workloads are those that can enable write load balanc-
ing (for𝑊𝐼𝑢𝑛𝑖 ), and lock-free readers in the presence of frequent
writes (for 𝑅𝑊𝑠𝑘 ). For𝑊𝐼𝑢𝑛𝑖 , Hardware Transactional Memory [42]
or hardware-supported synchronization such as QOLB [55] should
deliver similar performance to C-4 with the appropriate KVS soft-
ware rewrite, as true data conflicts are rare. Both these designs come
with far higher hardware implementation complexity. For example,
consider that Intel RTM is still disabled due to memory ordering
violations [41] and will be removed in many future products [30].
C-4 only requires a small set of NIC extensions and no changes to
the caches or memory ordering hardware.

RCU [68], RLU [66] and MV-RLU [53] enable both write bal-
ancing and lock-free reads by forcing writes to create new copies
of data and make them visible to readers after a quiescent period.
Our evaluation shows that the cost of RLU and MV-RLU version-
ing is prohibitive for µs-scale KVS, even with very few true con-
flicts. Delegation-based approaches such as ffwd [84], Flat Combin-
ing [36], and Remote Core Locking [63] could enable NIC-driven
write balancing, but software threads must rebalance requests so
that critical sections execute on one core—essentially implementing
CREW in software with the overheads of rebalancing.

Both OpLog [9] and Doppel [72] propose similar designs to
C-4’s write compaction. OpLog targets update-heavy kernel data
structures by creating per-core update logs, which readers scan
and apply lazily. Similarly, Doppel executes conflicting transactions
by creating per-core values that are merged on commit. Applying
OpLog to a KVS would move synchronization bottlenecks from the
KVS’ data structure to the per-core logs, and Doppel would incur
similar overheads to RLU at commit time (see Sec. 7.1). In contrast,
C-4’s compaction logs are invisible until the compaction window
closes, thus avoiding costly copies and reconciliations.

System Software for RPCs. Although we implement C-4 over
the NeBuLa architecture, our design could be implemented over a
variety of baselines (e.g., NanoPU [39], FlexNIC [52], or NICA [26]).
Due to the unique challenges of µs-scale RPCs that characterize
KVS, several proposals pursue synchronization-free RPC load bal-
ancing [17, 38, 45, 54, 62, 77, 83, 93]. C-4 is orthogonal to these
works because none of them can relax the restrictions that writes
impose on load balancing.

9 CONCLUSION

Key-Value Stores are a cornerstone for virtually every large-scale
online service. Extensive research efforts over the past decade have
resulted in KVS designs targeted towards read-dominated work-
loads, or read-write workloads without the extreme popularity skew
in emerging workloads. As a result, modern KVS implementations
are inefficient when handling write-heavy workloads. We identify
two problematic workload regions and provide insight into the
root cause of inefficiency in modern KVS implementations – static
write partitioning. Therefore, we propose C-4, a hardware-software
co-design that employs two distinct and orthogonal mechanisms:
dynamic write balancing and write compaction. Our evaluation
shows that C-4 yields significant improvements under stringent
SLOs, up to 5× lower tail latency for write-heavy workloads and
1.7× higher throughput for skewed read-write workloads.
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A ARTIFACT APPENDIX

A.1 Abstract

This artifact contains the discrete-event simulation framework and
methodology used to model the performance of various concur-
rency control policies evaluated in the paper. Specifically, we pro-
vide infrastructure to reproduce Figs. 3 and 4, and documentation
indicating how to use the same methodology to generate results
that can be compared against the those derived from full-system
simulation. The purpose of this artifact is to allow the community
to reproduce our results coming from discrete-event simulation,
and to provide our event simulation framework to others as infras-
tructure for future research because of how useful it has been for
our work.

A.2 Artifact check-list (meta-information)

• Program: A set of performance models for server components and soft-
ware libraries, which are instantiated to model the concurrency control
techniques presented in the paper.

• Run-time environment: Depends on python3 and the discrete-event
simulation library SimPy. All packages are installed through Python
virtual environments.

• Metrics: Latency percentiles for modeled requests (50th, 90th, 95th,
99th). Throughput (million requests/second).

• Output: CSV files with performance data for the evaluated concurrency
control policies, and scripts to plot the associated graphs.

• Experiments: Scripts are included to reproduce Figs. 3 and 4 of the paper,
and instructions are included to study other experiments using this tool.

• How much disk space required (approximately)?: Less than 10 MB.
• How much time is needed to prepare workflow (approximately)?:

∼ 10 minutes.
• How much time is needed to complete experiments (approxi-

mately)?: 1–48 hours, depending on precision and number of CPU cores
available for experiment parallelization.

• Publicly available?: Yes.
• Code licenses (if publicly available)?: MIT.
• Workflow framework used?: Python and Bash scripts.
• Archived (provide DOI)?: https://doi.org/10.5281/zenodo.7182800

A.3 Description

A.3.1 How to access. The artifact can be downloaded fromGitHub2
or Zenodo.3 Please note that the GitHub version is provided as a
tagged release, which will accrue differences over time compared
to the current software version in the repository.

2https://github.com/parsa-epfl/queue_flex/releases/tag/c4_ae_v1.1
3https://doi.org/10.5281/zenodo.7182800

A.3.2 Hardware dependencies. There are no special hardware re-
quirements to run this artifact. However, we recommend running
all data-gathering experiments on a machine with ≥ 16 cores in
order to parallelize the discrete-event simulations.

A.3.3 Software dependencies. The artifact depends on a working
installation of python3, as well as the libraries SimPy, matplotlib,
and pytest. All dependencies are installed automatically by scripts
when setting up the artifact. For exact versions of the software
dependencies used, please consult the requirements.txt file.

A.4 Installation

First, ensure that your system has aworking installation of python3,
as well as the virtualenv tool.

After downloading and unpacking the artifact, follow the below
commands for installation. The general workflow is:

• Create a python virtual environment for all dependencies.
• Install all packages using pip.
• Test the functionality of the various simulation components.

First, create a virtual environment with the following command
(or one like it, where the argument following -p points to a working
version of python3). We have tested this artifact against python
3.7.3, 3.8.10, and 3.8.13, and although other versions may
work equally well, we recommend one of these versions be used.

$ virtualenv -p python3 venv

Next, activate the virtual environment, and use the provide setup
script to install dependencies and set environment variables.

$ source venv/bin/activate
$ ./setup.sh

To leave the virtual environment when finished, use the com-
mand deactivate.

A.5 Basic Test

To ensure the components are functioning properly and that the
underlying simulation library is generating and consuming events,
run the provided unit tests as follows:

$ py.test

The expected output for the unit tests is 61 passes and 2 purpose-
ful failures, which are marked as xfailed. If PyTest reports the
aforementioned outcome, the artifact is functioning properly.

A.6 Experiment workflow

All experiments use the following workflow:
• The user invokes the top-level script to gather results, which
launches all the underlying event simulations. We provide
two top-level scripts, one each for Figs. 3 and 4 of the paper.

• A CSV file is generated with all of the latency percentiles
and throughput values.

• Finally, the user invokes the relevant plotting script, which
generates output graphs based on the input CSVs.

https://doi.org/10.5281/zenodo.7182800
https://github.com/parsa-epfl/queue_flex/releases/tag/c4_ae_v1.1
https://doi.org/10.5281/zenodo.7182800
https://virtualenv.pypa.io/en/latest/
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A.7 Evaluation and expected results

Excess Tail Latency – Fig. 3. To reproduce our results for excess
tail latency, use the top-level script compare_system_excess_-
tlat.py. Launching the script as follows will perform the same
experiment shown in the paper, with a reduced number of simula-
tion points (200k). Set num_threads to the number of CPU threads
that will run experiments in parallel.

$ python compare_system_excess_tlat.py --threads <num_threads> 0.0

With the default number of simulation points, this experiment
should require roughly one hour of runtime with 16 threads. To
reproduce the values in the paper, add the flag --reqs_to_sim
5000000. This experiment may take hours or days depending on
the number of threads used. On the 64-core servers used for the
paper, this experiment required approximately 24 hours of runtime.

Once the experiment finishes, the output files are written in
a directory called excess_tlat_comparison/. Use regular Unix
tools to compare against the expected output, or use the provided
plotting script to generate the graphs in the paper as follows:

$ diff expected_outputs/excess_tlat_short.csv

excess_tlat_comparison/excess_tlat_comparison.csv↩→
$ python plot/plot_excess_tlat.py

excess_tlat_comparison/excess_tlat_comparison.csv
excess_tlat.pdf tput_comp.pdf

↩→
↩→

Our simulator is deterministic, therefore a matching value for
this reduced-length experiment implies a matching value for the
full 5 million point simulation. We include both “short” and “full”
raw results files in the expected_outputs/ directory.
Write Compaction – Fig. 4. Similarly to the evaluation for excess
tail latency, use the provided script crew_comp_sim.py as follows.

$ python compaction_sim.py --threads <num_threads> --ofile

baseline.csv CREW # for baseline↩→
$ python compaction_sim.py --threads <num_threads> --use_compaction

--ofile compaction.csv CREW # for comp↩→

This experiment also requires many hours, as even more simu-
lation points are needed to produce the surface plots in the paper.
Outputs can be compared against the expected values and plotted
as above:

$ diff expected_outputs/baseline_short.csv /path/to/baseline.csv
$ diff expected_outputs/compaction_short.csv

/path/to/compaction.csv↩→
$ python plot/plot_surfs.py /path/to/baseline.csv

/path/to/compaction.csv↩→

Due to the number of simulations required for this experiment,
we only include the “short” results files.

A.8 Experiment customization

Experiments can be customized in two ways: first, different com-
mand-line parameters can be passed to the top-level scripts in order
to change parameters such as the distribution of keys in the gener-
ated load, the number of hash buckets in the index, the service time

Table 3: Simulation parameters for comparing results ob-

tained with discrete-event simulation to those of full-system

simulation presented in Sec. 7.

Figure Shared Parameters Applicable Modes
Fig. 9 -s 0 –write_frac 50 EREW, CREW

d-CREW, IdealFig. 10 -s 0 –write_frac {50,85}

of requests, and many more. Second, building one’s own experi-
ments can be done by connecting various simulation components
(found in the folder components/), or modifying those components.
General patterns for creating and connecting simulation compo-
nents can be found in the top-level file custom_exp.py.

A.9 Notes

All the results generated are deterministic across many runs, so
they can be directly compared against the expected values, as well
as each other.

The expected output for 200k simulation points shows two behav-
iors that are different from our displayed results at face value—for
excess tail latency, one will observe that the 99th% tail latency com-
parisons are different from those shown in Fig. 3b. However, this
is an artifact of fewer samples being run. By using 5M samples,
the exact paper results are obtainable. For write compaction, the
expected output is nearly identical to what is displayed in Fig. 4. To
reproduce the paper’s exact results, use 5M samples as before.

Additionally, our artifact allows comparing our queueingmodel’s
predictions to those generated by cycle-accurate simulation in
Figs. 9 and 10, using the top-level script detailed_loadlat.py.
Each invocation of this script runs a single load-latency curve, so
the parameters must be adjusted to model each system. The exact
parameters for each experiment are shown in Table 3. For example,
to generate a data series to compare to “Baseline” in Fig. 9, use the
following command:

$ python detailed_loadlat.py --threads <num_threads> -s 0

--write_frac 50 --reqs_to_sim 5000000 --ofile <base.csv> CREW↩→

We remark that because the impacts of data locality and cache
coherence are not captured by the discrete-event simulator, the
tool significantly underestimates performance gains achievable
with write compaction, and therefore we explicitly do not invite
such comparisons. Increasing the tool’s fidelity would require en-
hancing it with an actual coherence protocol model, in order to
accurately capture the impact of cache-line contention alleviated
by compaction (see Sec. 3.2 and Sec. 7.2). Ultimately, our artifact
accurately predicts the performance gains of C-4’s d-CREW com-
ponent, and motivates the performance potential of compaction
which is confirmed by our full-system cycle-accurate evaluation.

A.10 Methodology

Submission, reviewing and badging methodology:
• https://www.acm.org/publications/policies/artifact-review-
badging

• http://cTuning.org/ae/submission-20201122.html
• http://cTuning.org/ae/reviewing-20201122.html

https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
http://cTuning.org/ae/submission-20201122.html
http://cTuning.org/ae/reviewing-20201122.html
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