Safety Hints for HTM Capacity Abort Mitigation

Anirudh Jain"

School of Computer Science
Georgia Institute of Technology
Atlanta, Georgia, USA
Email: anirudh.j@gatech.edu

Abstract—Hardware Transactional Memory (HTM) is a high-
performance instantiation of the powerful programming abstrac-
tion of transactional memory, which simplifies the daunting—
yet critically important—task of parallel programming. While
many HTM implementations with variable complexity exist in the
literature, commercially available HTMs impose rigid restrictions
to transaction and system behavior, limiting their practical use.
A key constraint is the limited size of supported transactions,
implicitly capped by hardware buffering capacity. We identify
the opportunity to expand the effective capacity of these limited
hardware structures by being more selective in memory accesses
that need to be tracked. We leverage compiler and virtual
memory support to identify safe memory accesses, which can
never cause a transaction abort, subsequently passed as safety
hints to the underlying HTM. With minor extensions over a
conventional HTM implementation, HinTM uses these hints
to selectively allocate transactional state tracking resources to
unsafe accesses only, thus expanding the HTM’s effective capac-
ity, and conversely reducing capacity aborts. We demonstrate
that HinTM effectively augments the performance of a range of
baseline HTM configurations. When coupled with a POWERS
HTM implementation, HinTM eliminates 64% of transactional
capacity aborts, achieving 1.4 x average speedup, and up to 8.7 x.

I. INTRODUCTION

Hardware Transactional Memory (HTM) is among the few
hardware technologies that have been influential enough to
mature from research ideas into commercial implementations.
Since its emergence as a research topic in the late 70s, we
have witnessed major CPU vendors develop specifications [2],
[7], [16], [20] and offer concrete HTM instances in their
commercial CPU product lines [13], [37], [39], [41] in the
last few years. Despite its presence in modern processors,
HTM usage is hardly mainstream. However, as the future of
computing is undoubtedly parallel, aiming efforts at improv-
ing HTM—a technology targeting the programmability and
performance of parallel code—by addressing shortcomings of
current implementations is a worthy investment.

A utility obstacle to existing HTMs is their limited trans-
actional capacity, capped by the size of hardware structures,
whether these are dedicated buffers coupled with the CPU’s
caches, or these caches themselves [12]. When a transaction
(TX) exceeds the HTM'’s tracking resources, it aborts. Capac-
ity aborts are particularly detrimental to performance for two
reasons. First, as a capacity abort only occurs after exceeding
the hardware’s tracking resources, it mostly impacts longer-
running TXs, hence more work is lost. Second, the abort’s

¥ Equal contribution.

Divya Kiran Kadiyala'

School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia, USA
Email: dkadiyala3 @gatech.edu

Alexandros Daglis
School of Computer Science
Georgia Institute of Technology
Atlanta, Georgia, USA
Email: alexandros.daglis@gatech.edu

nature precludes retrying the aborted TX: if a TX exceeded
the HTM’s capacity once, it will do so again. Thus, the system
falls back to a software handler, which usually relies on a
coarse-grained lock to guarantee atomicity, eliminating all
parallelism until the TX commits.

Despite prior research proposals for HTMs with sophisti-
cated mechanisms providing resilience to capacity limitations
(“large” HTMs [31]), existing HTM implementations opt for
practicality and follow more conservative designs of simpler
early HTM proposals [34] to constrain hardware complexity.
Our goal is to alleviate the capacity limitations of conventional
HTMs, while preserving the relative hardware simplicity that
facilitates their commercial availability. We pursue a software-
hardware co-design approach that introduces auxiliary com-
piler and runtime mechanisms to expand the effective capacity
of limited resources for transactional state buffering.

Our key observation is that conventional HTMs exert high
pressure on their limited resources by being overly conserva-
tive in resource allocation for memory access tracking. HTMs
commonly implement implicitly transactional semantics—i.e.,
they track all memory accesses within an annotated transac-
tional block. However, many of these accesses are thread-
private and thus cannot be involved in race conditions. An
HTM aware of such safe accesses could omit tracking them
to increase its effective transactional capacity and hence reduce
capacity aborts.

The basic idea of memory access differentiation has been
previously employed in similar contexts. Instances of Software
Transactional Memory (STM) used compiler techniques to
avoid costly logging and synchronization software overheads
for thread-private memory accesses [32], [56]. While such
software overhead concerns do not apply to HTM, we identify
that similar techniques can be leveraged to mitigate capacity
restrictions that are unique to HTM. A second relevant cate-
gory of prior work leverages memory access differentiation by
employing explicit page-level privatization via direct program-
mer annotations [71]. In contrast, our goal is to alleviate HTM
capacity pressure via automatic memory access classification
mechanisms that are transparent to programmers and can be
naturally coupled with conventional HTM implementations.

We introduce Hinted HTM (HinTM), an auxiliary mecha-
nism that boosts the effective transactional capacity of con-
ventional HTMs by enabling them to distinguish safe from
unsafe memory accesses. HinTM comprises two complemen-
tary memory access classification mechanisms. The first mech-

anism is fine-grained annotation performed by a static safety
analysis compiler pass. The second mechanism is dynamic but
coarse-grained, extending the translation subsystem to keep
track of temporal memory-sharing behavior at page granularity
and to classify the safety of individual memory accesses at
runtime. Through a new software-hardware interface, HinTM
enables a conventional HTM to take a safety hint with each
memory access, produced by the two classification mecha-
nisms. That hint allows the HTM to reserve allocation of track-
ing resources exclusively for unsafe TX memory accesses.
We make the following contributions:

o We are the first to show automatic memory access classi-
fication as a mechanism capable of increasing the effec-
tive transactional capacity of HTMs, particularly the most
capacity-constrained ones, and show this opportunity can
be harnessed with modest hardware additions.

o We present HinTM, a set of two memory access classifi-
cation mechanisms—at the compiler and runtime level—
and a new interface to pass memory safety hints to the
underlying HTM controller. Both mechanisms enable the
effective expansion of the HTM’s limited transactional
capacity automatically and transparently to programmers.

o We evaluate Hin'TM’s efficacy using a set of transactional
workloads. Coupled with a POWERS-style HTM, HinTM
reduces capacity aborts by 62% on average, resulting
in performance improvements of up to 8.7x (1.4x on
average). We also demonstrate that HinTM is an effective
auxiliary mechanism for larger HTMs as well, using two
concrete examples. For instance, compared to an HTM
equipped with hardware signatures for readset expansion,
HinTM yields an average 1.3x speedup by reducing
capacity and false conflict aborts.

Paper outline: §II provides HTM background and motivates
the promise of increased effective HTM capacity via memory
access classification. §III presents HinTM’s memory access
classification techniques. We describe a concrete application
of HinTM’s mechanisms to an HTM implementation in §IV.
We detail our methodology in §V and evaluate HinTM in §VI,
discuss related work in §VII, and conclude in §VIII.

II. BACKGROUND AND MOTIVATION
A. Hardware Transactional Memory

Transactional memory (TM) appeared in the late 70s as
a programming abstraction to facilitate the daunting task of
shared memory parallel programming. TM shifts the burden
of coordinating shared memory accesses of different threads
from the programmer to the underlying system. As it became
increasingly evident that the future of computing is parallel,
the promise of increased parallel programming productivity
led to significant TM research activity.

TM implementations fall under two broad categories: soft-
ware (STM) and hardware (HTM). STMs rely purely on
software mechanisms, without any special hardware support.
In contrast, HTMs accumulate a TX’s state in hardware
structures and rely on the cache coherence protocol to detect

conflicts with other concurrent TXs. HTMs thus avoid prime
performance overheads of STMs associated with software-
based bookkeeping, including explicit data-copying and con-
flict detection, but their reliance on inherently bounded hard-
ware structures sets rigid usability bounds and narrows the
scope of HTM applicability. This work proposes techniques
to improve the utility of HTMs by relaxing their hardware-
imposed transactional capacity constraints.

Over the past decade, a few HTM implementations have
become available by CPU vendors, most notably by Intel and
IBM. Despite differences in their implementation details, all
commercial HTMs impose an—often implicit—upper bound
to supported TX size in direct relation to the capacity of
hardware structures. When a TX’s buffered state exceeds that
hardware structure’s capacity, the TX aborts and falls back
to a software handler. Transactional state buffering is imple-
mented as a memory hierarchy extension, either within the
caches, or by a supplementary structure. For example, Intel’s
implementation [72] and IBM zEC12 [41] track transactional
state within each core’s private L1 cache, while IBM POWERS
employs a dedicated 64-entry fully associative buffer, linked
with the general-purpose cache hierarchy [33], [46].

While some HTM implementations, like POWERS, use the
same structure for transactional readset and writeset, HTMs of-
ten support asymmetric readset and writeset capacities. Read-
sets are cheaper to scale, because only memory addresses—
and no updated data values—must be tracked. Hardware
signatures are a common space-efficient readset expansion
mechanism [14], [62], [71]. With signatures, addresses of the
readset that are evicted from the primary tracking structure
are hashed and stored as bits in one or more bitvectors.
Read-write conflicts are checked by hashing the address of
coherence invalidation messages and checking for collision
in the bitvector(s). Signatures offer a coarse-grained conflict
detection mechanism that significantly expands an HTM’s
readset capacity, but have two limitations. First, they do
not improve an HTM’s writeset capacity. Second, conflict
checks in the address-summarizing bitvectors are susceptible
to unnecessary aborts due to false positives.

In this work, we devise an auxiliary mechanism to boost
the effective transactional capacity of practical HTM imple-
mentations via memory access classification, enabled through
a hardware-software co-design. We show that our approach
is most effective in HTMs with small transactional capac-
ity, like POWERS, but also effectively complements larger
HTMs, including implementations that support asymmetric
readset/writeset sizes.

B. TX Capacity Expansion via Memory Access Classification

HTM capacity pressure is partially an artifact of its pro-
gramming interface. To use a modern HTM, programmers an-
notate transactional block boundaries with special instructions
(begin and end). The marked code block bears implicitly
transactional semantics: a/l memory accesses within the anno-
tated block are treated as transactional, and the underlying
hardware ensures that all memory accesses within it are

performed atomically. If the hardware detects any atomicity
violation, or the running TX exceeds the HTM’s available
tracking capacity, the TX aborts and all of its changes are
discarded. The architectural state is restored to the point right
before the aborted TX’s start and then a software handler
determines whether to retry the TX in HTM mode or to trigger
a software fallback locking mechanism to guarantee success
and forward progress. In addition to conflicts and capacity
overflows, there are other reasons for a TX abort [31], which
our work accounts for but does not tackle.

We explore the opportunity of boosting the effective ca-
pacity of HTMs via a software-hardware co-design approach
requiring only minor hardware additions. Our key observation
is that the typical implicitly transactional HTM interface re-
sults in conservative tracking of all memory locations touched
within a TX, and hence unnecessary volume of tracked state.
Memory locations that are only accessible by a single thread
or are shared by multiple threads but are read-only cannot be
involved in a race condition, and could therefore be treated
as safe from a concurrency control standpoint. The HTM can
potentially omit tracking accesses to memory locations that
are a priori guaranteed to be safe. By distinguishing between
safe and unsafe memory locations and allocating its tracking
resources only to the latter, an HTM can make more effective
use of its limited hardware resources to support larger TXs
and reduce the occurrence of capacity overflows.

To derive a first-order estimation of the proposed approach’s
potential, we use a set of transactional benchmarks and study
the fraction of memory accesses within each TX that could
be potentially treated as safe. We use two metrics to approx-
imately gauge the existing opportunity. First, the fraction of
safe memory regions over total memory regions accessed by
the program. A memory region is safe if there is no read-
write sharing (at memory region granularity) between two or
more threads throughout the program’s execution. Second, the
fraction of read accesses to safe memory regions over the
total number of memory accesses within TX code blocks.
We collect these two metrics at two granularities: cache block
(64B) and page (4KB).

Fig. 1 shows the fraction of runtime spent on capacity
aborts, as well as the two aforementioned metrics for a
range of transactional workloads running 8 threads (4 for
genome and yada) on a POWERS-like HTM configuration
(methodology details in §V). While some applications like
kmeans and ssca2 only use tiny transactions and never exceed
the HTM’s transactional capacity, capacity aborts can account
for up to 89% of an application’s runtime, and 22% on average.
At the same time, we find that a remarkable subset of an
application’s touched pages is safe (62% on average). In turn,
the number of transactional read accesses to such safe pages
represents 40% of the total transactional memory accesses, on
average. When tracked at the finer cache-block granularity, the
fraction of such safe read accesses approaches 60%.

Although these results do not directly correspond to a
commensurate reduction in tracking requirements—and, by
extension, capacity aborts—they do indicate significant po-

% safe cache blocks Hm=

% runtime in capacity aborts ——
% reads to safe cache blocks H=

% safe pages C—

100 % reads to_ safe pages E

80
60

40

% of total

20

0 E{ n

kmean?caz bayeg genomIE?frudéibyrjnﬁgcatio’;,ada tpec.plPec, Mean

Fig. 1: Opportunity study for transactional capacity pressure
reduction via memory access classification.

tential in leveraging memory access classification toward that
goal. In addition, we observe that most of the opportunity can
be captured even via tracking at a page granularity, hinting
at an opportunity of developing a practical coarse-grained
mechanism for memory region safety tracking.

C. Memory Classification in Prior TM Work

The general concept of memory access classification in
the broad context of TM is not new. Here, we highlight the
key distinctions between our proposed approach and closely
related prior work. We discuss additional related work in § VIL.

STMs employ compiler techniques to identify thread-private
memory accesses and eschew performance overheads for
tracking those. Harris et al. [32] use inter-procedural analysis
to identify and skip logging objects that are newly allocated
within a TX, thus unreachable if the TX aborts. Shpeisman
et al. [56] leverage dynamic escape analysis to distinguish
between private and public objects, and skip costly syn-
chronization on read/write barriers for the former. Inspired
by such prior STM approaches, HinTM’s static mechanism
for distinguishing between safe and unsafe memory accesses
is based on similar compiler support. We do not introduce
novel compiler techniques, but rather introduce an innovative
application of these techniques in a distinctly different context.

STMs employ classification to mitigate the software over-
heads of explicit data copies and version comparisons for
conflict detection. We reuse the idea of memory classification,
but to alleviate capacity constraints of HTMs—a concern that
does not exist in the context of STM. Instead of using such
information exclusively in software, we introduce a hardware-
software co-design, where memory safety information is de-
rived in software (i.e., the compiler) and is explicitly passed
down to hardware via a new interface. We thus borrow an idea
previously used by STMs, to alleviate a weakness inherent to
HTM and without compromising HTM’s key strength of being
a fully hardware solution, as we do not introduce any software
overheads at runtime.

Notary [71] is the only prior work we know leveraging
memory access classification on an HTM rather than on an
STM. Notary provides an interface to annotate safe pages

| THREAD_REGION_BEGIN ()

2> while (!isempty(globalTaskListPtr)) {

3 learner_task_t xtaskPtr;

4 TRANSACTION_BEGIN (tid) ;

5 taskPtr = popTask (globalTaskListPtr) ;

6 TRANSACTION_END (tid) ;

7 struct operation_t op = taskPtr->op;

8 long fromID = taskPtr->fromId;

9 long toID = taskPtr->told;
10
11 TRANSACTION_BEGIN (tid) ;
12 switch (op) |
13 net_applyOp (globalNetPtr, op, fromId, toID);
14 // ... More Code Follows in Transaction
15 }
16 TRANSACTION_END (tid);
17 }
1$ THREAD_REGION_END ()

Listing 1: Pseudocode snippet - Bayes application [48].

that can skip HTM tracking, but annotation is coarse-grained
and programmer-driven, and no concrete implementation is
described, as we further elaborate in §VII. Manual anno-
tation of thread-private memory has also been used in the
broader context of concurrency control and STM [3], [8], [38].
In contrast, HinTM employs fine-grained (instruction-level)
compiler-driven annotation and automatic coarse-grained
(page-level) annotation at runtime, which are less error-prone
and more scalable than manual programmer annotation.

III. HINTM’S MEMORY CLASSIFICATION

We propose enhancing existing HTMs with auxiliary mem-
ory access classification mechanisms, enabling the hardware
to differentiate between safe and unsafe memory accesses
within a TX. We start with a more precise definition for access
safety than §1I-B’s intuitive introduction. From a transactional
standpoint, a memory location is safe if:

(i) it is exclusively accessible by a single thread during a
TX’s lifetime; or
(ii) it is shared across threads but is read-only.
Similarly, a memory access is safe if:
() it targets a safe memory location; and
(i1) it does not have side-effects that would leave the appli-
cation’s state corrupted if the TX aborts.

By these definitions, all load operations to safe memory
locations are safe. Safety of store operations is more nuanced,
as even stores to thread-private (i.e., safe) memory locations
may leave an application’s state corrupted if the TX aborts
and the original value prior to the transactional write is not
restored. Hence, a store can be classified as safe only if it
is also initializing—i.e., it is the first memory operation to a
given memory location used in the transaction. Examples of
such naturally occurring initializing writes are local variables
initialized within a TX for local use, newly created objects
about to be entered into a shared data structure, or arguments
pushed into the stack before a function call.

To demonstrate safe memory locations and accesses we
use pseudocode snippets from two STAMP applications,
shown in Listings 1 and 2. In Listing 1, the initializing
write to the stack-based memory location taskPtr in the
first TX, and subsequent reads from memory locations op,
fromID and toID, being passed as function arguments can

THREAD_REGION_BEGIN ()
grid_tx myGridPtr =

3 Pgrid_alloc(gridPtr->width, gridPtr->height,

5

gridPtr->depth);
vector_t* myPathVectorPtr = Pvector_alloc (capacity);

s while (!isempty (workQueuePtr)) {

10
11

> Pgrid_free (myGridPtr) ;
3 THREAD_REGION_END ()

TRANSACTION_BEGIN (tid);
grid_copy (dst: myGridPtr, src: globalGridPtr);
// ... More Code Follows in Transaction
Pvector_insert (src: globalPathVectorListPtr,
dst: myPathVectorPtr);
TRANSACTION_END (tid) ;
}

// Release memory
Listing 2: Pseudocode snippet - Labyrinth application [48].

be considered safe since only a single thread accesses these
memory locations. Listing 2, on the other hand, demon-
strates a case of a thread-private data structure being allo-
cated on the heap. myGridPtr and myPathVectorPtr
are both allocated per thread on the heap via a shared
memory allocation call. Since all writes to myGridPtr
(in the sub-function grid_copy, Line 7) are initializing
and myGridPtr is never assigned to a memory location
shared among threads, all accesses to it are safe. In contrast,
accesses to myPathVectorPtr are unsafe because that
pointer is assigned to globalPathVectorListPtr, a
thread-shared data structure, resulting in the memory region
allocated for myPathVectorPtr to potentially have multi-
ple reader/writer threads with possible conflicts.

Assuming that every load and store operation in a TX is
marked as safe or unsafe, the HTM can use such metadata
for differentiated handling of the two memory access types.
The memory locations touched by safe accesses need not
be tracked, thus reserving state tracking resources for unsafe
accesses only. The net effect of memory access classification
in the two code-snippet examples is that the underlying
HTM hardware must only track accesses associated with
globalNetPtr in Listing 1, and withmyPathVectorPtr
and globalPathVectorListPtr in Listing 2. In con-
trast, a conventional HTM indiscriminately tracks all mem-
ory locations touched within the TXs: globalNetPtr,
taskPtr, op, fromId, toIdinListing 1 and myGridPtr,
myPathVectorPtr, and globalPathVectorListPtr
in Listing 2.

Next, we describe HinTM’s two memory access classifica-
tion mechanisms: static fine-grained code annotation at com-
pile time and dynamic coarse-grained annotation at runtime.

A. Fine-grained Static Classification

Static compile-time analysis can be used to mark loads and
stores to memory locations statically determined to be thread-
private (e.g., most stack-allocated variables and parameters
passed to a function by value), and loads to shared read-only
locations. If static analysis determines that all memory loca-
tions accessed by a given load/store instruction are safe, that
instruction is marked as safe. If an instruction accesses mem-
ory locations of indeterminable safety, or accesses both safe
and unsafe memory locations, it is conservatively classified as

unsafe. §IV-A elaborates on the static analysis techniques we
leverage for such compiler-based instruction classification.

Instruction-marking by the compiler requires ISA extensions
in the form of an additional “safety flag” bit for each load/store
instruction, to differentiate between safe and unsafe memory
accesses. Safety information is conveyed from the processor to
the HTM controller, which now only needs to track memory
accesses performed by unsafe instructions.

B. Coarse-grained Dynamic Classification

Static instruction classification is accurate but inherently
conservative, as the compiler is unaware of the dynamic
memory access sequence from different threads at runtime.
For instance, a shared heap-allocated dataset that is accessible
by all threads, but is partitioned by the application across
threads and thus is not actively shared in practice, could be
treated as safe. We therefore leverage a secondary, dynamic
memory access classification mechanism to complement the
conservative compiler-based static classification.

We extend the address translation mechanism to track page-
level inter-thread sharing patterns at runtime. Read accesses to
safe pages can be classified as safe, and can thus be ignored
by the HTM controller. The criteria for page safety are the
same as for memory location safety (§III):

(1) the page is only accessible by a single thread; or
(ii) the page is read-only (possibly shared across threads).

Unlike static classification, dynamic classification never marks
write accesses as safe, because determining the essential
initializing quality at runtime is challenging.

To identify inter-thread page sharing, we extend conven-
tional process-level page protection to thread-level page pro-
tection. If a translated address belongs to a safe page, the
memory read is marked safe. Similar to compiler-annotated
instructions, that information propagates to the HTM con-
troller. Unlike compiler-annotated safe instructions, a memory
access’ safety can be revoked at any time, when a page’s
status transitions from safe to unsafe. For example, a thread
may request write permissions to a shared read-only page,
or a second thread may request access to a read-write page
previously exclusively accessed by another thread.

Page state transitions may happen amid an active TX,
raising an implication: As the HTM has not been tracking
memory accesses that were considered to be—at the time—
safe, any potential atomicity violations on addresses falling
within the safe-turning-unsafe page could go unnoticed. There-
fore, any active TX that has touched such an affected page
must conservatively abort. When the aborted TX is retried,
the page—and hence all memory accesses to it—are marked
as unsafe, thus reverting to normal tracking by the HTM.

Distinction from Page-based TMs. Some TM instances track
transactional state at page granularity. IBM’s 801 [15] extends
the page tables to keep track of coarse-grained transaction-
based locking, triggering an abort if a TX touches a page al-
ready held by another concurrent TX. PTM [18] and XTM [19]
use page-based tracking to support TXs exceeding cache ca-
pacity. HinTM’s approach differs from such page-based TMs,

as it doesn’t accumulate transactional state at page granularity
and thus does not require additional hardware structures over
a conventional HTM design that tracks transactional state at
cache-block granularity. Instead, HinTM leverages page-level
metadata as a first exclude filter, informing the underlying
HTM’s bookkeeping mechanism (that operates at cache-block
granularity) whether it can omit tracking certain cache blocks.

IV. HINTM IMPLEMENTATION

We now describe the implementation of Hin'TM’s mem-
ory access classification mechanisms introduced in §III. Our
implementation builds on top of a baseline HTM that tracks
transactional state by leveraging either a dedicated hardware
structure or additional metadata within the data cache. With
minimal hardware additions, HinTM relaxes the transactional
capacity constraint of any bounded HTM. HinTM involves
three components: static memory access classification, dy-
namic memory access classification, and a new interface for
safety hint propagation to the underlying HTM controller.

A. Compiler Support for Static Classification

Our end-to-end compilation pipeline involves identifying
safe memory locations and memory operations to these loca-
tions, annotating the identified safe operations in the generated
binary, and propagating that information to the CPU during
runtime via special safe load/store instructions. We
employ static analysis to identify safe memory operations,
implemented as a series of LLVM compiler passes [45]. The
compiler marks a memory operation within a TX as safe if it
can conclusively determine that the operation:

e is a load to a thread-private memory location—i.e., no
other thread can access that memory location—or to a
shared read-only memory location. We employ escape
analysis to assess thread-private access.

e is an initializing store operation to a thread-private mem-
ory location. Our compiler pass determines this quality
if the store’s target thread-private memory location is
defined before being used within a TX.

We employ three well-known techniques to identify safe
memory operations. First, we extend LLVM’s Capture Track-
ing to identify stack-allocated local objects and the call in-
structions passing these local objects by reference. The called
function is then replicated to the thread-local object, with
all qualifying load/store instructions replaced with their safe
counterparts. The call instruction itself is modified to point
to the newly replicated function. Given the potential existence
of multiple callers passing different arguments in terms of
safety, function replication is required to ensure that calls
to the original function with non-transactional and unsafe
arguments remain unaffected.

Second, we target thread-private heap-allocated data struc-
tures, often used as scratchpad memory in TM programs.
Algorithm 1 provides a high-level description of our analysis
that identifies potentially safe, thread-private heap-allocated

Algorithm 1: Inter-procedural analysis identifying po-
tentially thread-private heap data structures.

Input: AST/IR Source Code
Output: Set of potentially thread-private data structure objects
1 Set_of_Thread_Private = {All heap allocations within Thread Begin
and Thread End segments with corresponding memory
de-allocation operation within the same region}
2 Set_of_Shared = {External allocations as arguments to Thread Begin
function and Global Objects}
3 Worklist = {Thread Spawn function}
4 Visited = {}
5 while /Worklist.empty() do
6 function, argPos = Worklist.pop()

7 if Visited.contains((function, argPos)) then

8 | continue

9 for Instructions Inst € function do

10 for Uses u € to Set_of_Thread_Private do

11 for Defs d € Set_of Shared do

12 if d = Deref(u) then

13 Set_of Thread_Private -= u

14 L Set_of _Shared += u

15 if Inst is Call and u € Set_of_Thread_Private then
16 L Worklist.push((Inst.calledFunction, argPos))

17| Visited.add((function, argPos))

data structures. Algorithm 1’s compiler pass performs an inter-
procedural analysis that identifies local allocations, which are
deemed potentially safe as long as they:

(i) are not assigned to global or shared objects; and
(i1) are de-allocated within the multi-threaded region.

An escape analysis pass (using the results of a pointer alias
analysis) is then run on this set of potentially safe objects
to verify that they are truly non-escaping and private to a
single thread. This escape analysis is required to ensure that
partially shared objects are not incorrectly marked safe. Loads
and initializing stores to these locations, including those in
functions where these objects are passed by reference, are then
marked safe (including function replication, if necessary).

Third, we identify read-only shared memory locations in
parallel regions. We utilize a pointer alias analysis pass [59]
to create a set of read-only shared memory locations and mark
load operations associated with these regions as safe.

Optimization Opportunity. The automated compiler passes
we use for HinTM are neither novel nor intend to represent
the state of the art in static safety analysis. Our goal is a
proof-of-concept prototype to demonstrate the potential of
such memory access classification in the novel context of
our study. Use of more advanced compiler techniques (e.g.,
[27], [61]) and explicit programmer-driven annotations would
only help increase the fraction of identified safe accesses, and
improve HinTM’s potential.

ISA Extensions. Conveying compiler-generated instruction
safety information to the CPU, and ultimately to the HTM con-
troller, requires ISA support: either in the form of an additional
bit in existing memory operations (loads and stores), or by
introducing new instructions. Our MIPS-based implementation
uses two unused opcodes to encode a load_word_safe
and a store_word_safe instruction. The instructions are

Init state — page untouched

Thread X

write

Thread X
read

Thread X

Thread X

readg

Thread Y # X read

read
<private, rwﬁ
tid=X
read-only =0
shared =0

© */l, Thread Y # X
L read or write / [*]

<private, ro> Thread X
tid=X
read-only =1

Any thread

re<

Fig. 2: State transition diagram for a page’s lifetime. Green
memory accesses are dynamically marked safe.

<shared, rw>
tid=n/a
read-only =0
shared=1

<shared, ro>

tid=n/a

—
read-only =1 Any thread
shared=1 write / [*]

Any thread
read or write

[*]: TX abort & TLB shootdown

functionally equivalent to their unsafe counterparts, except that
the HTM controller does not track the addresses they operate
on. All optimizations such as load coalescing and merging are
still performed for the newly added instructions, resulting in no
performance loss. The transformation of loads/stores to their
safe counterparts is automatically performed by our compiler
and is therefore transparent to the programmer.

While introducing new instructions just to enable HinTM
may seem costly, we note that modern ISAs already provide
a number of instructions to allow direct CPU communication
with co-processors (e.g., ARM [6]). By treating the underlying
HTM as a co-processor, a CPU can leverage such co-processor
instructions to convey memory access safety hints.

B. System Support for Dynamic Classification

HinTM’s dynamic classification mechanism leverages ad-
dress translation to track inter-thread sharing patterns at page
granularity. All of a process’ threads by default share the same
page table (PT), which we extend to track each page’s state
on a per-thread basis. We add three fields in each PT entry’s
software structure: (i) a thread id (tid), (b) a read-only (ro) bit,
and (c) a shared bit. tid records the first thread that accessed
the page. Read accesses to a (private,*) or {shared,ro) page
are safe; all other accesses are unsafe. We also add these two
bits per data TLB entry, from which the page’s safety state
can be derived. The dynamic classification mechanism does
not apply to load/store instructions already statically marked
as safe by the compiler (§IV-A). Fig. 2 shows a page’s state
transition diagram as threads access it over time. When thread
X initially accesses a page, the page walk following the TLB
miss finds the page untouched, marks the page private, sets
tid = X and the access mode to ro or rw, depending on
the access type. The translation is installed in the TLB in
(private,*) state. When thread X attempts to write a page
in (private,ro) state, a minor page fault triggers a PT entry
(private,ro) — (private,rw) state transition. While a page’s
state is (private,), all of thread X’s read accesses to that page
are marked as safe. When thread Y accesses the same page, it
misses in the TLB and page walks to read the corresponding
PT entry. If thread Y’s access is a read and the page’s state

[core
A

4 @ 2nd classification — dynamic

If safe access, mark

L1d HTM (3) Allocate tracking metadata
cache | controller for accessed address iff
active TX & unsafe
@ No capacity abort if safe block evicted

@ 1%t classification — static
Propagate instruction’s safety
to HTM controller

Fig. 3: HinTM end-to-end operation example.

is (private,ro), the page transitions to (shared,ro) and the
translation is installed in the TLB.

When a thread attempts to write a (shared,ro) page, the
cached translations of that page in other TLBs are invalidated
via a conventional TLB shootdown [68]. The core that initiates
the (shared,ro) — (shared,rw) page transition (i) aborts its
current TX (if applicable), (ii) executes the OS TLB shoot-
down handler that collects the list of cores that have accessed
the target page in the past (i.e., the slave cores), and (iii) sends
an IPI to each slave core. Each slave core invalidates the TLB
entry indicated in the IPI, while the IPI reception itself causes
any running TX on the slave core to abort. Finally, the initiator
core updates the PT entry’s state as soon as all IPI receptions
are acknowledged, thus ensuring that the page’s unsafe state
is recorded and visible to all cores in the future.

Optimization Opportunity. As shown in Fig. 2, (shared,rw)
is a terminal page state in our implementation. This simple
approach may leave performance opportunities on the table for
long-running programs with phased behavior that would favor
a periodic page state reset. Developing such a policy would
require balancing the tradeoff between costly periodic TLB
shootdowns and the benefit of effective HTM transactional
capacity boost afforded from temporary page safety.

C. Putting it All Together

Fig. 3 shows HinTM’s high-level architecture, which har-
nesses both statically and dynamically set memory access
safety hints to shrink state tracking requirements per TX.
HinTM is equally applicable to HTM baseline systems where
transactional cache block tracking leverages an enhanced tag
array in the L1d cache (e.g., Intel RTM), or dedicated buffers
coupled with the cache (e.g., IBM POWERS).

A program compiled using HinTM’s static analysis (§IV-A)
has a subset of its memory instructions marked as safe (ab-
stractly represented by green lines in Fig. 3’s “code snippet”).
Safety information is encoded in the ISA and flows through the
core’s pipeline down to the HTM controller as an additional
address bit (step (1)). A memory access that is not statically
marked as safe may still be marked as safe by the dynamic
classification mechanism, which is embedded in the translation
process (step (2)). HInTM leaves the baseline system’s HTM
controller mostly unmodified: memory accesses performed
within a TX’s boundaries are recorded and monitored in
hardware structures for potential atomicity violations. How-
ever, the HTM controller can ignore memory accesses marked

as safe by HinTM’s classification mechanisms, by skipping
any transactional bookkeeping for them (step (3)). Safe cache
blocks touched by a TX can spill from the L1d cache (or
transactional buffer) without causing a TX abort (step @).
The net result is that the limited hardware resources available
to the HTM controller for address monitoring are dedicated
to exclusively tracking unsafe accesses, thus supporting larger
TXs and mitigating capacity aborts.

Overall, HinTM is a software-hardware co-design, where
most changes are introduced in software (compiler and page
tables) and are supported by modest hardware extensions.
Table I summarizes all of HinTM’s hardware additions.

V. METHODOLOGY

System Organization. We use the SESC [54] cycle-accurate
simulator used in prior work to model conventional HTMs
with eager conflict detection [52]. Table II summarizes the
used parameters for our simulated 8-core SMP. Cache latencies
are obtained from CACTI 7 [9] at 22nm.

Compiler. We extend LLVM 9.0.1 [1] with the memory access
classification passes detailed in §IV-A, using a MIPS backend
to match the ISA supported by our simulator.

HTM Configurations. We evaluate four baseline HTMs:

o Dedicated transactional buffering. Modeled after IBM’s
POWERS8 HTM implementation [46], this configuration pro-
visions an external 64-entry fully associative buffer coupled
with the L1 data cache to track cache blocks that belong to
the running transaction’s readset and writeset. We refer to
this HTM configuration as P 8.

o Hardware signatures. We extend the P8 baseline with
hardware signatures, modeled after the state-of-the-art PBX
hashing with a 1kb bitvector [71]. Signatures prevent capac-
ity aborts when a TX’s readset spills from the transactional
buffer. We refer to this configuration as P8S. P8S increases
readset but not writeset capacity, and introduces the possi-
bility of false conflict aborts due to aliasing.

 In-L1-cache transactional buffering. Instead of provision-
ing dedicated buffers, a transaction’s state is tracked in the
L1 data cache, offering larger transactional capacity than
P8. We refer to this configuration as L1TM.

« Infinite buffering. This ideal—from a capacity perspec-
tive—HTM configuration never aborts due to capacity over-
flows, but otherwise remains functionally identical to the
previous two HTMs in terms of detecting and reacting
to conflict aborts, etc. We refer to this configuration as
InfCap and use it as an upper bound for the maximum

TABLE I: HinTM’s required hardware modifications.

a) two new instructions for safe loads/stores and b)
Core one extra safety bit from the CPU to the TLB and
L1 cache (<2% address bus width increase)
two bits per TLB entry to mark whether a given page
TLB is shared or thread-private, and read-only or read-
write (<2% TLB area overhead)
HTM ~ an extra mux to skip tracking safe loads/stores as
controller transactional

gains achievable by completely eliminating capacity aborts.

Fig. 1I’s fraction of runtime wasted on capacity aborts is

derived as a comparison between InfCap and P8.

We extend the P8, P8S, and L1 TM baselines with HinTM’s
memory classification techniques and hardware extensions,
introducing three additional configurations for each of them:
o HinTM-st employs static memory classification (§1V-A).

o HinTM-dyn employs dynamic memory classification
(§IV-B). Safe to unsafe page mode transitions incur a TX
abort and TLB shootdown, which involves OS handler exe-
cutions and IPT latencies. We model a cost of 6600 and 1450
cycles for the initiator and involved slave cores, respectively,
derived from an extensive TLB shootdown cost study [68].
(private,ro) to (private,rw) page mode transitions incur a
1450-cycle minor page fault cost [10].

o HinTM employs both static and dynamic memory classifi-
cation (HinTM-st + HinTM-dyn).

Workloads. Similar to recent HTM work [40], [50], [51],
[52], we evaluate Hin'TM using the STAMP transactional
benchmark suite [48], as well as TPCC’s two most prevalent
queries: new_order (named fpcc-no) and payment (named
tpcc-p) [43], [63]. We deploy genome and yada on four
threads because we observed poor scalability for higher thread
counts. Every other application runs on eight threads.

Why Capacity-limited HTM? We base our study on HTM
implementations with small capacity, for practical reasons. As
the latter has larger transactional capacity, creating sufficient
capacity pressure requires significantly larger application in-
puts, resulting in impractical simulation times, as indicated by
the fact that transactional benchmarks often provide smaller
inputs for simulation-based studies [48].

Although HTMs with larger transactional capacity will
suffer fewer capacity aborts, capacity limitations of even the
larger Intel-style HTMs are known to impose real-world per-
formance overheads [12]. Ultimately, evaluating HTM capac-
ity limitations using existing transactional benchmarks poses a
chicken-and-egg problem as benchmarks tune TXs to mostly
fit in the available transactional capacity. Larger HTM capacity
will reduce capacity aborts for existing benchmarks, but also
enable new workloads with larger TXs; existing benchmarks
won’t demonstrate the latter gain. Our evaluated benchmarks
are not artificially dominated by capacity constraints. For
instance, as seen next in our evaluation, 85% of aborts in
TPCC-p are conflict aborts, both with and without HinTM,
but still, reducing the small fraction of existing capacity aborts
results in 16% speedup.

TABLE II: Simulation parameters.

CPU 8 000 cores, 2GHz, 176-entry ROB
4-wide dispatch/retirement, MIPS ISA
32KB 8-way L1d/L1i (split)
L1 Cache 64B blocks, 3-cycle latency

shared non-inclusive, 8MB, 16-way
L2 Cache 64B blocks, 12-cycle latency
Coherence Snoopy MESI
Memory 100-cycle latency

In summary, increasing the underlying hardware’s transac-
tional capacity only delays the onset of capacity limitations on
transaction sizes. Although our evaluation directly quantifies
HinTM’s benefits using a few different capacity-constrained
HTMs, we posit that HinTM is a mechanism complementary
to any baseline HTM configuration. The P8S configuration
demonstrates HinTM’s effect on HTMs with asymmetric read-
set/writeset capacities, a characteristic of some commercial
HTM implementations such as Intel’s. Finally, L1TM repre-
sents HTMs with larger transactional capacity than P 8.

VI. EVALUATION

We start our evaluation by demonstrating that HinTM is an
effective auxiliary mechanism for P8, where HinTM’s greatest
benefits stem from effective readset size reduction, directly
translating into capacity abort reduction (§VI-A). §VI-B drills
down on the costs incurred by HinTM’s newly introduced
page mode aborts and §VI-C analyzes the breakdown of
each application’s memory accesses to better illustrate how
HinTM increases effective HTM capacity. We conclude our
evaluation in §VI-D where we demonstrate that HinTM yields
solid performance gains on HTM configurations with larger
effective capacity than P8 as well, by achieving writeset
reduction, mitigating false conflict aborts, and/or reducing
the occurrence of conservative capacity aborts due to conflict
misses in the cache.

A. Capacity Abort Reduction and Speedup with P8 HTM

Fig. 4a illustrates the achieved capacity abort reduction
for each of HinTM-st, HinTM-dyn, and HinTM as compared
to the baseline P8 HTM configuration. Fig. 4b shows how
Fig. 4a’s capacity abort reductions reflect into performance
improvement, and also includes the performance effect of the
hypothetical InfCap, which eliminates all capacity aborts.

As evidenced in Fig. 4a, static classification (HinTM-st)
alone in most cases is not sufficient to reduce capacity aborts
and, by extension, improve performance. As we later demon-
strate, while static classification does identify safe accesses,
they are not enough to reduce a TX’s size enough to prevent
a capacity abort from occurring. There are two notable excep-
tions: labyrinth and vacation, for which HinTM-st prevents
~80% and ~48% of capacity aborts, which results in 2.98 x
and 1.18x speedup, respectively. The resulting speedup is not
a direct function of the achieved reduction in capacity aborts:
while HinTM-st prevents some TXs from capacity-aborting
by implicitly increasing the underlying P8’s effective trans-
actional capacity, these same TXs may end up aborting later
due to other reasons (e.g., a conflict). InfCap’s speedup in
Fig. 4b is indicative of each application’s potential benefit from
capacity abort reduction. For instance, InfCap demonstrates
that labyrinth’s improvement potential is significantly higher
than vacation’s (9.1x versus 1.6x).

HinTM-dyn is more effective than HinTM-st, eliminating
61% of capacity aborts on average. This drastic reduction
yields an average speedup of 1.34x (1.45x if applications

HinTM-st ——
100 HinTM-dyn === - S
HinTM

e = ®
o =) =}

N
=)

% reduction of Capacity aborts

m.

]‘meafgc a20yeSen oéfgmégfyn%}ia f{)ida e, 1{{; ceplean

Speedup normalized to baseline P8

o

(a) Capacity abort reduction.

HinTM-st —— oy

1.6 — HinTM-dyn ——2 — 40
HinTM =8

InfCap mm—m

kmeans Sscan Ja

@
S

= I
s 8
% of total cycles wasted
on page mode aborts

ﬂ

: U 0
es 8enop,, Ntry derlabyfimhva”aﬁonyada tPecy, Pecy, 8eom can

(b) Speedup and cycles wasted on page mode transitions.

Fig. 4: Performance impact of HinTM on the P8 HTM configuration.

with zero capacity aborts—kmeans and tcca2—are disre-
garded), with labyrinth achieving the highest speedup of 8.7 x.
Because HinTM-dyn as a standalone mechanism is much
more effective than HinTM-st, the achieved capacity abort
reductions of HinTM (which is a combination of dyn and st)
are mostly subsumed by HinTM-dyn. As a result, HinTM’s
speedup is marginally higher than HinTM-dyn’s (2% higher
on average). Overall, HinTM achieves an average speedup
of 1.36x over baseline P8 (1.14x excluding the extreme
cases of labyrinth, kmeans, and ssca2), and is within 6%
of InfCap’s performance. Importantly, for applications like
ssca2 and kmeans that exclusively employ very small TXs and
thus never trigger a capacity abort, HinTM has a performance-
neutral effect: naturally, HinTM cannot improve performance,
but is not detrimental either. HinTM-st has no effect, while
the page mode transition aborts introduced by HinTM-dyn do
not incur a noticeable slowdown. This marginal slowdown is
avoidable by proactively disabling HinTM’s mechanisms for
applications that only use tiny TXs.

B. Effect of Page Mode Aborts

Fig. 4b’s secondary y axis shows the cost incurred by our
newly introduced page mode aborts, quantified as the aggre-
gate cycle count spent across cores on page mode abort actions
(including initiator/slave core overheads as per §V) divided by
the total number of cycles spent for the application’s execution.
The net cost of page mode aborts depends on two factors: the
frequency of such aborts and the resulting cost per abort. The
former is a function of the fraction of safe pages and the
application’s total runtime; the longer the runtime, the better
page mode transition costs are amortized, as each page may
transition at most once in our HinTM implementation. The
latter is a function of the number of threads affected by the
ensuing TLB shootdown, and the amount of TX work that
ends up being lost upon such shootdown.

Fig. 4b shows that the fraction of cycles spent on page mode
transitions is modest, with vacation as the only outlier because
of a combination of three factors: vacation exhibits a high
fraction of read-write pages (>85%), the highest frequency of
page-mode aborts, and the highest cost (number of execution
cycles lost) per page-mode-transition abort. To further study
vacation’s outlier behavior and investigate opportunities for
further optimization, we conduct an additional experiment with

safewr O stsaferd &3 dynsaferd B8 unsafe wr B unsaferd ==

bayes
genome

intruder

labyrinth

vacation
yada
tpce-no
tpce-p

mean

0 10 20 30 40 50 60 70 80 90 100
% of total

Fig. 5: Memory access breakdown within transactions.

an ideal zero-cost TLB shootdown. Surprisingly, we find that
vacation’s achieved speedup only increases by 4%. Despite
that vacation on HinTM spends almost 40% of total cycles
in page mode aborts, eliminating these costs yields minimal
gains, as the increased effective concurrency converts into
more conflict aborts that consume most of the achieved over-
head savings. Mechanisms for page safety transition prediction
or for faster TLB shootdowns (like DiDi [68]) can alleviate
page mode transition costs.

C. Transactional Capacity Pressure Study

We henceforth omit ssca2 and kmeans for brevity. To
identify Hin'TM’s source of benefits, Fig. 5 shows the dynamic
breakdown of memory accesses performed within each ap-
plication’s TXs by type, distinguishing between compiler- and
runtime-annotated safe accesses (collected using HinTM +P 8).

The two memory access classification mechanisms com-
bined identify ~50% of the total memory accesses on average
as safe. In labyrinth’s extreme case where most memory
accesses are to thread-private buffers, our combined classi-
fication mechanisms identify 95% of the accesses as safe.
The vast majority of safe accesses are identified by the
dynamic classification mechanism, indicating why HinTM-dyn
is notably more effective than HinTM-st in Fig. 4.

The fraction of compiler-annotated safe accesses indicates
why HinTM-st only achieves small performance benefits. Our
static analysis identifies no safe accesses for genome, intruder,
and yada, but classifies 18% of tpcc-no’s loads as safe. The
best case for static classification is labyrinth, marking 44%

Readset + Writeset CDF

a
O
0.99 /_/ S el
/ i
0.98F £ 0.6
; P
0.97 + 0.4
baseline kol baseline kol baseline
0.96 — HinTM-st 802 — HinTM-st 8502 — HinTM-st
— HinTM s — HinTM s — HinT™M
095 L L L 00 L L L 00 L L L
28 52 56 60 64 © 0 16 32 48 64 « 0 16 32 48 64
cache blocks # cache blocks # cache blocks
(a) genome (b) bayes (c) labyrinth
1.00 T T w 1.0 T T T w 1.0 T T
baseline 8 baseline 8 baseline
= HinTM-st 4+ 0.8} == HinTM-st 4+ 0.8} == HinTM-st
0.95F — yinTm % — HinTM % — HinTM
2 0.6 £0.6
0.90+ = =
+ 0.4} + 0.4
0.85 [9
£ 0.2t $0.2
© ©
0.8 Y A & 0.0 T S & 0.0 A
748 52 56 60 64 0 16 32 48 64 "0 16 32 48 64

cache blocks

() tpee-p

cache blocks
(e) tpcc-no

cache blocks
(d) vacation

Fig. 6: Transaction size CDFs for P8 configurations: baseline,
HinTM-st, and HinTM. HinTM-st and baseline fully overlap

in

(a) and (b). Note the different y-axis scales.

of the memory accesses performed within TXs as safe. This
high percentage of statically identified safety is inherent to
the application’s structure, where every TX starts by making
a thread-private copy of the grid it operates on to perform
optimistic source-destination routing. Finally, vacation and
bayes have a small fraction (3% and 2% respectively) of their
transactional memory accesses statically identified as safe.

The fraction of safe accesses alone does not explain the

observed capacity abort reduction and performance gains. For
example, while HinTM-st identifies just 2% of transactional
memory accesses as safe in vacation, it significantly reduces
capacity aborts and achieves a sizeable speedup of 18%
(Fig. 4). In contrast, the 18% of loads statically marked as
safe in tpcc-no only reduce capacity aborts by 4%, resulting

in

virtually no speedup. Interestingly, the opposite trend holds

for tpcc-p: only 4% of loads are statically marked as safe,
allowing HinTM-st to reduce capacity aborts by 18%. This
trend is attributed to tpcc-no’s safe loads exhibiting higher
spatiotemporal locality. To shed more light into these behav-
iors, we next analyze each application’s TX size distribution
when HinTM-st and HinTM are used.

Fig. 6 shows the readset+writeset Cumulative Distribution

Function (CDF) of each application’s TXs, omitting yada
and intruder for brevity. We cap the x-axis at 64 cache
blocks, matching our modeled P 8 configuration’s transactional
capacity. TX with sizes beyond the x-axis range are TXs
that surely abort due to capacity constraints. We collect TX
sizes by running InfCap and recording each committed TX’s
readset+writeset size as recorded by:

1)
2)

3)

baseline HTM—i.e., every cache block touched in a TX.
HinTM-st—i.e., every cache block touched by a memory
operation that is not statically marked as safe.
HinTM—i.e., every cache block touched by a memory
operation that is not marked as safe by either of our two
classification mechanisms.

The gap between HinTM’s and baseline’s CDFs shows

HinTM-st capcity aborts C3 HinTM-st false conflicts

HinTM-dyn capacity aborts =3 HinTM-dyn false conflicts

HinTM capacity aborts Em

100

80
60

40

% reduction

20

bayeg 8enomg i’"“lder aby,inth Vafation Yad,
(a) Capacity and false conflict abort reduction.

HinTM-st ——3

| NV
HinTM-dyn == & %)
18 HinTM X 10
InfCap =

6

'S

% of total cycles wasted
on page mode aborts

Speedup norm. to baseline P8S

T Mﬂﬂ“

! 0
bayeg 8enome MNtryge, [aby‘“fnrh Vacaﬁon Yady pee, PPCC‘P geo"’t'an

(b) Speedup and cycles wasted on page mode transitions.
Fig. 7: Impact of HinTM on the P8S HTM configuration.

how memory access classification (primarily the dynamic
mechanism) shrinks effective TX sizes. Specifically the gap
between different HTM configurations on the graphs’ far
right end indicates the reduced fraction of TXs exceeding
P8’s transactional capacity and explains the capacity abort
reductions reported in Fig. 4a.

To illustrate, Fig. 6d shows that 2% of vacation’s TXs
exceed P8’s transactional capacity, causing baseline P8 to
perform 56% worse than InfCap (Fig. 4b). HinTM-st’s safety
marking enables half of those TXs to fit in P8’s transactional
buffer, leading to a 47% reduction in capacity aborts, and
recouping about half of the performance gap between baseline
and InfCap. We hypothesize that the effect is so pronounced,
despite only 2% of vacation’s runtime memory accesses being
statically identified as safe, because these safe accesses are to
unique cache blocks, while unsafe accesses have high spatio-
temporal locality in the cache blocks they touch.

D. HinTM Effect on Larger HTMs

We now evaluate HinTM’s impact combined with larger
HTM baselines. We use §VI-A’s applications with larger
inputs to generate sufficient transactional capacity pressure.

1) P8S: P8S alleviates P8’s capacity pressure by employ-
ing signatures to support an unbounded readset. In this case,
the opportunity for HinTM’s memory access classification is
narrower, with benefits stemming only from false conflict and
modest writeset size reduction. Fig. 7a illustrates the achieved
capacity and false conflict abort reduction for HinTM-st,
HinTM-dyn, and HinTM as compared to the P8S baseline for
a subset of our benchmark applications. The effect of these
reductions on performance is shown in Fig. 7b.

Compared to the P8 configuration, HinTM’s opportunity
for capacity abort reduction is limited, because any such
reduction must stem from static classification’s identification
of safe writes for writeset size reduction, as P8S’s readset is

effectively unbounded. HinTM only reduces capacity aborts
for bayes, labyrinth and yada.

Due to the application’s nature, HinTM-st identifies a large
fraction of labyrinth’s writes as safe, eliminating all capacity
aborts. For bayes and yada, the small fraction of writes
HinTM identifies as safe results in large relative capacity abort
reduction, yet performance gains are minimal, because the
absolute number of capacity aborts for both applications is
low, accounting for a negligible fraction of their runtime.

Safe read identification does not reduce capacity aborts in
P8sS, but does mitigate false conflict aborts, which sometimes
constitute a significant fraction of the application’s total con-
flict aborts. For instance, false conflicts cause 39% and 37%
of total conflict aborts in vacation and genome, respectively.
However, reducing these false conflicts does not always re-
sult in performance improvements. For vacation, HinTM’s
reduction of false conflicts by 87% improves performance
by 1.47x over baseline P8S, while genome’s performance
remains unaffected. In tpcc-no’s case, ~2% of TXs result in
false conflicts, which HinTM completely eliminates. However,
HinTM’s overhead due to page mode transitions offsets this
benefit, resulting in a small net performance loss.

Overall, when combined with P8S, HinTM’s benefit wanes,
as signatures eliminate readset capacity constraints. However,
HinTM remains beneficial, benefiting most applications mod-
estly and some (like labyrinth and vacation) significantly, for
an average speedup of 1.28x.

2) L1TM: L1TM reduces capacity pressure by tracking read
and write sets in the larger (32KB 8-way) private L1 cache.
This tracking style can suffer from capacity aborts due to
both capacity and set-conflict misses. In order to generate
capacity pressure in L1TM while using practical workload
sizes in our simulation environment, we employ 2-way SMT
on each core. Fig. 8 shows the performance results. Despite
L1TM’s increased transactional capacity, HinTM yields signifi-
cant performance gains—1.7x on average and up to 7.1 x—by
reducing capacity aborts by 29-100%. Due to SMT-incurred
capacity pressure, HinTM delivers the best performance im-
provements of all baseline HTM configurations evaluated.

The best gains are achieved for labyrinth, followed by
genome. Page mode aborts are, on average, of no concern, with
one significant outlier. As indicated by InfCap, transactional
capacity expansion holds significant promise for vacation,
which however is not fulfilled due to exorbitant page mode
abort costs. Vacation’s case motivates investigating improved
mechanisms for page-mode classification with reduced page
mode transition penalties, as previously mentioned in §IV-B.

E. Evaluation Summary

Our evaluation shows HinTM’s effectively extends a base-
line HTM’s limited transactional capacity, improving perfor-
mance by alleviating capacity aborts. Achieving the same ef-
fect solely with hardware requires larger buffering capacity or
increased complexity for sophisticated overflow mechanisms.
Even when such overflow mechanisms exist (e.g., signatures),
HinTM is a beneficial auxiliary mechanism.

HinTM-st C—— HinTM-dyn —— HinTM InfCap —m
63.1

o Do & ©

546 é\ [\5{\%_ l,?-” q«/y

3]
w =

Speedup norm. to baseline L1TM
N
% of total cycles wasted
on page mode aborts

1

0.5 “
0 L

bayes & €nom, Miruge, laby i, e Cation ?da

I

Pce-ne, fpcc? 89017,9&)7

Fig. 8: HinTM’s impact on L1TM. Speedup and cycles wasted
on page mode transitions.

HinTM-st’s average benefits are underwhelming. Although
only noticeably boosting few workloads, HinTM-st is worth
considering, as its implementation cost is predominantly on
the compiler, with minimal hardware requirements. Binary
size increase is also modest; our function replication (§1V-A)
leads to an average and maximum increase of 3% and 5.8%,
respectively. We reiterate that advanced compiler techniques
can potentially be used to identify more safe accesses than
our simple static analysis techniques and improve HinTM-st’s
potential. Furthermore, all our evaluated workloads are written
in C, resulting in very conservative compiler safety classifi-
cations. We expect increased static classification opportunity
when using languages with stronger in-built memory safety
guarantees (e.g., Rust).

VII. RELATED WORK

We discussed prior work most closely related to HinTM’s
mechanisms—compiler-driven classification in STM and user-
annotated privatization—in §II-C. §III-B highlighted the dis-
tinction between HinTM’s page-based memory safety classi-
fication and prior proposals on page-based TMs.

User-annotated privatization. Notary is the only work we
know that uses a privatization method to boost an HTM’s
effective TX capacity. It provides a programmer interface for
manual coarse-grained marking of thread-private data struc-
tures, and mentions automatic marking of thread-private stack
pages. However, Notary’s proposed design is more conceptual
than algorithmic, lacking concrete implementation details of
how the hardware maintains and retrieves that information to
use it. In contrast, we meticulously detail the methods HinTM
employs to identify safe memory and pass that information to
hardware. Although we focused on automation, HinTM can
trivially support both coarse-grained (i.e., Notary-style) and
fine-grained programmer annotations as well.

ISA escape actions support for HTM. Intel and IBM HTMs
offer suspend/resume operations that can be used to mark
windows of instructions within a TX to skip HTM controller
tracking [13], [21]. LogTM [49] uses similar escape actions
to skip tracking non-TM code blocks during TXs (traps,
interrupts, etc.). Such coarse-grained pause/resume approach
is typically used to execute sizeable code blocks of secondary
software synchronization mechanisms within a TX without
aborting [28], [40], [42], [47], [74] and therefore concep-

tually differs from HinTM’s automated identification and
fine-grained differentiation of memory accesses that actually
belong to a TX, with the goal of conserving the HTM’s
transactional capacity. Instead of our proposed safe load/store
instructions, a compiler could use suspend/resume to wrap
each load/store identified by HinTM’s static classification as
safe. IBM’s System Z features a non-transactional store for
debugging purposes [35]. Rock [16] and AMD’s ASF [17]
are HTMs that featured non-transactional load instructions.
Prior work [4] discussed different ways of using such load
instructions to improve HTM performance, and seminal HTM
work [34], [47] hinted at selectively using non-transactional
instructions, but only at a conceptual level. TCC [29] marked
stack references as local to avoid broadcasts and improve
scalability. We are the first to comprehensively study and
evaluate automatic generation (by the compiler or the hard-
ware) of non-transactional memory operations within trans-
actions to mitigate HTM capacity limitations. HinTM can
use these instructions on ISAs that feature them, as instances
of our proposed safe load/store instructions. Finally, neither
suspend/resume nor non-transactional instructions can be used
to mark dynamically identified safe loads/stores, which yield
most of HinTM’s performance benefits.

Other approaches addressing HTM capacity limitations.
Pre-abort handlers [51] provide a software fallback path to
attempt to save TXs before aborting. For capacity aborts, a
pre-abort handler would convert the aborting TX into a critical
section, preventing work loss, but still resulting in serialization.
The technique can be used in conjunction with HinTM, which
reduces capacity overflows. Cai et al. [12] study the effect
of cache replacement policy on Intel TSX capacity aborts.
SI-HTM [28] builds on the semantics of snapshot isolation
to expand POWERS8 HTM'’s limited transactional capacity by
only buffering a TX’s writeset. SI-HTM combines roll-back
only TXs [36] (ROTs—TXs that don’t track loads) with a soft-
ware mechanism that delays all TXs with a non-empty writeset
to commit after all concurrent TXs that started earlier have
already committed. Rather than snapshot isolation, HinTM
targets the stricter transactional model of 2-phase locking
(2PL). Issa et al. [40] combine ROT's with a software technique
to prevent the readset from occupying transactional capacity,
but still achieve strict 2PL semantics, at the cost of tracking the
TX’s whole readset in software and touching it again before
a TX commits. HinTM does not require an additional TX
validation phase with extra instructions and memory accesses,
and in general leaves TX structure unmodified.

Dynamic page-based classification in non-TM contexts.
Singh et al. [57] utilize static and dynamic memory access
classification mechanisms to relax the ordering of thread-
private memory accesses on sequentially consistent CPUs.
OS page classification has been used by Cuesta et al. [23]
to eliminate directory coherence tracking for data in private
pages; in VIPS to construct a simple low-cost coherence
mechanism [55]; and to inform intelligent data placement
decisions in distributed memories [11], [30], [64], [65].

Beyond conventional HTMs. Our work targets “conven-
tional” HTMs [31], [34] that impose rigid, hardware-bound
limits on transaction sizes [50]. While all commercial im-
plementations are instances of such conventional HTMs, the
research literature is rich in advanced techniques to allow
spilling transactional state from the limited hardware structures
without aborting. “Large” HTMs (LTM [5], LogTM [49])
modify the cache hierarchy or coherence to track overflown
state. “Unbounded” HTMs (UTM [5], VITM [53]) enhance
hardware with software mechanisms to enable TXs to not
only exceed hardware structure capacities, but also survive
context switches. Hybrid TMs [24], [26], [44] are founded
on an underlying STM implementation and leverage HTM as
an auxiliary mechanism to improve performance, whenever
possible. HinTM maintains the relative hardware simplicity
of conventional HTMs and proposes minimally intrusive ex-
tensions that alleviate their rigid capacity constraints without
sacrificing HTM’s performance advantages over STM.

Other metadata tracking and hint-based approaches.
Memory access differentiation lies at the core of HinTM’s
principle of operation. Such differentiation information could
be encoded by leveraging systems featuring tagged mem-
ory [22], [25], [58], [60], [73] and capability-based approaches
like CHERI [70] or Mondrian [69], using flexible metadata
management frameworks like XMem [66] or MetaSys [67].

VIII. CONCLUSION

We presented HinTM, a lightweight extension to conven-
tional HTMs leveraging a compiler-based and a runtime-
based memory access classification mechanism to alleviate
transactional capacity pressure and, by extension, mitigate ca-
pacity aborts. The classification mechanisms annotate memory
accesses that cannot be involved in race conditions and the
underlying HTM takes these hints to reduce memory access
tracking requirements. Our evaluation of HinTM coupled with
a range of baseline HTM configurations showed promising
capacity abort reduction and performance gains. Indicatively,
coupling HinTM with a POWERS HTM implementation
eliminates 64% of capacity aborts on average, resulting in
average performance improvements of 1.5x and up to 8.7x.
In addition to its performance gains, HinTM’s approach has
practical value as it is applicable to all existing HTM instances
with only modest hardware modifications and no additional
hardware structures. HinTM also facilitates HTM adoption in
simpler processor designs—for example, RISC-V cores that
do not yet feature such support but already have a planned
HTM feature on the horizon [2].

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable feed-
back. We are grateful to Sunjae Park for his help in the baseline
HTM simulation model’s setup and to Jisheng Zhao for his
guidance on formulating the inter-procedural thread-private
data structure analysis pass. We thank Hamed Seyedroudbari,
Marina Vemmou, Albert Cho, and Anirudh Sarma for their
constructive feedback that helped improve the paper.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

REFERENCES

“LLVM Project Github Source,” https://github.com/llvm/Ilvm-project/
tree/llvmorg-9.0.1.

“RISC-V Instruction Set Manual: Standard Extension for Transactional
Memory,” http://five-embeddev.com/riscv-isa-manual/latest/t.html#sec:
tm.

M. Abadi, T. Harris, and K. F. Moore, “A model of dynamic separation
for transactional memory,” Inf. Comput., vol. 208, no. 10, pp. 1093—
1117, 2010.

Y. Afek and H. Avni, “Evaluating the Addition of Non-Transactional
Loads to HTM,” 6th Workshop on the Theory of Transactional Memory
(WITM), 2014.

C. S. Ananian, K. Asanovic, B. C. Kuszmaul, C. E. Leiserson, and
S. Lie, “Unbounded Transactional Memory,” in Proc. 11th IEEE Symp.
High-Perf. Comp. Architecture (HPCA), 2005, pp. 316-327.

Arm Limited, “ARM Architecture Reference Manual:
Coprocessor Instructions,” https://developer.arm.com/documentation/
ddi0406/c/Application-Level- Architecture/The- Instruction-Sets/
Coprocessor-instructions.

Arm Limited, “New Technologies for the Arm A-
Profile Architecture,” https://community.arm.com/developer/ip-
products/processors/b/processors-ip-blog/posts/new-technologies-
for-the-arm-a-profile-architecture.

W. Baek, C. C. Minh, M. Trautmann, C. Kozyrakis, and K. Olukotun,
“The OpenTM Transactional Application Programming Interface,” in
Proc. 16th Int. Conf. Parallel Architecture and Compilation Techniques
(PACT), 2007, pp. 376-387.

R. Balasubramonian, A. B. Kahng, N. Muralimanohar, A. Shafiee,
and V. Srinivas, “CACTI 7: New Tools for Interconnect Exploration
in Innovative Off-Chip Memories,” ACM Trans. Archit. Code Optim.,
vol. 14, no. 2, pp. 14:1-14:25, 2017.

M. Becker and S. Chakraborty, “Measuring Software Performance on
Linux,” CoRR, vol. abs/1811.01412, 2018.

N. Beckmann and D. Sanchez, “Jigsaw: Scalable software-defined
caches,” in Proc. 22nd Int. Conf. Parallel Architecture and Compilation
Techniques (PACT), 2013, pp. 213-224.

Z. Cai, S. M. Blackburn, and M. D. Bond, “Understanding and Uti-
lizing Hardware Transactional Memory Capacity,” in Proc. 2021 ACM
SIGPLAN Int. Symp. on Memory Management (STMM), 2021.

H. W. Cain, M. M. Michael, B. Frey, C. May, D. Williams, and H. Q.
Le, “Robust architectural support for transactional memory in the power
architecture,” in Proc. 40th Int. Symp. Comp. Architecture (ISCA), 2013,
pp. 225-236.

L. Ceze, J. Tuck, J. Torrellas, and C. Cascaval, “Bulk Disambiguation
of Speculative Threads in Multiprocessors,” in Proc. 33rd Int. Symp.
Comp. Architecture (ISCA), 2006, pp. 227-238.

A. Chang and M. F. Mergen, “801 Storage: Architecture and Program-
ming,” ACM Trans. Comput. Syst., vol. 6, no. 1, pp. 28-50, 1988.

S. Chaudhry, R. Cypher, M. Ekman, M. Karlsson, A. Landin, S. Yip,
H. Zeffer, and M. Tremblay, “Rock: A High-Performance Sparc CMT
Processor,” IEEE Micro, vol. 29, no. 2, pp. 6-16, 2009.

D. Christie, J.-W. Chung, S. Diestelhorst, M. Hohmuth, M. Pohlack,
C. Fetzer, M. Nowack, T. Riegel, P. Felber, P. Marlier, and E. Riviere,
“Evaluation of AMD’s advanced synchronization facility within a com-
plete transactional memory stack,” in Proc. 2010 EuroSys Conf., 2010,
pp. 27-40.

W. Chuang, S. Narayanasamy, G. Venkatesh, J. Sampson, M. V. Bies-
brouck, G. Pokam, B. Calder, and O. Colavin, “Unbounded page-based
transactional memory,” in Proc. 12th Int. Conf. Architectural Support for
Prog. Languages and Operating Sys. (ASPLOS-XII), 2006, pp. 347-358.
J. Chung, C. C. Minh, A. McDonald, T. Skare, H. Chafi, B. D. Carlstrom,
C. Kozyrakis, and K. Olukotun, “Tradeoffs in transactional memory
virtualization,” in Proc. 12th Int. Conf. Architectural Support for Prog.
Languages and Operating Sys. (ASPLOS-XII), 2006, pp. 371-381.

C. Click, “The Azul Hardware Transactional Memory Experience,”
Hydra Distributed Computing Conference talk. https://2019.hydraconf.
com/2019/talks/2jix5Smst7iduyp9linghfj/, 2019.

1. Corporation, “Intel Architecture Instruction Set Extensions and Future
Features Programming Reference,” 2020.

J. R. Crandall and F. T. Chong, “Minos: Control Data Attack Prevention
Orthogonal to Memory Model,” in Proc. 37th Annu. IEEE/ACM Int.
Symp. Microarchitecture (MICRO), 2004, pp. 221-232.

(23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

(36]

[37]

(38]

(39]

[40]

[41]

[42]

[43]

[44]

B. Cuesta, A. Ros, M. E. Gémez, A. Robles, and J. Duato, “Increasing
the effectiveness of directory caches by deactivating coherence for
private memory blocks,” in Proc. 38th Int. Symp. Comp. Architecture
(ISCA), 2011, pp. 93-104.

L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec: streamlining
STM by abolishing ownership records,” in Proc. 15th ACM SIGPLAN
Symp. Princ. and Practice of Parallel Prog. (PPoPP), 2010, pp. 67-78.
M. Dalton, H. Kannan, and C. Kozyrakis, “Raksha: a flexible informa-
tion flow architecture for software security,” in Proc. 34th Int. Symp.
Comp. Architecture (ISCA), 2007, pp. 482—493.

P. Damron, A. Fedorova, Y. Lev, V. Luchangco, M. Moir, and D. Nuss-
baum, “Hybrid transactional memory,” in Proc. 12th Int. Conf. Architec-
tural Support for Prog. Languages and Operating Sys. (ASPLOS-XII),
2006, pp. 336-346.

M. M. Das, G. Southern, and J. Renau, “Section based program analysis
to reduce overhead of detecting unsynchronized thread communication,”
in Proc. 20th ACM SIGPLAN Symp. Princ. and Practice of Parallel
Prog. (PPoPP), 2015, pp. 283-284.

R. Filipe, S. Issa, P. Romano, and J. Barreto, “Stretching the capacity
of hardware transactional memory in IBM POWER architectures,” in
Proc. 24th ACM SIGPLAN Symp. Princ. and Practice of Parallel Prog.
(PPoPP), 2019, pp. 107-119.

L. Hammond, V. Wong, M. K. Chen, B. D. Carlstrom, J. D. Davis,
B. Hertzberg, M. K. Prabhu, H. Wijaya, C. Kozyrakis, and K. Olukotun,
“Transactional Memory Coherence and Consistency,” in Proc. 31st Int.
Symp. Comp. Architecture (ISCA), 2004, pp. 102-113.

N. Hardavellas, M. Ferdman, B. Falsafi, and A. Ailamaki, “Reactive
NUCA: near-optimal block placement and replication in distributed
caches,” in Proc. 36th Int. Symp. Comp. Architecture (ISCA), 2009, pp.
184-195.

T. Harris, J. R. Larus, and R. Rajwar, Transactional Memory, 2nd edition,
ser. Synthesis Lectures on Computer Architecture. Morgan & Claypool
Publishers, 2010.

T. Harris, M. Plesko, A. Shinnar, and D. Tarditi, “Optimizing memory
transactions,” in Proc. ACM SIGPLAN 2006 Conf. Prog. Language
Design and Implementation (PLDI), 2006, pp. 14-25.

W. Hasenplaugh, A. Nguyen, and N. Shavit, “Quantifying the Capacity
Limitations of Hardware Transactional Memory,” 7th Workshop on the
Theory of Transactional Memory (WTTM), 2015.

M. Herlihy and J. E. B. Moss, “Transactional Memory: Architectural
Support for Lock-Free Data Structures,” in Proc. 20th Int. Symp. Comp.
Architecture (ISCA), 1993, pp. 289-300.

IBM, “Transactional execution debugging,” https://www.ibm.com/docs/
en/zos/2.1.0?topic=execution-transactional-debugging.

IBM, “POWERS9 Processor User’s Manual (version 2.0),” 2018.

IBM Blue Gene team, “Design of the IBM Blue Gene/Q Compute Chip,”
IBM J. Res. Dev., vol. 57, no. 1/2, p. 1, 2013.

S. Imam, J. Zhao, and V. Sarkar, “A Composable Deadlock-Free
Approach to Object-Based Isolation,” in 21st Int. European Conf. on
Parallel and Distributed Computing (Euro-Par), 2015, pp. 426-437.
Intel Corporation, “Restricted transactional memory overview,” sep
2022. [Online]. Available: https://www.intel.com/content/www/us/en/
develop/documentation/cpp-compiler-developer-guide-and-reference/
top/compiler-reference/intrinsics/intrinsics-for-avx2/
intrinsics-for-tsx/intrinsics-for-restrict- transactional-mem-ops/
restricted- transactional-memory-overview.html

S. Issa, P. Felber, A. Matveev, and P. Romano, “Extending Hardware
Transactional Memory Capacity via Rollback-Only Transactions and
Suspend/Resume,” in Proc. 31st Int. Symp. on Distributed Computing
(DISC), 2017, pp. 28:1-28:16.

C. Jacobi, T. J. Slegel, and D. F. Greiner, “Transactional Memory
Architecture and Implementation for IBM System Z,” in Proc. 45th
Annu. IEEE/ACM Int. Symp. Microarchitecture (MICRO), 2012, pp. 25—
36.

M. C. Jeffrey, V. A. Ying, S. Subramanian, H. R. Lee, J. S. Emer,
and D. Sanchez, “Harmonizing Speculative and Non-Speculative Exe-
cution in Architectures for Ordered Parallelism,” in Proc. 51st Annu.
IEEE/ACM Int. Symp. Microarchitecture (MICRO), 2018, pp. 217-230.
A. Joshi, V. Nagarajan, M. Cintra, and S. Viglas, “DHTM: Durable
Hardware Transactional Memory,” in Proc. 45th Int. Symp. Comp.
Architecture (ISCA), 2018, pp. 452-465.

S. Kumar, M. Chu, C. J. Hughes, P. Kundu, and A. D. Nguyen, “Hybrid
transactional memory,” in Proc. 11th ACM SIGPLAN Symp. Princ. and
Practice of Parallel Prog. (PPoPP), 2006, pp. 209-220.

https://github.com/llvm/llvm-project/tree/llvmorg-9.0.1
https://github.com/llvm/llvm-project/tree/llvmorg-9.0.1
http://five-embeddev.com/riscv-isa-manual/latest/t.html#sec:tm
http://five-embeddev.com/riscv-isa-manual/latest/t.html#sec:tm
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/The-Instruction-Sets/Coprocessor-instructions
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/The-Instruction-Sets/Coprocessor-instructions
https://developer.arm.com/documentation/ddi0406/c/Application-Level-Architecture/The-Instruction-Sets/Coprocessor-instructions
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture#:~:text=The%20Transactional%20Memory%20Extension%20brings,support%20to%20the%20Arm%20Architecture.&text=One%20of%20the%20most%20promising,executed%20concurrently%20within%20a%20transaction.
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture#:~:text=The%20Transactional%20Memory%20Extension%20brings,support%20to%20the%20Arm%20Architecture.&text=One%20of%20the%20most%20promising,executed%20concurrently%20within%20a%20transaction.
https://community.arm.com/developer/ip-products/processors/b/processors-ip-blog/posts/new-technologies-for-the-arm-a-profile-architecture#:~:text=The%20Transactional%20Memory%20Extension%20brings,support%20to%20the%20Arm%20Architecture.&text=One%20of%20the%20most%20promising,executed%20concurrently%20within%20a%20transaction.
https://2019.hydraconf.com/2019/talks/2jix5mst7iduyp9linqhfj/
https://2019.hydraconf.com/2019/talks/2jix5mst7iduyp9linqhfj/
https://www.ibm.com/docs/en/zos/2.1.0?topic=execution-transactional-debugging
https://www.ibm.com/docs/en/zos/2.1.0?topic=execution-transactional-debugging
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html
https://www.intel.com/content/www/us/en/develop/documentation/cpp-compiler-developer-guide-and-reference/top/compiler-reference/intrinsics/intrinsics-for-avx2/intrinsics-for-tsx/intrinsics-for-restrict-transactional-mem-ops/restricted-transactional-memory-overview.html

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

C. Lattner and V. S. Adve, “LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation,” in Proc. 2nd IEEE/ACM
Int. Symp. on Code Generation and Optimization (CGO), 2004, pp. 75—
88.

H. Q. Le, G. L. Guthrie, D. Williams, M. M. Michael, B. Frey, W. J.
Starke, C. May, R. Odaira, and T. Nakaike, “Transactional memory
support in the IBM POWERS processor,” IBM J. Res. Dev., vol. 59,
no. 1, 2015.

A. McDonald, J. Chung, B. D. Carlstrom, C. C. Minh, H. Chafi,
C. Kozyrakis, and K. Olukotun, “Architectural Semantics for Practical
Transactional Memory,” in Proc. 33rd Int. Symp. Comp. Architecture
(ISCA), 2006, pp. 53-65.

C. C. Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford Transactional Applications for Multi-Processing,” in Proc. 2008
IEEE Int. Symp. Workload Characterization (IISWC), 2008, pp. 35-46.
K. E. Moore, J. Bobba, M. J. Moravan, M. D. Hill, and D. A. Wood,
“LogTM: log-based transactional memory,” in Proc. 12th IEEE Symp.
High-Perf. Comp. Architecture (HPCA), 2006, pp. 254-265.

T. Nakaike, R. Odaira, M. Gaudet, M. M. Michael, and H. Tomari,
“Quantitative comparison of hardware transactional memory for Blue
Gene/Q, zEnterprise EC12, Intel Core, and POWERS,” in Proc. 42nd
Int. Symp. Comp. Architecture (ISCA), 2015, pp. 144-157.

S. Park, C. J. Hughes, and M. Prvulovic, “Transactional pre-abort
handlers in hardware transactional memory,” in Proc. 27th Int. Conf.
Parallel Architecture and Compilation Techniques (PACT), 2018, pp.
33:1-33:11.

S. Park, M. Prvulovic, and C. J. Hughes, “PleaseTM: Enabling trans-
action conflict management in requester-wins hardware transactional
memory,” in Proc. 22nd IEEE Symp. High-Perf. Comp. Architecture
(HPCA), 2016, pp. 285-296.

R. Rajwar, M. Herlihy, and K. K. Lai, “Virtualizing Transactional
Memory,” in Proc. 32nd Int. Symp. Comp. Architecture (ISCA), 2005,
pp. 494-505.

J. Renau, B. Fraguela, J. Tuck, W. Liu, M. Prvulovic, L. Ceze,
S. Sarangi, P. Sack, K. Strauss, and P. Montesinos, “SESC simulator,”
January 2005, http://sesc.sourceforge.net.

A. Ros and S. Kaxiras, “Complexity-effective multicore coherence,” in
Proc. 21st Int. Conf. Parallel Architecture and Compilation Techniques
(PACT), 2012, pp. 241-252.

T. Shpeisman, V. Menon, A.-R. Adl-Tabatabai, S. Balensiefer, D. Gross-
man, R. L. Hudson, K. F. Moore, and B. Saha, “Enforcing isolation and
ordering in STM,” in Proc. ACM SIGPLAN 2007 Conf. Prog. Language
Design and Implementation (PLDI), 2007, pp. 78-88.

A. Singh, S. Narayanasamy, D. Marino, T. D. Millstein, and M. Musu-
vathi, “End-to-end sequential consistency,” in Proc. 39th Int. Symp.
Comp. Architecture (ISCA), 2012, pp. 524-535.

E. Spertus, S. C. Goldstein, K. E. Schauser, T. von Eicken, D. E. Culler,
and W. J. Dally, “Evaluation of Mechanisms for Fine-Grained Parallel
Programs in the J-Machine and the CM-5," in Proc. 20th Int. Symp.
Comp. Architecture (ISCA), 1993, pp. 302-313.

B. Steensgaard, “Points-to Analysis in Almost Linear Time,” in Proc.
23rd ACM SIGPLAN Symp. Princ. of Prog. Languages (POPL), 1996,
pp. 32-41.

G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas, “Secure program
execution via dynamic information flow tracking,” in Proc. 1lst Int.

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

Conf. Architectural Support for Prog. Languages and Operating Sys.
(ASPLOS-XI), 2004, pp. 85-96.

Y. Sui and J. Xue, “SVF: Pointer Analysis for C and C++,” https://
svf-tools.github.io/SVF/.

D. Sanchez, L. Yen, M. D. Hill, and K. Sankaralingam, “Implementing
Signatures for Transactional Memory,” in Proc. 40th Annu. IEEE/ACM
Int. Symp. Microarchitecture (MICRO), 2007, pp. 123-133.
Transaction Processing Performance Council, “TPC Benchmark C,” http:
/Iwww.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf,
2010.

P-A. Tsai, N. Beckmann, and D. Sinchez, “Jenga: Software-Defined
Cache Hierarchies,” in Proc. 44th Int. Symp. Comp. Architecture (ISCA),
2017, pp. 652-665.

P.-A. Tsai, C. Chen, and D. Sanchez, “Adaptive Scheduling for Systems
with Asymmetric Memory Hierarchies,” in Proc. 51st Annu. IEEE/ACM
Int. Symp. Microarchitecture (MICRO), 2018, pp. 641-654.

N. Vijaykumar, A. Jain, D. Majumdar, K. Hsieh, G. Pekhimenko,
E. Ebrahimi, N. Hajinazar, P. B. Gibbons, and O. Mutlu, “A Case

for Richer Cross-Layer Abstractions: Bridging the Semantic Gap with
Expressive Memory,” in Proc. 45th Int. Symp. Comp. Architecture

(ISCA), 2018, pp. 207-220.

N. Vijaykumar, A. Olgun, K. Kanellopoulos, F. N. Bostanci, H. Hassan,
M. Lotfi, P. B. Gibbons, and O. Mutlu, “MetaSys: A Practical Open-
source Metadata Management System to Implement and Evaluate Cross-
layer Optimizations,” ACM Trans. Archit. Code Optim., vol. 19, no. 2,
pp. 26:1-26:29, 2022.

C. Villavieja, V. Karakostas, L. Vilanova, Y. Etsion, A. Ramirez,
A. Mendelson, N. Navarro, A. Cristal, and O. S. Unsal, “DiDi: Mit-
igating the Performance Impact of TLB Shootdowns Using a Shared
TLB Directory,” in Proc. 20th Int. Conf. Parallel Architecture and
Compilation Techniques (PACT), 2011, pp. 340-349.

E. Witchel, J. Cates, and K. Asanovic, “Mondrian memory protection,”
in Proc. 10th Int. Conf. Architectural Support for Prog. Languages and
Operating Sys. (ASPLOS-X), 2002, pp. 304-316.

J. Woodruff, R. N. M. Watson, D. Chisnall, S. W. Moore, J. Anderson,
B. Davis, B. Laurie, P. G. Neumann, R. M. Norton, and M. Roe, “The
CHERI capability model: Revisiting RISC in an age of risk,” in Proc.
41st Int. Symp. Comp. Architecture (ISCA), 2014, pp. 457-468.

L. Yen, S. C. Draper, and M. D. Hill, “Notary: Hardware techniques
to enhance signatures,” in Proc. 41st Annu. IEEE/ACM Int. Symp.
Microarchitecture (MICRO), 2008, pp. 234-245.

R. M. Yoo, C. J. Hughes, K. Lai, and R. Rajwar, “Performance
evaluation of Intel® transactional synchronization extensions for high-
performance computing,” in Proc. 2013 ACM/IEEE Conf. Supercomput-
ing (SC), 2013, pp. 19:1-19:11.

N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hardware
Enforcement of Application Security Policies Using Tagged Memory,”
in Proc. 8th Symp. Operating Sys. Design and Implementation (OSDI),
2008, pp. 225-240.

C. B. Zilles and L. Baugh, “Extending hardware transactional memory
to support non-busy waiting and non-transactional actions,” in Proc.
of the First ACM SIGPLAN Workshop on Languages, Compilers, and
Hardware Support for Transactional Computing (TRANSACT), 2006.

http://sesc.sourceforge.net
https://svf-tools.github.io/SVF/
https://svf-tools.github.io/SVF/
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf
http://www.tpc.org/tpc_documents_current_versions/pdf/tpc-c_v5.11.0.pdf

	Introduction
	Background and Motivation
	Hardware Transactional Memory
	TX Capacity Expansion via Memory Access Classification
	Memory Classification in Prior TM Work

	HinTM's Memory Classification
	Fine-grained Static Classification
	Coarse-grained Dynamic Classification

	HinTM Implementation
	Compiler Support for Static Classification
	System Support for Dynamic Classification
	Putting it All Together

	Methodology
	Evaluation
	Capacity Abort Reduction and Speedup with P8 HTM
	Effect of Page Mode Aborts
	Transactional Capacity Pressure Study
	HinTM Effect on Larger HTMs
	P8S
	L1TM

	Evaluation Summary

	Related Work
	Conclusion
	References

