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ABSTRACT
A key challenge in programming crash-consistent applications for
Persistent Memory (PM) is achieving high performance while con-
trolling the order of PM updates. Managing persist ordering from
the CPU typically requires frequent synchronization points, which
expose the PM’s high persist latency on the execution’s critical
path. To mitigate this overhead, prior proposals relax the persis-
tency model and decouple persistence from the program’s volatile
execution, delegating persistence ordering to specialized hardware
mechanisms such that persistent state lags behind volatile state.
In this work, we identify the opportunity to mitigate the effect of
persist latency by leveraging the task-level parallelism available in
many PM applications, while preserving the stricter semantics of
synchronous persistence and the familiar x86 persistency model.

We introduce COSPlay, a software-hardware co-design that em-
ploys coroutines and rapid userspace context switching to hide
persist latency by overlapping persist operations across concurrent
tasks. Modest CPU extensions enable the hardware to fully overlap
persists of different contexts, while preserving intra-context order-
ing to meet crash consistency requirements. COSPlay boosts the
throughput of crash-consistent applications by up to 1.7× on sys-
tems with basic PM support. For systems with higher persist latency
due to added backend memory operations, such as encryption and
deduplication, COSPlay’s performance gains grow to 2.2 − 7.3×.
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1 INTRODUCTION
Persistent Memory (PM) has been a much-anticipated technology,
as it combines the persistence of storage with performance compa-
rable to DRAM. While simply replacing conventional storage with
PM can drastically boost the performance of data-intensive applica-
tions, reaping the full benefits of PM and keeping processors highly
utilized requires redesign efforts spanning the entire system stack,
from hardware, to software libraries and runtime systems. With
PM recently becoming commercially available [36], these efforts
are now more timely than ever.

PM provides applications with direct access to a persistent byte-
addressable domain through a load/store interface, at near-DRAM
performance. While this feature is a major performance booster for
crash-consistent applications, a key challenge lies in ensuring that
updates reach PM (i.e., they persist) in the intended order. Unless
explicitly controlled, persist order differs from store order, due to
the deep cache hierarchy between the CPU and PM. While store
order is dictated by the memory consistency model, persist order is
dictated by the memory persistency model. Although several persis-
tency models have been proposed [11, 25, 37], the only currently
available and widely used one is the x86 persistency model, which
implements an instance of epoch persistency. Under x86 persistency,
programmers use the clwb instruction to explicitly indicate the up-
dated cache blocks that should be written back to PM. The sfence
instruction is used as a persist barrier to enforce a desired order
across clwbs, by stalling the execution of younger stores/clwbs
until all older ones have completed. While persist barriers allow
programmers to control the order of groups of persists, they place
persist latency on the critical path. Therefore, the latency of persist
operations has a direct impact on performance.

To alleviate the effect of persist latency on performance, Asyn-
hcronous DRAM Refresh (ADR) support in modern PM-enabled sys-
tems allows PMupdates to be considered persistent when they reach
the write queue of the memory controller, rather than the PM device
itself [18]. However, compared to volatile DRAM, PM’s persistence
property introduces additional constraints for the stored data, such
as the need to preserve data integrity and confidentiality. There-
fore, PM systems may need to apply additional operations—such
as encryption, integrity protection, deduplication—at the memory
controller. Such Backend Memory Operations (BMOs) [29] increase
the latency of persist operations. As persist barriers expose this
prolonged persist latency on the critical path, BMOs can drastically
degrade the performance of crash-consistent applications.

We posit that the task-level parallelism inherent in a large class
of crash-consistent applications can be leveraged to ameliorate
the long-latency effect of persist barriers. By associating indepen-
dent application-level tasks with different logical contexts, when
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one context is stalled waiting for its updates to persist, another
context can make forward progress. We achieve that via software-
hardware co-design. On the software front, we employ coroutines,
a lightweight software component for preemptive multitasking, to
exploit an application’s task-level parallelism and rapidly switch
between tasks. Coroutines are becoming increasingly relevant in
the upcoming era of microsecond-scale computing [2] and have
already been effectively used for network and remote memory ac-
cess latency hiding in distributed systems [23, 33, 48] and databases
[15, 20, 38]. In addition, we introduce ISA extensions to associate
persist operations with their context, and modest CPU hardware
extensions to allow inter-context overlap of persists, while preserv-
ing the intended intra-context ordering. Our approach—COroutines
for Synchronous Persistence (COSPlay)—leaves the memory hier-
archy and the CPU’s most performance-critical microarchitectural
components unmodified.

Prior work removes persist latency from the critical path by re-
laxing semantics: either by resorting to relaxed persistency models
[11], or by resorting to asynchronous task persistence—i.e., allowing
a task to complete its execution and persist its PM updates at a
later point in time [25, 28]. Compared to these approaches, COS-
Play trades off general applicability in favor of preserving stricter
semantics. COSPlay is specifically specialized for applications with
inherent task-level parallelism, but operates under the predomi-
nant x86 persistency model familiar to programmers and provides
synchronous persistence guarantees—i.e., a task’s CPU execution
may only complete when all of its updates have persisted. Our
evaluation on a range of PM benchmarks commonly used in the lit-
erature [10, 13, 24, 29, 30] demonstrates thatCOSPlay can effectively
hide the long persist latencies introduced by BMOs and exposed
by sfences, delivering throughput improvements of 1.06 − 7.3×,
depending on the granularity of the application’s tasks and the
underlying system’s persist latency.

In summary, we make the following contributions:
• We leverage the rapid task switching enabled by corou-
tines as an effective software-based technique to hide PM’s
high persist latency hampering the performance of crash-
consistent programs.

• We introduce COSPlay, a software-hardware co-design em-
ploying modest hardware extensions to drastically improve
the throughput of crash-consistent applications with inher-
ent task-level parallelism. COSPlay preserves the desirable
strict semantics of synchronous task persistence and the x86
persistency model.

• We thoroughly evaluate COSPlay, comparing against several
alternative software and hardware approaches with equiva-
lent persistency semantics.

The paper is organized as follows. §2 details the challenges of
persist ordering, exacerbated by the presence of BMOs. §3 intro-
duces our approach to addressing these challenges and the require-
ments for an effective design. We then present our implementation,
COSPlay, in §4. We describe our methodology in §5 and evalu-
ate COSPlay in §6. Finally, we discuss related work in §7 and §8
concludes.

2 BACKGROUND
2.1 Persist Ordering Challenges
A key complication in developing crash-consistent programs for
PM is the divergence between volatile and persistent memory order.
The former is dictated by the memory model (e.g., a TSO variant in
modern x86 CPUs), while the latter is dictated by the persistency
model, amuch younger topicwith active research activity. Currently,
the practically predominant one is the x86 persistency model.

The x86 persistency model is an instance of epoch persistency
[37] that allows programmers to explicitly control the order of in-
dividual or groups of updates to PM. The basic tools to control this
order are two instructions: clwb and sfence. The clwb instruction
causes a cache block to be written back to PM from the cache hi-
erarchy, keeping a clean copy cached to preserve cache locality.
The hardware does not implicitly provide any ordering guarantees
across consecutive clwbs to different addresses, and concurrent
clwbs may persist in any order. The sfence instruction plays the
role of a persist barrier: it stalls the issuing of any new stores or
clwbs in the CPU pipeline until all pending stores drain from the
store queue and all pending clwb instructions have been acknowl-
edged by thememory controller, indicating that their corresponding
updates have persisted. Crash-consistent programs for PM use the
combination of clwb instructions followed by an sfence to control
the order of persistent updates: only when the sfence retires are
prior clwb operations guaranteed to have persisted.

Prior work has correctly identified the x86 persistency model’s
main weakness: while persist ordering is an integral requirement
of correct persistent applications, preserving a total order across
all persists is often overly conservative and not required for cor-
rectness. A number of alternative models that relax ordering re-
quirements to enhance performance have been proposed [37], with
strand persistency allowing for the maximum amount of persist
operations’ overlapping. Under strand persistency, persists whose
ordering must be maintained are grouped into strands. While intra-
strand ordering is enforced, inter-strand ordering can be relaxed.

StrandWeaver [11] is the first implementation of strand persis-
tency, showcasing that overlapping persists as allowed by strand
persistency yields considerable performance gains. However, hard-
ware implementations of strand persistency are not a panacea.
Compared to strict ordering, relaxed ordering is arguably more
arduous to reason about (e.g., consider TSO versus RMO/WO). In
addition, support for strand persistency introduces considerable
hardware complexity. In order to preserve correct persistence order-
ingwhile allowing the core to run ahead, StrandWeaver introduces a
hardware-based offload model. Ordering constraints are maintained
by a set of new, per-core hardware entities, the primary being the
Strand Buffer Unit. Finally, although StrandWeaver asynchronously
preserves the intended persist order, by ensuring it follows volatile
memory order later in time, such temporal decoupling is not ap-
plicable when the application requires the stronger semantics of
synchronous persistence. For applications that feature fine-grained
tasks, where a task can only be considered completed when it is
also guaranteed to be durable (i.e., all of its updates have persisted),
the frequent need for explicit synchronization of the decoupled
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volatile and persistent state (by using a JoinStrand in Strand-
Weaver), limits performance gains. We quantify these limitations
in our evaluation (§6.3).

Finally, while it is too early to declare that relaxed persistency
models such as strand persistency are too complicated or expensive
to be practically adopted, it is highly likely that x86 persistency
will dominate for years to come. We thus focus on the x86 persis-
tency model in this paper, and propose mechanisms to improve
performance on systems that abide by its semantics.

2.2 Persist Latency and BMOs
Crash-consistent programs make periodic use of persist barriers to
ensure that updates have persisted in the intended order. sfence
places the latency of writebacks to persistent memory, triggered by
clwb operations, on the critical path. As the write latency of PM
is significantly higher than DRAM (e.g., 500ns for Optane DIMM
[19]), frequent occurrence of such synchronous events can dramati-
cally hamper performance. To address this serious drawback, Intel’s
Asynchronous DRAM Refresh (ADR) [18] extends the underlying
PM’s effective persistence domain to the memory controller’s write-
back queues. Thus, the latency exposed by the sfence is that of
reaching the memory controller’s writeback queues rather than the
PM device itself.

While ADR shrinks the critical path to the persistent domain,
the unique characteristics of PM introduce the need for special
operations added before the memory controller, known as Backend
Memory Operations (BMOs) [29]. As PM is by definition non-volatile,
security concerns may require the encryption of data written to it.
PM’s limited lifetime may require the application of wear-leveling
and error correction techniques, while its limited write bandwidth
motivates the use of compression. The addition of BMOs adds 100s
of cycles on the critical path to the persistence domain, which can
significantly degrade the performance of crash consistent programs
using persist barriers to control persist ordering, according to the
x86 persistency model.

To illustrate the combined effect of persist ordering with BMOs
under the x86 persistency model, we examine the relationship be-
tween persist latency and application throughput. We assume an
ADR-enabled baseline system with a persist latency of 200 cycles
[19], and vary the latency added to that persist latency as an effect
of a hypothetical BMO. We use a benchmark suite commonly used
in PM literature featuring programs that execute short persistent
transactions and use undo logging for crash consistency. Additional
methodological details can be found in §5.

Figure 1 shows the overhead of crash consistency as a function
of increasing persist latency due to the introduction of BMOs. Per-
formance is shown as slowdown compared to non-crash-consistent
versions of the applications, where the order of updates to PM is
not controlled in any way (i.e., no sfences). We sweep the persist
latency added to the baseline ADR latency from 0 to 1000 cycles
(0 = plain ADR), representing hypothetical BMOs added on the
persist critical path. Vertical lines mark latencies of exemplar BMOs
from the PM research literature.

Even in the absence of BMOs (i.e., plain ADR), crash consistency
incurs a 1.07 − 3.14× slowdown. Unsurprisingly, this slowdown lin-
early grows with increasing BMO latency. The performance impact

Figure 1: Slowdown of crash-consistent applications com-
pared to their counterparts with unordered persists, as a
function of persist latency (0 = plain ADR). Vertical lines in-
dicate three exemplary BMOs (left to right): encryption [43],
lightweight deduplication [50], heavyweight deduplication
[50].

differs by application, based on the frequency of persist ordering
points, but slowdowns are commonly in the range of 1.5 − 5× and
more than 10× for TATP with the heaviest BMO we consider. In
conclusion, persist ordering requirements for crash consistency
introduce significant performance concerns, especially in the pres-
ence of BMOs that extend the latency of persist operations.

3 HIDING PERSIST LATENCY
VIA TASK-LEVEL PARALLELISM

A large class of applications leveraging PM for its desirable proper-
ties, such as object stores and transactional systems, exhibit high
degrees of task-level parallelism. There are multiple techniques
across the system stack banking on parallelism to hide latency, and
we posit that task-level parallelism can similarly be leveraged to
ameliorate the long-latency effect of sfence operations waiting for
preceding clwbs to complete.

Figure 2 demonstrates this opportunity with an example, where
a single CPU core executes two independent tasks. The example
assumes that crash consistency is achieved via write-ahead logging.
In the default case (Figure 2a), task 2 starts executing after task
1 completes. Both tasks use a combination of clwb and sfence
operations to guarantee the intended ordering of updates to PM and
synchronous persistence—i.e., the task is considered completed only
after its updates have persisted. The first sfence guarantees that
the log will persist before the following in-place updates (A−→B for
task 1, C−→D for task 2), while the second guarantees synchronous
persistence. Blue shading indicates each clwb’s latency to become
persistent. Red dashed lines over the blue shading indicate the
duration a clwb is on the critical path, due to an sfence blocking
the CPU pipeline until the clwb’s persistence is acknowledged.

The execution order of the two tasks implicitly imposes a full
A−→B−→C−→D ordering, placing four full persist (clwb + sfence)
latencies on the critical path. As updates across tasks are semanti-
cally independent, there are intra-task but not inter-task ordering
dependencies; thus, it is allowable to overlap the persists of task 1
and task 2.
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Figure 2: clwb and sfence impact on execution latency.

Figure 2b shows how overlapping inter-task persist latencies
can partially recoup the cost of long-latency persist operations to
improve performance. As soon as task 1 issues a long-latency clwb
and before executing the following sfence, execution switches to
task 2, which issues its clwb to address C, thus partially overlapping
the latency to persist task 1’s address A and task 2’s address C. After
issuing task 2’s clwb, the CPU switches back to task 1. If task 1’s
previously issued persist is still pending, the CPU needs to still stall
until the persist is acknowledged, to guarantee the intended persist
ordering within task 1; thus, an sfence is still required. As the
sfence’s semantics require waiting for all preceding store/clwb
operations to complete, task 1’s sfence stalls the CPU until task 2’s
clwb C has also completed, thus limiting the benefits of inter-task
clwb overlapping.

The desired effect for task 1’s sfence is to be context aware
and only wait for task 1’s stores/clwbs. Instead of waiting for
all pending clwbs, as sfence does, a hypothetical context-aware
fence (cfence) only waits for clwbs associated with a specific con-
text/task. Figure 2c illustrates how such a cfence can significantly
improve the overlap of the two tasks’ long-latency persists.

In summary, Figure 2’s example conceptually illustrates the
opportunity for throughput improvement of task-parallel crash-
consistent applications, by overlapping persist latency across in-
dependent tasks. Effectively taking this approach from concept to
practice comes with two key requirements:
▶ Requirement 1: The overhead of context (task) switching must
be sufficiently smaller than a persist’s latency.
▶ Requirement 2: CPU hardware needs the ability to distinguish
between persists of different tasks, and selectively stall only when
persists of the current task are still pending.

Next, we introduceCOSPlay, ourmechanism leveraging software-
hardware co-design to meet these two requirements.

...
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Figure 3: COSPlay overview: task assignment to window of
N concurrent coroutines with round-robin scheduling.

4 HIGH-THROUGHPUT SYNCHRONOUS
PERSISTENCEWITH COSPLAY

We take a software-hardware co-design approach to build a system
that meets §3’s two requirements. At the core of our approach lies
the lightweight software control structure of coroutines, which
we rely on for rapid context switching. Coroutines are a versatile
tool for modern software development, offering as low context-
switching latency as 6ns [3], and are becoming increasingly popular
in the era of microsecond-scale computing [2]. Coroutine switching
is several orders of magnitude faster than traditional OS thread
switching, which typically lies in the 5–20µs range [26, 45] (i.e.,
1–2 orders of magnitude slower than the slowest persist latency we
consider). Due to their agility, coroutines are already being used
in various domains for throughput boost via latency hiding, such
as in distributed memory systems [23, 33, 35, 48] and databases
[15, 20, 38]. As a tool of growing importance, coroutine support
has been included in the C++20 standard [8].

Figure 3 provides a high-level overview of COSPlay’s operation.
We target applications with inherent task-level parallelism. We use
a coroutine library (§4.2) to map each task to a coroutine struc-
ture and explicitly switch from one coroutine to the next (yield
in Figure 3) after a synchronous persist operation is issued. We
introduce two new instructions (marked in blue in Figure 3 and
detailed in §4.1) to associate instructions with different contexts and
enable the required semantics of a context-specific sfence. Finally,
simple hardware extensions enable the CPU pipeline to efficiently
distinguish among persist operations of different contexts (§4.3).

4.1 ISA Extensions
We introduce two new instructions to expose the notion of different
software contexts to the CPU and enable context-aware persist or-
dering: setctx cid and cfence cid. A setctx cid indicates that
all following instructions belong to context cid, until a subsequent
setctx cid’, with cid’ ≠ cid, is encountered. cfence is a context-
specific sfence. A traditional sfence orders all of its preceding
stores and clwbs (i.e., stores are globally visible and clwbs have
reached the persistent domain), with respect to its trailing stores
and clwbs. cfence offers the same guarantee, but only for stores
and clwbs associated with the same context cid: a cfence cid
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can only retire after all preceding stores/clwbs associated with
context cid have completed.

4.2 Software Interface
We build COSPlay’s API upon a typical coroutine software inter-
face used for task-parallel code. Our implementation uses a high-
performance open-source coroutine library [5]. We introduce three
macros to define and manipulate task behavior. TASK_START and
TASK_END mark the beginning and end of a task, respectively.
YIELD invokes the library’s coroutine switch functionality and
transfers control to our scheduler, which employs simple round-
robin scheduling across available contexts.

Figure 4 outlines the transformation from baseline sequential
code with available task-level parallelism to task-parallel COS-
Play code. Black fonts in Figure 4b indicate coroutine code. The
TASK_START and TASK_ENDmacros enclose a task that is mapped
to a coroutine. The runtime manages window_size concurrently
active coroutines and cycles through them every time a YIELD is en-
countered. YIELD invocations must be explicitly placed in the task’s
source code. For the purpose of hiding persist latency, the process of
placing these YIELDs in the code is straightforward: every sfence
used for persistence ordering reasons indicates a long-latency event
of waiting for clwbs to become persistent. Hence, we place a YIELD
before every sfence of the original code, to overlap the clwbs of
one context with computation and clwbs of another.

Blue fonts in Figure 4b indicate COSPlay’s newly introduced
instructions. A setctx cid instruction is placed at the beginning
of each task, to implicitly associate the task’s following instruc-
tions with context cid. A sequence of setctx cid, cfence cid
instructions replaces the baseline code’s sfence. setctx restores
the context id associated with the task and cfence enforces the
task’s intended persist ordering by blocking until any previously
pending stores/clwbs associated with the same cid have com-
pleted.

As execution progresses, tasks are gradually assigned to the set
of provisioned window_size contexts. When a task completes, a new
one is spawned in the same context. In our current implementation,
the number of used contexts/coroutines (window_size) is defined at
program launch time. Runtime window_size adaptation to dynamic
application behavior is an interesting future work direction.

From the programmer’s perspective, leveraging COSPlay only re-
quires identifying the available task-level parallelism in the original
code and explicitly annotating it with our coroutine library macros.
Beyond that, the placement of all COSPlay-specific additions (blue
code in Figure 4b) is standard with respect to coroutine primitive
placement and can be incorporated in the coroutine library to re-
main completely hidden by application programmers. Note that
we do not claim that breaking up an arbitrary application into par-
allel tasks is trivial. Instead, we posit that upgrading applications
with inherent task-level parallelism to be COSPlay-compatible is
straightforward. For example, applications performing transaction
processing or dynamic data structure (e.g., hash table, list, tree,
graph) manipulations are a good fit, as a transaction or data struc-
ture traversal is naturally a self-contained task.

cid = 0
while requests available

cid = (cid%window_size)+1
TASK_START(cid)

setctx cid
logging
clwb
YIELD
setctx cid
cfence cid
in-place updates
clwb
YIELD
setctx cid
cfence cid

TASK_END    

while requests available

//do work for request i

logging
clwb //one or more

sfence //orders log
//before updates

in-place updates
clwb //one or more

sfence //for synchronous
//persistence

(a) Baseline code (b) COSPlay-enabled code

Figure 4: Pseudocode transformation example. In (b), black
fonts indicate standard coroutine code to exploit task-level
parallelism; blue fonts indicate COSPlay additions to paral-
lelize inter-task persist operations, while preserving the re-
quired intra-task persist ordering.

4.3 Hardware Support
COSPlay’s modest hardware modifications solely pertain to en-
abling the cfence instruction semantics for context-aware CPU
stalling. A new architecturally visible control register, the context
register, holds the currently executing context’s unique cid. When-
ever a setctx cid instruction is executed, the context register is
set to cid.

All store and clwb instructions are associated with the context
register’s contained cid at the time they are issued to the CPU’s
Store Queue (SQ) and extend the SQ with a cid field per entry. To
ensure correct assignment of cid to individual store/clwb opera-
tions, the CPU’s issue stage observes a read-after-write dependency
on the context register between setctx and younger store/clwb
instructions.

Due to the lack of publicly available details regarding clwb han-
dling in modern CPU microarchitectures, we hypothesize the ex-
istence of the WriteBack Buffer (WBB), a structure responsible for
tracking the status of pending clwbs. We assume clwbs are issued
into the SQ like stores, and are differentiated by setting an is_clwb
bit. clwb entries have a valid address field, but no data, so they
cannot forward values to subsequent loads. As the TSO memory
model does not enforce an order between stores and clwbs to
different addresses, we assume that a clwb moves to the WBB as
soon as it reaches the SQ’s head, if there is no pending clwb to
the same address in the WBB (to ensure that clwbs to the same
address reach the persistent domain at the right order). The clwb
stays in the WBB until an acknowledgement that the cache line
has reached the persistent domain is received. All clwbs in the
WBB can proceed in parallel and may complete out of order, as no
ordering between clwbs is required.

Figure 5 illustrates the aforementioned components of the CPU
microarchitecture, including our extensions to support COSPlay.
We extend every SQ and WBB entry with a cid field that associates
each store and clwb with a context. The cid fields are used to
implement the functionality of our introduced cfence.

The ordering semantics of cfence are implemented using a re-
source-allocation blocking mechanism. When a cfence cid is
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Figure 5: Extensions in CPU pipeline hardware structures for COSPlay.

executed, it blocks the allocation of SQ entries while any instruc-
tions with the same cid still reside in the SQ or WBB. The cfence
can commit as soon as these instructions are drained. This behav-
ior differs from a traditional sfence, which blocks SQ allocation
until both structures (SQ and WBB) are fully drained. cfence thus
introduces a higher level of complexity, as instead of simply check-
ing whether the SQ and WBB are empty, it must perform a fully
associative search in both structures to look for outstanding opera-
tions associated with the context of interest. To avoid this expen-
sive search, we introduce a new structure, the Store-Clwb Tracker
(SCT). The SCT is a very small, direct-mapped structure that tracks
per-context pending stores and clwbs. The SCT’s number of en-
tries dictates the maximum number of supported contexts, and
each entry acts as a context-specific counter. Each entry’s size is
log2 (#𝑆𝑄 𝑒𝑛𝑡𝑟𝑖𝑒𝑠 + #𝑊𝐵𝐵 𝑒𝑛𝑡𝑟𝑖𝑒𝑠) + 1 bits. When a store or clwb
of context i enters the SQ, SCT[i] is incremented. Similarly, when a
store/clwb of context i leaves the SQ/WBB, SCT[i] is decremented.
cfence cid blocks until SCT[cid] becomes zero, signifying that all
stores/clwbs associated with context cid have become globally
visible/persistent.

Hardware overhead. Table 1 summarizes the per-core hardware
added to enable COSPlay. For example, a system that features a SQ
andWBB of 32 entries each, and supports 16 contexts, requires total
SRAM addition of 32×4 bits + 32×4 bits + 16×7 bits = 46 bytes. The
context register is accommodated by the out-of-order processor’s
physical register file by extending the Register Alias Table.

Context (cid) collisions. The coroutine library manages win-
dow_size (WS) concurrent coroutines, which the hardware maps to
C hardware-provisioned contexts. While application software may
oversubscribe the available hardware contexts by instantiating a
WS > C, the maximum achievable persist concurrency attainable is
min{WS, C}. Such oversubscription does not raise correctness im-
plications, as COSPlay’s cfence cid will default to a conservative
behavior, effectively bundling all coroutines that use the same cid
together: cfence cid waits for all stores/clwbs marked with the
same cid to complete before retiring.

Operational overhead. Microarchitectural additions to enable
COSPlay are of negligible complexity compared to a typical out-
of-order processor. Attaching the cid retrieved from the context
register to stores and clwbs introduces an additional register read
for these instructions, but does not increase port requirements for
the register file, as both instructions have a single source operand

Entity Added hardware
SQ extension 𝑙𝑜𝑔2(# contexts) cid bits per entry
WBB extension 𝑙𝑜𝑔2(# contexts) cid bits per entry
Store-Clwb entries: # contexts; n-bit adder
Tracker n = (𝑙𝑜𝑔2(# SQ entries + # WBB entries) + 1) bits per entry

Table 1: COSPlay per-core hardware extensions.

by default. Compared to sfence, the semantics of cfence function-
ally require a more selective search in the SQ and WBB, but the
SCT structure allows completing this check with a simple indexed
lookup into a tiny structure instead of an associative search. None
of these extensions are on the critical path of loads.

4.4 Synchronization Considerations
The order at which updates of different tasks, and thus contexts,
are executed is not determined by COSPlay, but rather by the—
orthogonal to our mechanisms—synchronization primitives used
by the programmer. A programwith correct synchronization should
contain no races in volatile memory. Under our target semantics of
synchronous persistence (i.e., a task does not complete before its
updates are persistent), this guarantee extends to persistentmemory.
We assume that all critical sections are appropriately protected
against data races: only one task/context can issue stores and
clwbs to a given memory location at a time, and the application
waits for persists to complete before it exits the critical section, to
achieve synchronous persistence. If a race inherently exists in the
program, then there are no guarantees regarding the absolute order
of updates to persistent memory, as would be the case even without
COSPlay’s involvement.

COSPlay is geared towards applications with inherent task-level
parallelism that generally employ fine-grained locking mechanisms
and are scalable (i.e., conflicting critical sections are infrequent).
Nevertheless, special care is required to prevent deadlocks, which
would arise if the program switches to a task that tries to acquire
an already acquired lock, by blocking or spinning. Following an
approach similar to test-and-set, if a context’s task attempts to
acquire a lock and fails, it immediately yields to the next context.
This requirement is not COSPlay-specific, as similar care should be
taken in any scenario of parallel code leveraging coroutines.

4.5 Putting It All Together
We conclude this section with a step-by-step example demonstrat-
ing COSPlay’s operation. Figure 6a shows code snippets of two
tasks, each assigned to a context, 0 and 1, respectively. For ease
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context 0
0.1  setctx 0
0.2  st X, addrA
0.3  clwb addrA
0.4  yield
0.5  setctx 0
0.6  cfence 0
0.7  st Y, addrB
0.8  clwb addrB
0.9  yield
0.10 setctx 0
0.11 cfence 0

context 1
1.1  setctx 1
1.2  st Z, addrC
1.3  clwb addrC
1.4  yield
1.5  setctx 1
1.6  cfence 1
1.7  st W, addrD
1.8  clwb addrD
1.9  yield
1.10 setctx 1
1.11 cfence 1

SQ

Address Datacid

0 0 0 ...

WBB

Addresscidclw
b?

SCT
0

ctx register
b

c

1 0 C Z

0 1 A
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Figure 6: COSPlay running example.

of reference, we tag each instruction with <context id>.<line
number>. Circled letters next to instructions point to the subfig-
ure corresponding to the hardware state when that instruction is
executing. For example, b○ on Figure 6a indicates that Figure 6b
shows the hardware state when instruction 0.1 is executed. In
Figure 6b, the context register is set to 0, and the rest of the struc-
tures of interest—Store Queue (SQ), Writeback Buffer (WBB), and
Store-Clwb Tracker (SCT)—are still unused.

Figure 6c shows hardware state after instructions 0.1-0.4 have
executed, the runtime has switched from context 0’s coroutine to
context 1’s coroutine, and context 1’s instructions 1.1-1.2 have
executed. 1.1 has set the context register to 1. With a store and a
clwb from context 0 and a store from context 1 pending in the SQ,
SCT[0] = 2 and SCT[1] = 1.

In Figure 6d, 0.2 has drained to global memory, 0.3 has moved
from the SQ to theWBB, and 1.2 has entered the SQ. Thus, SCT[0] = 1
and SCT[1] = 2, corresponding to each context’s total pending en-
tries in the SQ and WBB.

In Figure 6e, the runtime has switched back to context 0’s corou-
tine. 0.5 has set the context register to 0, 1.2 has drained to the
memory hierarchy, decrementing SCT[1], and 1.3 has moved from
the SQ to the WBB. Execution blocks at 0.6, as cfence 0 finds
SCT[0] ≠ 0, indicating that there are still pending stores/clwbs
associated with context 0.

In Figure 6f, 1.3: clwb addrC completes and leaves the WBB
before the preceding 0.3: clwb addrA, decrementing SCT[1] to
0. Such clwb reordering is allowable and may occur for a range
of reasons—for example, if addrA’s home location resides in a re-
mote socket’s memory range. 0.6: cfence 0 can still not retire, as
SCT[0] ≠ 0.

In Figure 6g, clwb addrA has completed and left the WBB, al-
lowing context 0’s following instructions to proceed. Instructions
0.6-0.9 have also completed and the runtime has switched back
to context 1’s coroutine. 1.5 has set the context register to 1 and
1.6: cfence 1 immediately retires as SCT[1] = 0. Instructions
1.7–1.8 add a store and a clwb in SQ, incrementing SCT[1] to 2.

Finally, in Figure 6h, 0.11: cfence 0 finds SCT[0] = 0 and can
thus immediately retire. At this point, the task assigned to context
0’s coroutine completes. The runtime switches back to the only
remaining active coroutine on context 1, which also completes as
soon as the last pending clwb of context 1 completes, allowing
1.11: cfence 1 to retire.

Overall, COSPlay allows long-latency clwb operations from dif-
ferent tasks to overlap, as shown in Figure 6e, and relies on the
semantics of our introduced cfence to preserve the intended intra-
task persist ordering guarantees.

5 METHODOLOGY
Modeled system.We use the ZSim simulator [44] to model a core
modeled after the Cascade Lake microarchitecture [17]. All our
experiments use a single core, as COSPlay is a technique seeking
to improve an individual core’s utilization. Table 2 summarizes the
used simulation parameters.
Modeled BMOs. While we start from a baseline ADR system,
where persist latency is only that of reaching the memory con-
troller’s writeback queues, our evaluation focuses on systems fea-
turing BackendMemory Operations (BMOs). We consider a number
of BMOs used in prior work [29]:

• Encryption (AES-128) [43]: 100-cycle latency.
• Light deduplication (crc-32) [50]: 200-cycle latency.
• Heavy deduplication (md5) [50]: 700-cycle latency.
• Hypothetical BMO combination: 1000-cycle latency.

CPU x86-64 core modeled after Cascade Lake, 2.2GHz, OoO, 4-wide
dispatch/retirement, 224-entry ROB, 56-entry SQ, 32-entry WBB

L1 Caches Split L1d/i, 32KB 8-way, 64B blocks, 4-cycle access
L2 Caches 1MB, 16-way, 10-cycle access
LLC Inclusive, 16MB, 16-way, 30-cycle access
NoC Crossbar, 8-cycle latency

PM Modeled after Optane [19]: 600-cycle read latency, 200-cycle write
latency to controller, 4GBps/2GBps peak read/write bandwidth

Table 2: System parameters for simulation on ZSim.
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Name Description CKI∗ SKI∗ CII∗

SPS Random swaps of array elements 21.7 10.9 3.5×
PC Modify values in a hash-table 20.0 20.0 5.3×
TATP update location transaction in TATP 30.3 30.3 8.1×
TPCC New Order transaction in TPC-C 23.2 2.7 1.2×
CQ Insert/Delete entries in a queue 19.5 2.3 1.5×
∗CKI: clwb/kInstruction, SKI: sfence/kInstruction,
CII: COSPlay Instruction Increase

Table 3: Evaluated benchmarks.

We refer to these BMOs as Enc, LD, HD, Comb, respectively. For each
BMO, the indicated number of cycles is added to the raw latency of
a cache line reaching the memory controller. We assume that the
system’s BMO throughput is sufficiently provisioned to keep up
with the available PM bandwidth—i.e., BMOs introduce a latency
overhead, but never a throughput bottleneck.
Benchmarks. We use a set of benchmarks that were originally
introduced by Kolli et al. [24] and have since been extensively used
in PM research [10, 13, 29, 30], summarized in Table 3. The CKI and
SKI columns indicate each benchmark’s clwbs and sfences per
1000 instructions, respectively. The CII column shows the increase
in per-task dynamic instruction count, due to COSPlay coroutine
library calls. The smaller the benchmark’s tasks and the higher
the sfence frequency (i.e., more coroutine switching per task),
the larger the increase in executed instructions. TATP features
the smallest instruction footprint per task, resulting in the highest
instruction bloat of 8.1×.

All benchmarks are written in C++ and employ undo logging
for crash consistency. A coroutine that attempts to acquire an al-
ready held lock yields to allow another task attached to a different
coroutine, as described in §4.4. All benchmarks except for CQ lever-
age fine-grained locking resulting in very low probability of lock
collision, and hence inherently high task-level parallelism. In CQ’s
original implementation, queries access a single shared queue pro-
tected by a single lock, effectively limiting the parallelism degree
to one. To demonstrate COSPlay’s limitations and applicability as
a function of available task-level parallelism, we evaluate three
versions of CQX, with X={4, 16, 64}, where X denotes the number
of queues instantiated. Every new task randomly selects one of the
X available queues to operate on.
Evaluated system configurations. We employ six system con-
figurations to highlight COSPlay’s operation and performance im-
provements:
• Baseline uses undo logging and achieves crash consistency by
controlling log and in-place update persist order using sfences.

• Unordered represents a system that is completely free of any
persist-induced CPU stalls and serves as an upper performance
bound. By removing all sfences, persist latency is never on the
critical path, but applications are not crash consistent anymore,
as updates to PM are not explicitly ordered in any way.

• StrandWeaver is the hardware implementation of strand persis-
tency, modeled after prior work [11]. StrandWeaver introduces
programming primitives to allow developers to mark inde-
pendent persists within a task and provisions new hardware
structures to allow these independent persists to be overlapped.
To achieve synchronous task persistence, a JoinStrand opera-
tion at the end of each task ensures that all persists belonging
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Figure 7: Illustrative comparison of persist overlap effect us-
ing COSPlay and SBatch (window size = 3).

to the task have committed before continuing execution. We
evaluate the default StrandWeaver(4,4) configuration, featur-
ing four strand buffers of depth four each, and an enhanced
StrandWeaver(8,8) configuration.

• COSPlay is our proposed design to hide persist latency by lever-
aging task-level parallelism, coroutines, and minimal hardware
support, as introduced in §4.

• Software batching (SBatch) evaluates a software-only technique
that leverages task-level parallelism by employing coroutines
similarly toCOSPlay.With a coroutinewindow size of N, SBatch
only invokes an sfence every Nth coroutine, thus placing per-
sist latency on the critical path only once after cycling through
N tasks. Figure 7b graphically illustrates SBatch’s operation
for 𝑁 = 3 as compared to COSPlay with the same window size
(Figure 7a).

• FreeSwitch is a configuration to assess COSPlay’s coroutine
switching overhead and an upper performance improvement
bound for hypothetical coroutine library implementations with
faster switching. We model a zero-cost switch by annotat-
ing each application’s calls into coroutine switching library
code (including the round-robin scheduling logic) and fast-
forwarding these instructions in the simulator, thereby ignoring
their effect on performance.

6 EVALUATION
6.1 Sensitivity to Persist Latency
We start our evaluation by comparing COSPlay to Baseline. Figure
8 demonstrates the achieved speedup for each of our evaluated
benchmarks, for the best-performing window size. Numbers above
each bar indicate the window size used in each case. Unsurprisingly,
the longer the persist latency, the higher the performance improve-
ment opportunity for COSPlay. In addition, the optimal window
size grows with BMO latency, as hiding the longer persist latency
requires higher concurrency. For plain ADR, COSPlay achieves a
speedup of up to 1.7×. The benefit for some applications is mar-
ginal, as the overheads of coroutine switching largely offset the gain
from hiding the relatively low latency of persists. For our shortest
evaluated BMO (Enc), COSPlay achieves a speedup of 1.04 − 2.24×,
which gradually grows with BMO latency to 1.1 − 2.8×, 1.4 − 5.5×,
1.5 − 7.3×, for LD, HD, Comb, respectively.
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Figure 8: COSPlay performance for different persist laten-
cies. Over-bar numbers indicate the best window size.

Benchmarkswith the highest SKI values—SPS, PC, TATP—benefit
the most from COSPlay; an expected behavior, as higher SKI values
indicate more frequent stalls due to serialized persists. Although
TATP demonstrates the highest SKI value, it benefits slightly less
than the benchmark with the second-highest SKI, PC, due to a
considerably higher instruction count overhead incurred by COS-
Play. TPCC and CQ both show more modest performance gains,
due to their significantly lower SKI value. The maximum achiev-
able speedup for CQ is affected by the available parallelism de-
gree, implicitly dictated by the number of provisioned queues—e.g.,
1.7×, 1.8×, 1.8× for CQ4, CQ16, CQ64, respectively, in the case of
HD. Interestingly, for the longer BMOs, the best window size for
CQ4 exceeds the application’s maximum available parallelism de-
gree of four. Due to random queue selection, each task assigned
to a coroutine is likely to pick a queue with an already acquired
lock. Thus, limiting the number of concurrent coroutines to four
leaves available parallelism on the table. For longer BMOs, the gains
of window size overprovisioning to maximize the extracted par-
allelism outweigh the cost of fruitless coroutine switching due to
finding a lock already acquired.

6.2 Sensitivity to Window Size
Figure 9 shows COSPlay’s sensitivity to window size for Enc and
HD, with its performance normalized to the—non-crash consistent—
Unordered configuration. The general trends we observe are similar
for both BMOs. With a window size of one, COSPlay’s cfence
becomes functionally equivalent to a normal sfence, as only a
single context is at any point active, thus always exposing the
persist latency on the critical path. Due to the added overhead of
the coroutine library, COSPlay with a window size of one performs
worse than Baseline. As we increase the window size, performance
drastically improves, reaching a knee of diminishing returns beyond
a window size of 2–5 for Enc and 5–10 for HD. That shift to the
right is expected, as hiding the longer BMO latency requires more
parallelism.

All applications except for CQ plateau after the window size is
sufficient to hide the persist latency. As the window size grows
further, it is expected to see this plateau turn into a bathtub due to
cache thrashing. Because of the small size and little data locality
of tasks, we only start observing an increase in cache miss ratios,
negatively affecting performance, at window sizes beyond 32. CQ
exhibits a bathtub curve even within Figure 9’s window size range,
due to its limited number of locks constraining concurrency: a
coroutine switch activating a task that finds a lock acquired is pure
overhead.

(a) Enc (100 cycles). (b) HD (700 cycles).

Figure 9: Performance sensitivity to window size.

Figure 10: COSPlay and StrandWeaver on TPCC.

For Enc and HD, COSPlay brings the performance of crash con-
sistent programs within 1.08 − 2.07× of Unordered, a significant
improvement from the 1.12− 11.44× performance gap between Un-
ordered and Baseline, which does not exploit task-level parallelism.
The remaining gap from Unordered is primarily attributed to the
considerable instruction overhead (CII in Table 3) introduced by
COSPlay’s coroutine management code.

6.3 Comparison to StrandWeaver
StrandWeaver [11] is arguably the prior work most closely related
to COSPlay. StrandWeaver ameliorates the performance impact of
persist ordering in two steps. Programmers are trusted to identify
strands, i.e., subsets of persists within a task that need to be ordered.
StrandWeaver’s hardware then ensures that intra-strand ordering is
maintained, while inter-strand ordering can be relaxed for perfor-
mance gains. Ordering policies are enforced by an out-of-core unit,
the Strand Buffer. In our applications, a set of in-place updates with
their corresponding undo log comprise a single strand, as there
is a logical dependency that requires the log and in-place update
to persist in order. Multiple log/in-place update sets within a task
represent independent strands.

All our applications except for TPCC feature a single pair of
clwb batches for undo logging and in-place updates per task (as
per Figure 4(a)’s example code), which need to be ordered, and
thus cannot be overlapped. Because of these ordering constraints,
such short tasks would amount to a single strand per task, making
StrandWeaver inapplicable as no inter-strand parallelism can be
extracted. In addition, to achieve synchronous persistence (i.e., a
task is only considered completed when its updates are persistent),
a JoinStrand is required at each task’s end. JoinStrand’s effect is
similar to sfence’s: it blocks until clwbs from all previous strands
have drained. The compound effect of single-strand tasks and a
JoinStrand at the end of each task is that the relative COSPlay
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(a) Iso-window-size comparison. Over-bar numbers indicate the used window
size, which is the best-performing window size for COSPlay.

(b) Comparison using best window size for each configuration. Over-bar num-
bers indicate the best-performing window size for SBatch.

Figure 11: Speedup of COSPlay over SBatch.

versus StrandWeaver performance for these applications is identical
to COSPlay versus Baseline, shown in Figure 8. However, Strand-
Weaver can accelerate TPCC, where each task comprises a dozen
undo logging/in-place update pairs of clwb batches.

Figure 10 shows StrandWeaver’s performance improvement over
Baseline for TPCC. For ADR, StrandWeaver(4,4) and StrandWea-
ver(8,8) perform similarly, corroborating the original work [11].
However, as persist latency grows, we find that (4,4)’s buffer provi-
sioning depth is not sufficient to accommodate every strand’s full
batch of clwbs, causing the CPU to stall more often than the single
JoinStrand per task. Ultimately, for the longest persist latencies,
this additional blocking results in Baseline outperforming (4,4), as
Baseline allows all clwbs before an sfence to proceed in parallel,
while StrandWeaver limits intra-strand concurrency to the depth
of the Strand Buffer (which in (4,4) is four). This case exhibits how
StrandWeaver’s statically partitioned hardware resources introduce
unnecessary stalls when either of the provisioned depth or width is
saturated (i.e., clwbs within the same strand exceed buffer depth,
or a wider buffer to accommodate more parallel strands is needed).
In contrast, COSPlay’s SQ and WBB resources are dynamically
partitioned as necessary.

StrandWeaver(8,8) provisions sufficient Strand Buffer depth for
the examined application to mitigate (4, 4)’s resource limitation,
thus enabling both intra- and inter-strand clwb concurrency suffi-
cient to hide the latency of longer BMOs. As a result, (8,8) outper-
forms (4,4) by ∼60% for HD/Comb. Ultimately, the single JoinStrand
blocking point at the task’s end caps StrandWeaver’s performance;
we experimentally verified that overprovisioning Strand Buffer
beyond (8, 8), width- or depth-wise, does not help.

For an ADR system, StrandWeaver(8,8) outperforms COSPlay by
9%, as it reduces CPU stalls for persists from 12 per task to only
a single one at the end, without COSPlay’s instruction overhead.
The performance gap gradually shrinks as persist latency grows,
rendering the single JoinStrand per task and the associated stall
to drain all buffers increasingly detrimental. In contrast, COSPlay’s
cfences enable continuous execution, never requiring an explicit
full drain, because they selectively check only for the completion
of the associated context’s stores/clwbs. As a result, COSPlay
outperforms StrandWeaver(8,8) with long BMOs—by 22%/55% for
HD/Comb, respectively.

Ultimately, in terms of performance, neither StrandWeaver nor
COSPlay is always strictly superior, as the outcome depends on the
nature of the target application and the system’s configuration. In

the absence of task-level parallelism (TLP), COSPlay is not applica-
ble. In contrast, if persist latency is high or the application features
short tasks with the requirement of synchronous persistence, COS-
Play’s TLP-extracting approach is essential to boost throughput.
Furthermore, COSPlay requires significantly simpler hardware ex-
tensions, and relies on the familiar to programmers and already
widely employed x86 persistency model. Combining StrandWeaver
with coroutines to leverage TLP is not effective, as StrandWeaver’s
only primitive to synchronize volatile execution with persistence
(JoinStrand) waits for all previous stores/clwbs of all strands to
persist before unblocking the core. In contrast, COSPlay’s cfence
cid primitive allows the CPU to selectively block for only pending
persists of the current context.

6.4 Comparison to Software Batching
COSPlay predominantly relies on a software mechanism to overlap
persist latencies across multiple tasks, but also employs modest
hardware extensions to do so effectively. SBatch is an alternative
software-only approach that, similarly to COSPlay, uses coroutines
to leverage task-level parallelism, but without any hardware sup-
port. Instead, it relies on batching persists of multiple tasks, as
described in §5 and graphically illustrated in Figure 7b.

Figure 11 compares the speedup achieved by COSPlay over
SBatch. Figure 11a shows an iso-window-size comparison, using the
best window size for COSPlay, indicated by the over-bar numbers.
For an ADR system, COSPlay outperforms SBatch by 1.04 − 1.14×,
growing with BMO latency to 1.20− 1.26× for Comb. While SBatch
reduces the number of CPU-blocking persist operations by a fac-
tor of N, COSPlay with a sufficient window size can potentially
eliminate them completely.

Figure 11b compares the performance of COSPlay and SBatch
when the best-performing window size for each configuration is
used. Over-bar numbers show the best window size for SBatch;
remember that the best window size for COSPlay appears in Fig-
ure 11a. With the exception of CQ4 and CQ16, which are bound
by limited concurrency, the performance gap between the two
configurations drops to 1.02 − 1.11× for non-concurrency-bound
applications. However, achieving that performance gap reduction
requires SBatch to employ window sizes up to 12× larger than COS-
Play, which comes at the cost of significantly higher individual task
latency—a well-known tradeoff associated with batching.

Figure 12 shows the CDF of individual task duration. For brevity,
we only show the CDFs for four of the applications and only for
the LD system configuration. As demonstrated in Figure 11a and
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(a) SPS. (b) PC. (c) TATP. (d) TPCC.

Figure 12: Task latency CDFs for COSPlay and SBatch for light deduplication (LD) BMO (200 cycles).

(a) Enc (100 cycles). (b) HD (700 cycles).

Figure 13: Opportunity for faster context switching.

11b, SBatch requires a drastically larger window size to approach
COSPlay’s performance. Such increased window size results in
SBatch exhibiting a median task latency increase of 4 − 8× and
even more for larger percentages. Even for the same window size,
COSPlay yields marginally lower (4− 25% for LD) task latency than
SBatch, as SBatch’s 1 in N blocking tasks slightly shifts the whole
latency distribution to the right. While we only show LD in Figure
12, the individual task latency gap between SBatch and COSPlay
is even wider for longer-latency BMOs, as SBatch employs even
larger batching degrees.

6.5 Context Switching Overhead
Figure 13 shows the performance of Baseline, COSPlay, and FreeSwitch
compared to Unordered for Enc and HD. Starting with Figure 13a,
for the applications most sensitive to persist latency—SPS, PC,
and TATP—COSPlay captures most of TLP’s potential, improving
throughput by 1.9− 2.2×. Eliminating switching overhead can offer
an additional improvement of 1.3 − 1.4×. For the least sensitive
application, TPCC, switching overheads are significant: COSPlay
improves performance over Baseline by just 4%, while FreeSwitch
shows an additional 4% potential. CQ lies in between: COSPlay
is 14% faster than Baseline, and FreeSwitch showing an additional
7% improvement opportunity. The remaining performance gap
between FreeSwitch and Unordered is attributed to coroutine over-
heads other than switching and scheduling (which are skipped by
FreeSwitch) and, to a lesser extent, to cache interference.

The performance gaps shift in presence of longer BMOs, as
Figure 13b demonstrates for HD. FreeSwitch’s relative performance
improvement opportunity over COSPlay remains very similar as
in Enc. However, COSPlay captures most of the performance gain
opportunity for all applications, due to the significantly reduced
relative cost of coroutine switching as compared to persist latency.

Such analysis can help inform a decision about investing in hard-
ware for faster context switching versus a lightweight software-
focused approach with small hardware additions like COSPlay. For

(a) Baseline scalability. (b) COSPlay speedup over baseline.

Figure 14: Performance impact of COSPlay on multicore de-
ployment for system with light deduplication (LD) BMO.

instance, a CPU with coarse-grained multithreading (CGMT) could
functionally achieve the same effect as COSPlay with faster context
switching at the cost of hardware. FreeSwitch with window size N
could also be interpreted as a rough approximation of an N-way
CGMTCPU, although, as previouslymentioned, there are additional
overheads introduced by the coroutine library that FreeSwitch does
not eliminate. A key tradeoff for the design of a multithreaded
core is the partitioning of its LSQ [40, §11.4.4.1], sharing concep-
tual similarities with StrandWeaver’s Strand Buffer provisioning
considerations (§6.3). Per-thread partitioned provisioning could
allow context-aware ordering like the one achieved by COSPlay’s
cfence, but limits the maximum LSQ capacity usable by each indi-
vidual thread. COSPlay does not introduce such tradeoff. Finally,
although a CGMT CPU would be feasible for low BMO latencies
like Enc, which require window sizes of 2–9 for latency hiding, the
cost would be prohibitive for longer ones like HD, where optimal
window sizes fall in the 3–31 range (see Figure 8).

6.6 COSPlay and Multithreaded Execution
Our evaluation so far focused on single-core application deploy-
ments. However, as the applications COSPlay targets exhibit task-
level parallelism, they can be trivially deployed in multi-threaded
mode on multicore systems and achieve good scalability, as demon-
strated in Figure 14a. COSPlay is orthogonal to multithreading, and
can be combined with it to further boost application throughput.
Figure 14b shows the achieved speedup as a function of applica-
tion threads (each running on a dedicated core), when each thread
employs COSPlay. Unsurprisingly, COSPlay’s achieved speedup
diminishes with the number of threads, as higher concurrency pro-
motes PM bandwidth contention and synchronization overheads to
considerable performance determinants. Evenwhen using 8 threads,
COSPlay still delivers noticeable throughput gains, especially for
applications with high task-level parallelism and fine-grained tasks.
With only minimal hardware additions, COSPlay improves the
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utility and efficiency of area- and power-hungry aggressive OoO
cores.

7 RELATEDWORK
Persistencymodels. The implemented persistency model dictates
not only the semantics exposed to the programmer, but also the
impact of a PM’s persist latency on performance. Pelley et al [37]
provide one of the first persistency model taxonomies, discussing
strict, epoch and strand persistency. The predominant x86 per-
sistency model is a form of epoch persistency, which relaxes the
order of persists within the same epoch to improve persist overlap
and hence performance. However, the remaining synchronization
points still hamper performance, motivating approaches with looser
persistency semantics. StrandWeaver [11] implements strand per-
sistency [37] by diving programs into strands that can persist out
of order and ensuring the expected by the programmer ordering in
hardware. We extensively discussed similarities and differences of
StrandWeaver and COSPlay in §2.1 and §6.3. DPO [25] implements
a buffered strict persistency model, whereas BPFS [7] and HOPS
[32], among others [1, 9, 21, 24, 42], implement different versions
of buffered epoch persistency by utilizing buffers that maintain
the desired order of persist operations through the memory hier-
archy. Such buffering approaches remove the persist latency from
the CPU’s critical path and eschew program execution stalls while
waiting for a persist to happen, but require extensive and often
complex additions to the caches and the PM controller. More impor-
tantly, such decoupling of volatile and persistent state complicates
persistency semantics, as a program’s persistent state can lag ar-
bitrarily behind its volatile state, resulting in asynchronous rather
than synchronous persistence. COSPlay focuses on the semantics
of the x86 persistency model and synchronous persistence, but its
applicability is limited to applications with task-level parallelism.
Scoped fences and barriers. COSPlay’s cfence is a form of selec-
tive sfence operation. Fences and barriers with selective scopes
have been considered before both in the context of parallel pro-
gramming [27] and more specifically in the context of PM. Gope et
al [12] propose barriers with different scopes for GPU programming
with PM, while work on buffered epoch persistency models con-
sider uni-directional acquire/release fences to express finer-grained
persist ordering than full sfences [9, 24]. COSPlay’s cfence pre-
serves simplicity as its semantics are identical to an sfence within
its logically independent task.
Crash consistency.Crash consistency is typically achieved through
a form of logging. Applications in our evaluation rely on undo
logging, but COSPlay’s approach is equally applicable with redo
logging or with the use of higher-level libraries that hide this com-
plexity from the programmer [4, 6, 14, 16, 31, 47]. A large body
of work aims to alleviate logging overhead via hardware support.
Themis [30] observes that non-temporal stores commonly used in
logging often naturally persist faster than temporal stores, and pro-
poses hardware extensions to guarantee that log-update ordering is
always preserved without placing an sfence between them. PiCL
[34] automatically generates undo-log checkpoints in the cache
and controls their propagation order to PM, while opportunisti-
cally batching them to improve bandwidth utilization. ATOM [22]
employs a log-manager module that controls and coordinates the

logging procedure. Proteus [41] introduces new ISA primitives
and CPU modifications to create and manage logs. Kiln [49] and
LAD [13] remove logging altogether by speculatively buffering a
transaction’s updates in a persistent space (in the LLC and mem-
ory controller, respectively) and atomically committing them to
the persistent domain once the transaction successfully completes.
COSPlay is agnostic to the persist operation type (logging versus
in-place update) and aims at hiding the latency of any such oper-
ation that may be exposed on the CPU’s critical path; thus, it can
be combined with any other technique that does not completely
eliminate synchronous persists.

Latency hiding with coroutines. Coroutine-based programming
has recently seen an increase in popularity as an effective approach
to hide long-latency events (e.g., cache misses) in throughput-
oriented applications that exhibit low memory-level parallelism
but high task-level parallelism. Utilizing coroutines successfully for
that purpose requires the programmer or compiler to statically de-
termine when an event will incur high latency, so that a switch to a
different coroutine can be scheduled. Prior work employs coroutines
on data structures with known poor locality and chained-access
patterns, replacing loads known to miss in the caches with prefetch
instructions and a coroutine switch, thus overlapping such long-
latency prefetches with another coroutine’s computation. Grappa
[33], DrTM+H [48], and FaSST [23] are recent examples of software
distributed shared memory systems employing coroutines to hide
network latency. Psaropoulos et al [38] leverage coroutines to inter-
leave index traversals for database join operations, while Jonathan
et al [20] extend the same approach to a number of different pointer-
chasing data structures, such as B+ trees and hashtables. He et al
[15] build a full database around the latency-hiding capabilities
enabled by coroutines. As a latency-hiding technique, coroutines
have also been used in PM-based systems, in an attempt to bridge
the latency gap between volatile and non-volatile memory [39, 46].
Van Renen et al [46] amortize the high latency cost of frequent
synchronous persist operations via the software batching approach
evaluated in §6.4.

8 CONCLUSION
We presented COSPlay, a software-hardware co-design that com-
bines coroutines for rapid context switching with light hardware
modifications to accelerate crash-consistent applications exhibiting
task-level parallelism. A key benefit of the mechanism is that it op-
erates under the predominant x86 persistency model and preserves
the strict semantics of synchronous persistence. Our evaluation and
comparison against a range of alternative software and hardware
approaches demonstrated that COSPlay represents an appealing
point in the design space, striking a balance between throughput,
individual task latency, and hardware requirements.
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