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Abstract—Large multi-socket machines are mission-critical
high-performance systems for workloads requiring massive mem-
ory shared by hundreds of processors. Beyond eight sockets,
such systems typically feature multi-hop inter-socket networks,
exacerbating the Non-Uniform Memory Access (NUMA) chal-
lenge. NUMA effects stem from major disparity in latency and
bandwidth characteristics of local and remote memory, often
in the 4–10× range. While judicious data placement across the
distributed memory’s fragments can ameliorate NUMA effects,
we observe that in challenging workloads with irregular access
patterns, a large fraction of accessed pages are “vagabond”:
being actively shared by multiple sockets, they lack a fitting
home socket location. On 16-socket systems, such pages incur
up to 75% remote memory accesses, which encounter significant
latency overheads and bandwidth bottlenecks.

STARNUMA introduces a new architectural block for multi-
socket architectures to ameliorate the challenge posed by
vagabond pages. By leveraging the capabilities of the emerging
CXL interconnect, STARNUMA augments a typical NUMA ar-
chitecture with a memory pool that is directly accessible by every
socket in a single high-bandwidth interconnect hop. We show that
placement of vagabond pages in STARNUMA’s memory pool
effectively curbs the latency overheads and queuing delays of the
bandwidth-constrained multi-hop inter-socket network, reducing
the average memory access time of 16-socket systems by 48%. In
turn, faster memory access yields performance improvements of
1.54× on average, and up to 2.17×.

I. INTRODUCTION

Enterprises employ multi-socket systems for workloads re-
quiring many cores and massive shared memory. While the
multi-socket system market is dominated by two- to four-
socket machines, there is a niche, yet critically important need
for large-scale systems of eight sockets or more. Such mission-
critical systems are typically used in high-performance com-
puting (HPC) and transaction processing/banking environ-
ments that require thousands of threads with direct access to
terabytes of shared memory. Despite driving a small portion of
the server market’s volume, large-scale multi-socket systems
represent a market of $5 billion in annual revenue [59].

Scaling beyond four sockets typically involves hierarchical
networks, exacerbating the challenge of Non-Uniform Mem-
ory Accesses (NUMA). While every processor can directly
access any memory location, memory access latency and band-
width characteristics drastically depend on the target memory
location’s distance from the accessing processor, as a function
of the path and hop count taken on the coherent interconnect.

In a typical HPE or IBM 16-socket system, the gap between
the slowest and fastest memory access exceeds 4×, with an
unloaded remote memory access latency of up to 360ns [10],
[31]. This latency disparity is further exacerbated in a loaded
system, as remote memory access is severely bound by inter-
socket bandwidth constraints, introducing considerable queu-
ing delays. Techniques that minimize remote memory accesses
via intelligent data placement and migrations are therefore
essential in large NUMA systems. Unfortunately, some im-
portant workloads, such as graphs [3], exhibit challenging
irregular access patterns, resulting in a significant fraction
of data pages without an evident “home” socket location
due to high sharing degree. We call such pages vagabond.
Vagabond pages hurt performance by incurring many costly
remote memory accesses and/or excessive migrations.

To address the challenge of vagabond page placement,
we propose the STARNUMA architecture, which extends a
typical multi-socket system with a shared memory pool that is
directly accessible by every socket in a single high-bandwidth
interconnect hop. By leveraging a page hotness monitoring
and migration mechanism that considers this new architectural
block, vagabond pages can be identified and placed in the pool,
thus minimizing costly multi-hop remote memory accesses.
Compared to a baseline NUMA system, shared direct access
to such a pool provides lower average unloaded latency and
higher bandwidth availability for remote memory accesses.

Recent technological trends render STARNUMA a timely
and practical solution. The emerging Compute Express Link
(CXL) interconnect [18], based on a widely adopted open in-
dustry standard, supports all the required features to construct
STARNUMA’s low-latency and high-bandwidth memory pool.
First, CXL supports coherent sharing of disaggregated memory
across multiple sockets. Second, for the contained scale of our
target multi-socket systems, CXL’s performance characteristics
allow direct connectivity of every socket to the memory
pool, at a 2× lower unloaded latency than the highest multi-
hop latency of the baseline system (180ns [38], [46], [56]
versus 360ns [10], [31]). Third, CXL is a high-bandwidth
interconnect, offering 8GB/s per direction per lane (when
operating over PCIe 6.0), with the capability of grouping
multiple lanes together at a modest requirement of only four
processor pins per lane [2], [56].

By selectively placing vagabond pages in its memory pool,
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STARNUMA delivers lower unloaded memory access latency
and additional bandwidth for remote memory accesses. Our
evaluation of a 16-socket system using a variety of workloads
shows an overall effective average memory access latency re-
duction of 48%, yielding an average speedup of 1.54× and up
to 2.17×. In summary, we make the following contributions:
• We introduce STARNUMA, a novel NUMA architecture

that employs a memory pool to mitigate the performance
bottlenecks of high-latency, bandwidth-constrained multi-
hop remote memory accesses caused by vagabond pages.

• We propose a practical STARNUMA implementation by
leveraging the emerging CXL standard, along with hardware
support to facilitate page hotness tracking and migration.

• We construct a novel methodology for scalable and practical
microarchitectural simulation of large multi-socket systems.

• We show that STARNUMA accelerates graph, HPC, data
serving, and transactional workloads by 1.54× on average
and up to 2.17× over a conventional 16-socket system.

Paper outline: §II covers background on large-scale multi-
socket systems and CXL, and motivates a memory pool as a
new architectural block to mitigate the performance challenges
arising from vagabond pages. §III introduces STARNUMA’s
design, §IV details our methodology and §V evaluates STAR-
NUMA. Finally, §VI covers related work and §VII concludes.

II. BACKGROUND

A. Large-scale Multi-socket Systems
The building block of modern scalable shared memory

architectures is a CPU socket, featuring multiple cores and
locally attached DRAM memory. These sockets are intercon-
nected with coherent links—Ultra Path Interconnect (UPI) in
Intel’s terminology. The key capability enabled by such inter-
connection is that every processor can directly access any other
processor’s memory using common load/store instructions.
However, a processor’s memory access performance depends
on whether it accesses local or remote memory, introducing
Non-Uniform Memory Access (NUMA) effects.

We study a 16-socket HPE Superdome FLEX [29], [33],
[59] as a concrete instance of a large-scale shared memory
system; IBM Power10 multi-socket systems are similar [30].
The 16-socket system is organized into four chassis, each
housing four sockets, as shown in Fig. 1. The four sockets
in the same chassis are directly connected to each other with
three UPI links. Some implementations only feature enough
UPI links to connect each socket to two other sockets, which
results in some pair-wise intra-chassis socket communications
requiring two link crossings. We assume there are enough UPI
links to allow direct all-to-all intra-chassis socket connection.

All of a chassis’ sockets connect to custom inter-socket link
ASICs (“FLEX ASIC” for brevity) that provide inter-chassis
connectivity [10], [29], [59]. Each FLEX ASIC features
enough links to provide direct (i.e., single-hop) connectivity
to every other FLEX ASIC in the system. To differentiate
from intra-chassis UPI links, we refer to inter-chassis coherent
links as NUMALinks, and use the term “coherent links” to
collectively refer to both link types.

UPI (41 GB/s) NUMALink (26 GB/s) CXL link to pool (80 GB/s effective)

Inter-socket
Link ASIC 0

Inter-socket
Link ASIC 1

CXL Pool

C0 C1 C2 C3

Chassis

CPU
Socket 0

CPU
Socket 2

CPU
Socket 3

CPU
Socket 1

NUMA latencies (unloaded)
 Local: 80ns Single-hop (intra-chassis): 130ns
 Pool: 180ns Two-hop (inter-chasis): 360ns

Inter-socket links

Fig. 1: 16-socket architecture overview consisting of four
four-socket chassis. All FLEX ASICs are interconnected with
NUMALinks pairwise, connecting any pair of chassis, C0 to
C3, in a single hop. The orange square and links annotate
STARNUMA’s extensions to the baseline multi-socket system.

The hierarchical interconnection of the system’s 16 sockets
reduces the number of required inter-chassis links to 28 (8C2
combinations, with two FLEX ASICs per chassis), whereas
directly connecting each of the 16 sockets would require 120
links (16C2 combinations). However, the hierarchical intercon-
nection introduces latency and bandwidth implications that
exacerbate NUMA effects.

Intra-chassis memory accesses requiring a single UPI link
traversal add 50ns over local memory access. Inter-chassis
memory accesses take 360ns [10], [31]. The ∼280ns latency
penalty over local memory access includes traversing two UPI
links (connecting the socket to the FLEX ASIC at each end),
two FLEX ASICs, and an inter-chassis NUMALink, twice.
As a result, the unloaded memory access latency in such a
16-socket system is 80ns, 130ns, or 360ns, depending on the
target memory’s location (local, intra-chassis, or inter-chassis).
Bandwidth limitations for cross-socket accesses further ag-
gravate this 4.5× gap in unloaded latency by introducing
queuing delays. To illustrate, UPI and NUMALinks have
typical bandwidths of 41GB/s and 26GB/s, respectively, while
local memory bandwidth usually exceeds 200GB/s.

B. The Challenge of Vagabond Page Placement

The wide variance of latency and bandwidth as a function
of a memory access’ target in large-scale NUMA systems
implies that a workload’s resulting Average Memory Access
Time (AMAT) is significantly affected by its memory access
pattern, which in turn directly impacts performance. Therefore,
several mechanisms implement intelligent page placement and
movement to mitigate the detrimental effect of remote memory
accesses that inflate AMAT. However, the most challenging
workloads exhibit a significant fraction of memory accesses to
vagabond pages, which lack an optimal home socket location.

As an example, Fig. 2 shows page access pattern character-
istics for the BFS workload from the GAP graph benchmark
suite [11]. The more sharers a page has, the lower its affinity
to any specific location. Fig. 2a shows that only 17% of pages
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Fig. 2: Access pattern characteristics for the BFS workload of
the GAP benchmark suite on a 16-socket system (1B instr. per
core). The distributions account for load/store operations that
result in memory access (i.e., LLC miss). Many accesses are
concentrated on a small fraction of heavily shared pages.

are accessed by a single socket, while 78% of pages have four
sharers or fewer, indicating that an intelligent migration policy
may be able to contain page accesses within a chassis and min-
imize costly 2-hop accesses. However, while only 7% of pages
have more than eight sharers (thus no chassis represents a good
home location), 68% of all memory accesses are concentrated
to those shared pages (Fig. 2b), and the 2% of pages shared by
all 16 sockets account for 36% of all accesses. Assuming that
these accesses are uniformly distributed across sockets, 75% of
them are inter-chassis. We show in §V-A that, even when only
unloaded latencies are considered, BFS’s access pattern results
in a 300ns AMAT. AMAT more than triples when bandwidth
constraints of remote memory accesses are also factored in,
severely degrading performance. Other workloads we consider
exhibit similar behavior, but are omitted here for brevity.

Fig. 2’s data suggests that a significant fraction of accesses
target few widely shared pages. Explicitly replicating these
pages in each socket’s memory to increase the fraction of local
memory accesses would entail small memory capacity over-
heads. However, most of these pages are read-write (Fig. 2b),
meaning high software complexity and overheads would be re-
quired to keep the replicas coherent. Alternatively, a modestly
sized memory pool that can host these heavily shared pages
and is accessible faster than an inter-chassis memory access
can boost performance by accelerating a substantial fraction
of memory accesses, while avoiding replication’s implications.
Hence, we propose introducing a new placement option for
vagabond pages, by adopting such a memory pool as a new
architectural building block for large multi-socket systems.

C. CXL and Memory Pooling

The Compute Express Link (CXL) [18] is an open inter-
connect standard, designed to present a unified solution for
coherent accelerators, non-coherent IO devices, and memory
expansion devices. It represents the industry’s concerted effort
for a standardized interconnect that has absorbed a range of
competing technologies (OpenCAPI [60], CCIX [19], Gen-
Z [24]). Owing to its widespread industry adoption, CXL is
bound to become a dominant interconnect, with processor and
memory vendors already shaping their products to support it.

Of particular interest in the context of this work is CXL’s
ability to disaggregate memory from the CPU and share it
across multiple CPUs. In contrast to typical DDR-attached
memory, which requires physical CPU proximity to preserve
signal integrity, a CXL-attached memory module can be
placed at a 20-inch distance, or even further by employing
retimers, each adding 20ns roundrip latency overhead [17],
[38]. Additionally, such disaggregated memory modules can
directly connect to multiple hosts, and support hardware-
enforced coherence. Thus, a CXL device placed in the middle
of a rack can be deployed as disaggregated memory reachable
at low latency (< 200ns) by every server in the rack. We call
such shared disaggregated memory a memory pool.

CXL is also a high-bandwidth interconnect. CXL 3.x is
layered over PCIe 6.0, which offers 8GB/s per lane per
direction, with the possibility of grouping up to 16 lanes
together [20]. For example, an 8-lane (x8) CXL interface
offers 64GB/s (40GB/s effective) per direction with modest
processor pin requirements (more details in §III-B). Hence,
a CXL-attached memory pool can be directly accessible by
multiple CPU sockets at both low latency and high bandwidth.

Pond [38] recently demonstrated the flexibility and utility
of such a CXL-attached memory pool in the context of a
scale-out architecture. Aiming to mitigate the challenge of
memory stranding, Pond facilitates dynamic allocation of a
CXL-enabled memory pool across multiple VM hosts in the
same rack. To illustrate, each server in a 16-server Pond group
can access the memory pool in 180ns over an x8 CXL link.

Unlike Pond, we propose leveraging memory pooling in the
context of scale-up (i.e., shared memory) systems, to mitigate
the challenge of data placement and NUMA effects. STAR-
NUMA is a multi-socket system augmented with a coherent
memory pool that directly connects to every socket with high-
bandwidth links. Assuming, like Pond, that such a pool is
accessible within 180ns, it offers 40% higher latency than a
single-hop remote memory access, but 2× lower latency than
a 2-hop access (see §II-A). Hence, with a placement/migration
mechanism that identifies and places vagabond pages in the
memory pool, STARNUMA can improve AMAT by convert-
ing slow inter-chassis accesses to faster (i.e., low-latency and
high-bandwidth) memory pool accesses.

Revisiting Fig. 2’s example, of the 36% of memory accesses
to pages shared by all 16 sockets, about 75% would be inter-
chassis and 25% intra-chassis, assuming they are uniformly
distributed. Additionally assuming, for simplicity, that all other
memory accesses are local memory accesses, and using the
latency values from Fig. 1’s table, the resulting AMAT is
160ns (64%× 80ns+ 36%× (25%× 130ns+ 75%× 360ns)).
With a migration mechanism that identifies the subset of pages
shared by all sockets and places them in the memory pool, the
latency of inter-chassis accesses can be halved, thus reducing
AMAT by 30%, to 112ns. This simplistic first-order estimate
ignores any queuing effects due to bandwidth limitations.
§V’s evaluation shows that the additional bandwidth to remote
memory also reduces queuing delays, further reducing AMAT.
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III. STARNUMA DESIGN

STARNUMA extends a typical multi-socket system with a
CXL-attached memory pool. We base our design on a 16-
socket configuration derived from the HPE Superdome FLEX
discussed in §II-A. Fig. 1 highlights STARNUMA’s extensions
over a baseline multi-socket system. The memory pool directly
connects over CXL links to all sockets in a star topology,
STARNUMA’s namesake. Physically, the chassis containing
the memory pool would be placed in the middle of the rack,
between the four CPU-socket chassis, to minimize its distance
from them and hence the number of required CXL retimers,
which add latency overhead. Details of the baseline multi-
socket system’s intra-socket and inter-socket topology, as well
as their impact on memory access latency were discussed in
§II. We now focus on the design of STARNUMA’s newly
introduced building block, the CXL-enabled memory pool, and
the mechanism for vagabond page placement in the pool.

A. CXL Memory Pool Design Overview

The memory pool is, in CXL terminology, a type-3 Multi
Headed Device (MHD) [18] that features multiple CXL ports
to support direct connections to every processor socket. As the
memory pool is actively shared by all sockets, cache coherence
is required, which is supported by CXL 3.x’s Back-Invalidate
protocol extensions. §III-C further discusses coherence.

We assume the MHD features memory bandwidth and
capacity capabilities comparable to a four-socket chassis. We
therefore consider a base pool configuration with 16 DDR5
channels providing access to 768GB of memory, representing
20% of the enhanced multi-socket system’s total memory
capacity. These memory pool characteristics are easily cus-
tomizable without affecting CPU sockets, which is one of the
key strengths of disaggregated memory designs. We consider
and evaluate different memory pool capacities in §V-E.

B. Memory Pool Connectivity

Every socket of STARNUMA is directly connected to the
memory pool over a dedicated CXL link. As CXL 3.x’s
underlying physical layer is PCIe 6.0, an 8-lane CXL link
provides 64GB/s of raw bandwidth per direction. While header
and other communication overheads over the CXL port slightly
differ depending on the specific access pattern and read/write
ratio, we conservatively assume a 62% conversion rate for a
realized bandwidth (goodput) of 40GB/s per direction [56].

Eight PCIe 6.0 lanes have a modest requirement of 32
processor pins. To illustrate, a single ECC-enabled DDR4
channel requires over 160 processor pins [32]; DDR5 even
more [53]. Hence, the challenge mostly lies in supporting the
aggregate number of lanes on the memory pool’s MHD: with
eight lanes per processor, a 16-socket system would require
a total of 128 lanes. As a point of comparison, AMD Zen
4 EPYC CPUs feature an IO die with up to 128 PCIe 5.0
lanes and 12 memory controllers [7]; hence, we expect that
the memory pool’s MHD can feature similar capabilities.

We derive latency values from Pond’s [38] CXL MHD,
given its similarities with STARNUMA’s memory pool at the

Processor
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NoC
& Dir.

MC &
DRAM
access

CXL
port

CXL
port Retimer

CXL MHD

100ns latency overhead

35ns 45ns25ns 20ns20 + 2x5ns 25ns

Fig. 3: CXL memory pool access latency breakdown.

hardware level. A distinction that could introduce latency dif-
ferences is that STARNUMA enforces coherence to implement
truly shared memory. The CXL 3.0 whitepaper [18] suggests
there is no latency difference between single-owner and multi-
owner (where coherence must be enforced) memory segments,
likely because a directory lookup is always required, either
to check the coherence state, or verify the owner of each
memory request (even for single-owner memory segments).
Nevertheless, we conservatively include an additional 5ns
overhead in the CXL MHD over Pond’s latency breakdown.

Fig. 3 shows STARNUMA’s memory pool access latency
breakdown. Memory pool accesses traverse the processor’s and
the MHD’s CXL port, each adding a 25ns roundtrip overhead.
With 16 sockets, a retimer is likely required between each
host and the MHD, adding 20ns, and flight time on the link
is about 5ns per direction. Finally, traversing the on-chip net-
work, internal arbitration logic, and coherence directory before
reaching the memory controller on the MHD is estimated to
be 20ns. Thus, summing up all these latency components, the
overhead to access memory at the shared pool is about 100ns.
Including on-processor time and DRAM access, the end-to-
end unloaded latency of accessing the memory pool is 180ns.

We focus our design on 16-socket systems, which likely
represents the ideal scale for a centralized shared memory
pool. However, it is possible to scale STARNUMA to 32
sockets and beyond, with the introduction of CXL switches,
each adding about 90ns roundtrip latency, for a total memory
pool access latency of about 275ns. While the latency gap
between a memory pool access and a two-hop NUMA access
shrinks, the second advantage of the memory pool, namely
additional bandwidth for remotely accessed heavily shared
pages, remains. Our design and evaluation focuses on 16-
socket systems, but we also perform a latency sensitivity study
on larger-scale deployments in §V-C.

C. Cache Coherence

The memory pool must keep cached copies of its address
range cached across sockets coherent, as prescribed in the
CXL 3.x specification. We assume that the pool implements a
directory-based MESI coherence protocol for this purpose. Di-
rectory information is distributed across the sockets and mem-
ory pool, aligned with the distribution of the address space.
Accesses missing in their originating socket are routed to the
target address’ home node, which initiates all subsequent co-
herence actions (response/invalidation/forward request). While
hardware coherence entails well-known scalability challenges,
STARNUMA targets a limited system scale of 8–32 sockets,
ameliorating that concern.
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STARNUMA embodies two different mechanisms for
socket-to-socket block transfers, depending on the type of
the target block’s home node. If the home node is a normal
socket, then the block transfer is completed via the typical 3-
hop cache-to-cache transfer optimization (red R→H→O→R
path in Fig. 4). If the home node is the pool, block transfers
complete in four hops via the pool (blue R→H→O→H→R
path). Counter-intuitively, traversing two CXL links instead
of performing a 3-hop block transfer is, on average, faster
than directly sending the requested block from the owner to
the requesting socket, due to the high latency of cross-chassis
link traversals. On our target 16-socket system, the average
(unloaded) 3-hop cache block transfer latency is 333ns, derived
by averaging the cumulative latency of the three traversed links
for all possible R, H, O socket combinations. In contrast, the
latency of a 4-hop transfer via the pool—which entails two
roundtrips over two CXL links—is only 200ns.

D. Memory Access Monitoring and Page Migration

To effectively leverage STARNUMA, a lightweight mech-
anism that monitors memory access patterns and successfully
identifies vagabond pages for pool placement is essential.
Support for page access pattern detection is useful even in
baseline NUMA and tiered-memory systems, and is a chal-
lenging ongoing research topic [6], [21], [34], [40], [46], [48].

Most prior solutions are software-based and leverage OS-
driven page hotness tracking and migration mechanisms. We
devise our own mechanism for STARNUMA, for two reasons.
First, page sharing degree is a key metric that must be
considered to drive effective migrations to the new shared
memory pool component. Second, we found that at the data
migration rate STARNUMA requires to be effective, conven-
tional software-based mechanisms incur prohibitive overheads;
hence, hardware support for this functionality is required. We
therefore develop a policy and hardware-supported mechanism
to drive page migrations in STARNUMA.

A migration mechanism can be broadly divided into three
components: access tracking, migration candidate selection,
and migration itself. We discuss the constraints and hardware
support required to avoid prohibitive overheads at each stage,
and describe the mechanism applied in STARNUMA. Fig. 5
summarizes our extensions for memory access monitoring.

1) Access Tracking: The first component of any migration
mechanism is memory access monitoring. In software-based
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Fig. 5: Hardware support and in-memory metadata for memory
access monitoring and page migration in STARNUMA.

variants, the OS periodically “poisons” a set of selected pages
to trigger OS bookkeeping logic via subsequent minor page
faults. Monitoring a small page sample is essential to keep
the minor page fault overhead low, but we found that practical
sample sizes are not large enough to identify pages that would
benefit from pool placement at a sufficiently high rate. We
therefore devise an approach to make monitoring of the entire
address space practical.

We logically split the physical memory into regions, each
consisting of several consecutive physical pages—we discuss
sizing in §III-D4. We allocate a physically contiguous meta-
data region in memory to maintain per-region access metadata.
Each region’s corresponding access tracker entry is used to
maintain access statistics and is trivially identified in the
metadata region in a base + offset fashion, using region id
× tracker entry size as offset. A tracker design Ti has entries
comprising (i) one bit per socket, and (ii) an i−bit counter to
record up to 2i−1 total region accesses, as described next.

Similar to prior work [41], [47], STARNUMA extends each
TLB with a counter annex, as shown in Fig. 5. Briefly, for
a Ti tracker design, each TLB entry has an associated i-
bit counter. Upon the completion of an LLC-missing load,
the corresponding TLB annex entry’s counter is incremented.
When a TLB entry is evicted, the hardware Page Table Walker
(PTW) adds the annex entry’s value in the memory’s metadata
region respective counter. To capture the counters of hot pages
that are never evicted from the TLB, all TLB annex entries
also have a marker bit, periodically set once per migration
phase (about once per second in our implementation). When
a TLB entry with a marker set is accessed, the PTW adds the
annex entry’s value to the respective metadata region location
and resets the marker.

A special case of Ti we consider is T0, which can only
track whether a socket has accessed a region during a migra-
tion phase, but cannot rank the relative hotness of different
regions. T0 is an interesting design point because it collects
sufficient information to identify widely shared pages—which
are good candidates for pool placement in STARNUMA—
while eschewing the need for value additions, both in the TLB
annex and in the metadata region by the PTW.

2) Migration Candidate Selection: While the PTW mech-
anism continuously updates the access information in the
metadata region, the selection of regions to be migrated is done
by an OS thread once per migration phase (i.e., about once per
second). Algorithm 1 describes our threshold-based decision-
making logic that selects the memory regions to be migrated
and their destination (another socket or the memory pool).
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Briefly, if a region’s access count exceeds a set threshold, it is
selected to be migrated, either to the pool, or to another socket,
depending on its sharing degree. If the destination (including
the pool) is out of usable capacity, a victim region is first
identified to be moved out, using a similar threshold-based
approach. The victim’s destination is randomly selected among
the region’s sharers. Note that the threshold-based approach
enables decision-making with a single pass of the metadata
region and no sorting requirement. The once-per-phase meta-
data region scan also resets all page access counters.

Algorithm 1 Migration decision pseudocode
1: Region Trackers[]
2: N MIGRATION ← 0; MIGRATION LIMIT;
3: ACCESS THRES HI; ACCESS THRES LO;
4: for region in : Region Trackers do
5: # Identify migration candidates:
6: if region.accesses ≥ ACCESS THRES HI then
7: best location ← random(region.sharers)
8: if count(region.sharers) ≥ 8 then
9: best location ← memory pool

10: end if
11: if best location ̸= curr location then
12: if region not ping-ponging∗ then
13: # Identify eviction candidate:
14: if no space in best location then
15: for victim region in : Region Trackers do
16: if victim region.location = best location AND

victim region.accesses ≤ ACCESS THRES LO then
17: victim ← victim region
18: BREAK; # found victim region to move
19: end if
20: end for
21: migrate victim to random(victim region.sharers)
22: end if
23: # Perform migration:
24: migrate region to best location
25: N MIGRATION++;
26: end if
27: end if
28: end if
29: if N MIGRATION ≥ MIGRATION LIMIT then
30: BREAK; # done for this migration phase
31: end if
32: end for

∗We consider a region ping-ponging if it has migrated for more than a
quarter of the current phase number.

3) Migration: After the regions to be migrated have been
identified, they must be moved to the target destination and
page mappings must be updated, which involves page table
updates and costly TLB shootdowns. Using conventional TLB
shootdowns requires an inter-processor interrupt from the core
initiating the migration to every other core in the system, for
every page migrated. Cores receiving TLB shootdown incur
several thousand cycles just to enter kernel mode, even when
the TLB entry being shot down is not present in the receiving
core’s TLB [64]. This overhead gets prohibitive as we increase
the number of pages migrated and the system’s core count.

To maximize STARNUMA’s potential, it is necessary to
address the TLB shootdown overhead with a scalable mecha-
nism. Default software-based TLB shootdowns involve costly
inter-processor interrupts and execution of kernel handlers,
incurring an overhead of thousands of cycles per shootdown,

potentially on every core of the system. We therefore adopt
hardware support from prior work [64], which introduces a
shared TLB directory that allows TLB shootdowns to be sent
to only the necessary cores that actually cache a translation of
the migrating page in their TLB. Our adopted design [64] also
includes minimal core extensions to allow handling TLB entry
invalidations entirely in hardware, without OS intervention.
The core in charge of orchestrating the migration still incurs
the associated overheads of initiating TLB shootdowns and
waiting for their completion. Other proposals that drastically
improve TLB shootdown scalability via hardware support or
batching [8] could also be applicable.

4) Region Sizing: Memory region sizing is an important
design knob that dictates several system aspects: (i) the size of
the metadata region; (ii) the time required to scan the metadata
region (Algorithm 1); and (iii) the hotness tracking precision,
which affects the performed migrations’ quality. A smaller
region benefits (iii) at the cost of higher overheads for (i)
and (ii). Assuming a target full-scale system with 16TB of
memory and a region size of 512KB, the metadata region
comprises 32 million tracker entries. For a 16-socket system
and T16, the metadata region is 128MB. At that size, we profile
Algorithm 1’s runtime and find a total min/max runtime of
64/320 million cycles, depending on the latency of accessing
the metadata memory region. This cost falls well within the
period of migration decisions in STARNUMA, which is at
least one billion cycles (more details in §IV-C).

IV. EVALUATION METHODOLOGY

We evaluate the baseline system and STARNUMA in simu-
lation. To make simulations of the target system scale and nec-
essary simulated runtime feasible, we construct a novel evalu-
ation methodology by employing a multi-step sampling-based
approach (§IV-A) and mixed modality simulation (§IV-B).
The latter technique entails modeling sockets of the evaluated
system at two different levels of detail; hence we differentiate
between “detailed” and “light” sockets.

A. Multi-Step Sampling-Based Simulation

Evaluating multi-socket workloads long enough to capture
several page monitoring and migration intervals requires cap-
turing tens of billions of instructions per core. Simulating at
such scale and at cycle level requires prohibitive runtimes and
resources. To address this challenge, we tailor a sampling-
based approach inspired by the SMARTS methodology [65] to
the inherent characteristics of our target system, to effectively
capture the effects of data placement and migrations.

Fig. 6 shows an overview of the three steps comprising our
sampling-based simulation. In step A, we collect instruction
and memory traces of our target workloads on real hardware.
Step B feeds the memory traces into a memory trace simulator,
which makes data migration decisions at time intervals typical
of modern systems. Step C simulates each of these intervals
along with its associated data movement decisions at cycle
level. The three steps are detailed next.
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Fig. 6: Evaluation methodology flow for a workload that
executes 11 billion instructions per core.

1) Step A – Instruction and Memory Access Tracing:
We deploy the target workload on a real machine and trace
each application thread’s execution. In the same multi-threaded
program run, the tracer records instruction traces for the
threads that will be simulated on the detailed socket’s cores,
and, in separate files, the memory accesses of all threads
(including those mapped to the “light” sockets), each tagged
with its corresponding dynamic instruction count. The memory
traces are processed in step B by the trace simulator to inform
migration decisions, and are also used in step C to generate
the memory access traffic of light sockets during timing
simulation. We evaluate a 16-socket system with scaled-down
4-core sockets, hence we trace 64-thread program runs.

Our tracer combines ChampSim’s tracer [1] and an existing
Memory Access tracer [23], both based on Intel Pintool [42].
We record memory traces at one billion instruction intervals,
which we refer to as a phase. We also record the first 100
million instructions of each phase, as shown in Fig. 6(A). All
instruction counts mentioned throughout §IV are per thread.

2) Step B – Memory Trace Simulation: This step processes
only the memory traces to make per-phase data migration
decisions according to the implemented page monitoring and
migration policy, as later described in §IV-C. The output of
this trace-based simulation is a set of checkpoints containing
the page-to-socket mapping at the end of each phase as well as
a list of migrations that should occur in the upcoming phase.
Each checkpoint is used to initiate a timing simulation (step
C). The memory state at the start of phase PN is the result of
cumulative migration decisions of the preceding N-1 phases,
and the Nth checkpoint indicates the set of migrations that
must be modeled during phase PN’s simulation.

3) Step C – Timing Simulation: Our timing simulation
model is based on ChampSim [1]. We model a 16-socket
system by employing §IV-B’s mixed-modality approach. The
simulation comprises N parallel timing simulations, one per
generated checkpoint P1..N . The inputs of each timing simu-
lation are the phase’s corresponding memory and instruction

Interconnect Module
topology, routing, congestion,

link types (UPI, NUMALink, CXL), bandwidth, latency

...

Memory Traffic

Socket 0
OoO
Core

Socket 1
Light
Core

Socket 15

S0
Mem

S1
Mem

CXL Pool
Mem

S15
Mem

IPC feedback controls memory request injection rate of light sockets

Fig. 7: Overview of mixed-modality simulation.

traces collected in step A, and memory map and migration
decisions generated in step B (as shown in Fig. 6(C) for P1).

We use 5–10 checkpoints per workload, a billion instruc-
tions apart, and simulate 100 million instructions (per thread)
at each checkpoint, for a total of 32–64 billion simulated
instructions per workload (of which 2–4 billion are executed
on detailed cores). Each timing simulation is primed with
a warm-up phase long enough to populate each socket’s
LLC; we find 10–20 million instructions sufficient for all our
workloads. A workload’s reported statistics are derived by
aggregating results across the simulation of all its checkpoints.

B. Mixed-Modality Simulation

Simulating an entire multi-socket system at cycle level
remains impractical even with a sampling-based approach.
We therefore scale down the socket size, i.e., the number of
simulated cores per socket, as shown in Fig. 7. Additionally,
we simulate one socket in full microarchitectural detail and
the remaining sockets as simpler endpoints (“light” sockets).

Each light core injects its own unique memory trace col-
lected in step A (§IV-A1) at an injection rate regulated by
using the measured IPC of the socket modeled in detail, as-
suming all threads of the same workload achieve, on average,
similar IPC. Each light socket features an LLC-sized cache to
support coherence modeling and filter accesses to memory, as
well as a detailed memory controller model to service memory
requests that target its memory range, while accurately captur-
ing performance effects of memory scheduling and contention.

An interconnect simulation module between the LLC and
the memory controller of each processor models the inter-
socket topology, along with its associated link latencies and
bandwidth limitations, thus capturing contention/queuing ef-
fects. Upon a new memory access request, the destination
socket is determined by looking up the page map input
generated by step B. The interconnect module then determines
the sequence of links the request must traverse, based on its
source and destination socket. After traversing the intercon-
nect, the request either enters the destination socket’s memory
controller queue, or triggers coherence events as needed.

C. Migration Overhead Modeling

We model §III-D’s migration mechanism using 512KB
regions (i.e., 128 4KB pages per region). We evaluate STAR-
NUMA for T16 and T0. We find an effective HI threshold
for T16 to be 20K∼400K region accesses. Thus, we start
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with a HI threshold of 20K and dynamically adjust it in
every migration phase as a simple function of page count
exceeding the threshold relative to the set migration limit.
We experiment with 0 to 256K 4KB pages as Algorithm 1’s
per-phase migration limit, choosing the best-performing limit
for each workload-system combination. Similarly, the eviction
(LO) threshold starts at 1K and is adjusted dynamically (up
to 10K in our experiments). T0 uses a fixed HI threshold of
16 (i.e., only consider regions touched by all sockets).

Since we provision hardware support for page access mon-
itoring and TLB shootdowns, most of the overheads that are
typically associated with the OS are offloaded to hardware,
which also facilitates the use of userspace simulation for ac-
curate performance evaluation. The only overhead component
remaining in the OS is the metadata region scanning and
page table updates. Given the work required per migration
period, one dedicated core is sufficient (see §III-D4), and is
a negligible overhead for a system of our target scale (e.g.,
0.2% for a 16-socket system with 448 cores—see §IV-D).
As we adopt hardware-supported TLB shootdowns, victim
cores do not incur expensive OS-driven TLB shootdown cost;
the migration-initiating core incurs a 3k-cycle cost per page
migration [64]. TLB shootdowns still invalidate TLB entries
as needed and TLB misses trigger page walks.

We model the additional memory traffic required for tracker
updates, as well as the inter-socket data movement triggered
from migration decisions. While a page’s migration is in flight,
all memory accesses to that page are stalled until the migration
completes. Initial page placement is determined using a first-
touch policy. At each migration phase, a list of pages to be mi-
grated is determined based on Algorithm 1. While the entirety
of these migrations is performed in the trace simulation (step
B—§IV-A2), cycle-level timing simulation (step C—§IV-A3)
only covers the first 100 million instructions of each billion-
instruction phase. Hence, only the first 10% migrations of each
phase are modeled during timing simulation.
Baseline System Migration: Our migration policy is tailored
to primarily identify good candidates for pool placement. To
highlight the significance of the pool as a new building block
for multi-socket systems rather than the specific migration
policy implemented, we favor the baseline by assuming zero-
cost per-socket knowledge of all accesses to every 4KB page
at each migration interval. After zero-cost migration decisions
based on complete page access knowledge are made, the
migration cost itself is modeled as in STARNUMA.

D. System Configurations

Table I summarizes the key parameters of our target full-
scale 16-socket system, modeled after an HPE Superdome
Flex configuration [31]. To make simulation practical, we scale
down the system to four cores per socket, adjusting the rest of
the system’s parameters accordingly. The number of memory
channels on each socket and the pool (thus their capacity and
bandwidth), as well as the bandwidth of the UPI, NUMA,
and CXL links are commensurately scaled down. Table II
summarizes the scaled-down simulation parameters.

TABLE I: System parameters of full-scale baseline 16-socket
system and STARNUMA. See the system layout in Fig. 1.

CPU socket 28 OoO cores, 2.4GHz, 4-wide, 256-entry ROB

L1
32KB L1-I & L1-D, 8-way,
64B blocks, 4-cycle access

L2 1 MB, 16-way, 14-cycle access

LLC
2MB/core, 16-way, 30-cycle access,
shared (per socket) & non-inclusive

Memory
DDR5-4800, 32 GB per channel,
6 channels per socket
4 chassis × 4 sockets per chassis (see §II-A)

Network Hierarchical inter-socket interconnect (see Fig. 1)
Topology ▷ Intra-chassis: all-to-all socket-to-socket UPI

▷ Inter-chassis: all-to-all chassis-to-chassis NUMALink
Link Bandwidth 20.8GB/s per UPI link (4 links per socket)
(per direction) 13GB/s per NUMALink (12 links per chassis)
Remote Access
Latency Penalty

50ns (within chassis group), 280ns (inter-chassis)
(breakdown in §II-A)

Memory pool
Memory DDR5-4800, 48 GB per channel, 16 channels

Pool Bandwidth x8 CXL port per socket (direct per-socket link)
⇒ 64GB/s raw (40GB/s effective) per direction

Latency Penalty 100ns (see §II-C)

TABLE II: System parameters used for simulation on
ChampSim. The table only shows parameters that differ from
the full-scale system (Table I).

CPU socket 4 cores, core microarchitecture unchanged
Memory 1 DDR5-4800 channel per socket

Link Bandwidth 3GB/s per direction for each UPI link or NUMALink
Memory pool

Memory 2 DDR5-4800 channels
Pool Bandwidth 6GB/s per direction supported from each socket

As described in §III-A, we consider a memory pool ca-
pacity equivalent to a four-socket chassis’ aggregate memory.
However, the memory footprints of our workload instances are
naturally dwarfed by the footprint of real 16-socket deploy-
ments. Hence, instead of imposing an absolute pool capacity
limit, we limit the amount of data allowable on the pool as
20% of the memory used by each workload.

E. Workloads

We use workloads from four application families:
• Graph Analytics: We deploy four graph analytics workloads

from the widely used GAP benchmark suite [11]: Breadth-
First Search (BFS), Connected Components (CC), Single-
Source Shortest Paths (SSSP), and Triangle Counting (TC),
all operating on a Kronecker graph with 228 vertices and an
average degree of 32, requiring ∼50GB of memory.

• HPC Workloads: We deploy two genomics analysis
pipelines from GenomicsBench [57]: Full-Text Index in
Minute Space (FMI) and Partial-Order Alignment (POA).
The memory footprint of these workloads is ∼10GB.

• Data Serving: We use the Masstree high-performance Key-
Value store [44] with a 100GB dataset, uniform key popu-
larity distribution, and 50/50 read/write ratio.
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TABLE III: Workload summary. Numbers in parentheses show
the per-core IPC when the workload runs on a single socket.

Wkld IPC LLC
MPKI Wkld IPC LLC

MPKI
SSSP 0.06 (0.56) 73 Masstree 0.18 (0.89) 15
BFS 0.10 (0.69) 32 TPCC 0.41 (1.12) 4.8
CC 0.14 (0.78) 17 FMI 0.61 (1.45) 2.6
TC 0.40 (1.7) 3.2 POA 0.68 (0.68) 33

• Transaction Processing: We deploy TPCC with 64 ware-
houses on the Silo in-memory DBMS [52], [61]. TPCC’s
resulting memory footprint is 12GB.
Table III summarizes our workloads’ per-core IPC and LLC

MPKI as measured on the baseline 16-socket system. Numbers
in parentheses show the per-core IPC achieved by single-
socket execution with local memory only. The 2–10× IPC
gap between single- and 16-socket execution illustrates the
performance impact of NUMA effects.

V. EVALUATION RESULTS

A. Main Results

We start by comparing STARNUMA with a T16 region mon-
itoring mechanism against the baseline multi-socket system
that uses perfect page access knowledge (see §IV-C). Fig. 8c
shows the breakdown of memory accesses according to their
type. Fig. 8b shows the measured AMAT, decomposed into
unloaded latency and delay from contention at inter-socket and
CXL links. Unloaded Latency is the expected AMAT without
any contention, and the fraction of the measured latency it cor-
responds to is analytically derived from Fig. 8c’s breakdown as
∑(% access type) × (access type′s unloaded latency) across
all access types: local (80ns), 1-hop (130ns), 2-hop (360ns),
pool accesses (180ns), and coherence-triggered block transfers
(BT). For BT, we account 413ns for socket-to-socket trans-
fers (BT Socket) and 280ns for block transfers via the pool
(BT Pool), derived as the required network traversal latency
in each case (see §III-C) plus 80ns for memory access and
directory lookup. Contention Delay in Fig. 8b is the difference
between the measured AMAT and our computed unloaded
latency. Finally, Fig. 8a shows STARNUMA’s speedup over
the baseline, as a result of the achieved AMAT reduction.

STARNUMA (with T16) reduces AMAT by 48% on aver-
age, resulting in 1.54× speedup. TC and FMI are compute-
intensive with low LLC MPKI (Table III); hence, they ex-
perience only minor contention in the baseline and most of
STARNUMA’s speedup is attributed to lower-latency access
to shared data provided by the pool. In contrast, SSSP and BFS
are bandwidth-bound, with their AMAT largely determined by
contention in the baseline. STARNUMA reduces latency in
two distinct ways: (i) by directly reducing unloaded latency
(fewer hops on average); (ii) by reducing contention, which in
turn mitigates queuing delay. A big fraction of STARNUMA’s
achieved AMAT reduction stems from (ii), as STARNUMA
leverages the CXL links’ additional bandwidth to heavily
shared pages, mitigating the queuing delay for remote memory
accesses. For the remaining workloads (CC, Masstree, TPCC),
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Fig. 8: Speedup, Average Memory Access Time (AMAT), and
memory access breakdown of STARNUMA versus baseline.

the pool’s high bandwidth and low latency jointly contribute
to AMAT reduction and the resulting speedup. Lastly, POA is
completely insensitive to NUMA effects: all accesses are local,
hence no migration occurs, and no data is placed in the pool.
POA represents workloads with very localized accesses where
a simple first-touch page placement policy alone prevents all
detrimental NUMA effects.

TABLE IV: Fraction of
migrations to the pool.

Workload Migration
to pool

SSSP 80%
BFS 100%
CC 99%
TC 80%
Masstree 100%
TPCC 93%
FMI 47%
POA 0%

Coherence activity (BT) repre-
sents ∼10% of memory accesses
in most cases. Most BT in STAR-
NUMA complete via the pool path,
which is 30% faster than 3-hop
inter-socket transfers on average.
Overall, the fraction of AMAT re-
duction attributed to faster BT is
minimal. While coherence traffic
does not become a bottleneck, it is
still commonly occurring: the CXL
directory handles a coherence transaction every 100ns on aver-
age, an unsustainable frequency for software-based coherence.

Finally, we provide some additional results to underline
the significance of the pool as a new data placement option.
First, Table IV shows the fraction of migrated pages STAR-
NUMA moves to the pool. Excluding POA, the geomean of
the fraction of migrations to the pool is 83%, with several
workloads at 90% or higher, indicating that most heavily
accessed regions are also widely shared (partially a side-effect
of the large region size used). Socket-to-socket transfers are
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Fig. 9: Speedup using initial static page placement with oracu-
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Fig. 10: Speedup over baseline for different CXL latency
penalties, affecting memory pool access latency.

few also because the first-touch policy properly places private
pages from the very beginning. Second, Fig. 8a also shows the
achieved speedup with the simpler T0 mechanism. Unlike T16,
T0 cannot identify the hottest regions, but is enough to identify
highly shared regions that would benefit from pool placement,
thus capturing most of T16’s gains for a 1.35× speedup. The
rest of the evaluation uses STARNUMA with T16.

B. Comparison to Oracular Static Page Placement

To provide deeper insight on the significance of the memory
pool as a building block versus the specific migration policy
we evaluated, we also consider a static initial page placement
(i.e., no dynamic data movement at runtime) using oracular
a priori knowledge of each workload’s access pattern. Fig. 9
shows the results when such static placement is applied to
both the baseline and STARNUMA architectures, compared
against STARNUMA with dynamic migration from §V-A.

Static oracular placement slightly outperforms the dynamic
migration alternative for STARNUMA, as it eliminates mi-
gration overheads. The result indicates that sharing patterns
do not drastically change over time, hence simpler migration
support to reap STARNUMA’s benefits may be possible. Most
importantly, the baseline with static placement does not yield
any gains over the baseline with first touch placement +
dynamic migration. This result strongly underlines our key
observation that baseline NUMA systems architecturally lack
a good location for vagabond pages, highlighting STAR-
NUMA’s memory pool as a crucial new building block.

C. Impact of Memory Pool Latency

Fig. 10 evaluates STARNUMA’s sensitivity to the memory
pool access latency. In addition to default STARNUMA’s
100ns latency overhead, we consider a 190ns overhead. This
value represents the addition of an intermediate CXL switch
(§III-B), resulting in an unloaded end-to-end memory pool
access latency of 270ns—still 25% lower than a 2-hop access.
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Fig. 11: Speedup over baseline multi-socket system for system
configurations with different link bandwidth provisioning.

The increased latency is detrimental to most workloads. On
average, the higher latency overhead reduces STARNUMA’s
speedup over the baseline from 1.54× to 1.34×. TC is the
workload most affected, with a speedup drop from 1.63× to
1.11×, because its speedup almost exclusively stems from the
latency reduction afforded by STARNUMA, as seen in §V-A.

D. Impact of Bandwidth Availability

§V-A reveals that bandwidth availability critically affects the
performance of several workloads. We explore three additional
system configurations to analyze bandwidth’s impact further:
• Baseline ISO-BW: Augment the bandwidth of coherent

links by an aggregate amount matching the 640GB/s effec-
tive link bandwidth added by STARNUMA. By pro-rating
this amount based on each link’s base bandwidth, we assume
26.4GB/s UPI and 17GB/s NUMALink (per direction, up
from 20.8GB/s and 13GB/s, respectively).

• Baseline 2×BW: Augment the bandwidth of every coherent
link by 2× to evaluate the gains attainable via brute-force
bandwidth overprovisioning, without pool-afforded latency
gains. The aggregate bandwidth overprovisioning is much
higher than the additional bandwidth of STARNUMA’s 16
CXL links. The 16-socket system features a total of 68
coherent links (28 inter-chassis and 40 intra-chassis), thus
doubling their capability boosts the baseline’s aggregate
bandwidth by 1.2TB/s. Such overprovisioning is impractical,
as it also doubles processor pin requirements.

• STARNUMA Half-BW: Halve CXL link bandwidth to
20GB/s (i.e., scale down x8 CXL links to x4).
Fig. 11 shows the performance of these configurations

plus default STARNUMA from §V-A, normalized to the
baseline multi-socket system. STARNUMA still outperforms
the impractically overprovisioned Baseline 2×BW by 12% on
average. Only for the most bandwidth-bound workload, BFS,
Baseline 2×BW slightly outperforms STARNUMA, not only
because of its aggregate bandwidth superiority, but also be-
cause it utilizes its bandwidth resources more uniformly: The
baseline spreads accesses to heavily shared pages uniformly
across inter- and intra-chassis links. In contrast, STARNUMA
aggressively migrates the hottest shared pages to the pool
(Table IV), thus a high fraction of memory accesses is concen-
trated on the pool’s CXL links, which get highly contended
while inter-socket links remain highly underutilized.

Baseline ISO-BW outperforms the baseline by 1.14×, with
the highest gains being 1.4× and 1.29× for the bandwidth-
bound SSSP and BFS, respectively. Still, it trails behind
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STARNUMA by 40%. STARNUMA Half-BW still outper-
forms Baseline ISO-BW by 11% on average. Despite halving
bandwidth to the pool, STARNUMA Half-BW achieves 1.21×
speedup for SSSP, but only 2% for BFS, as it experiences the
bottleneck of all traffic to shared data concentrating on the
pool’s links, as described above. In summary, STARNUMA’s
achieved reduction in unloaded latency plays a drastic role
in reducing AMAT and improving performance. Boosting
a conventional multi-socket system’s bandwidth is neither
necessary nor sufficient to approach the performance gains
attainable via STARNUMA’s shared memory pool.

E. Impact of Memory Pool Capacity

So far we assumed a memory pool with capacity equivalent
to one chassis’ (i.e., four sockets) worth of memory, repre-
senting 20% of the system’s total memory capacity. We now
examine STARNUMA’s performance with a pool capacity
equivalent to a single socket’s. Thus, we reduce the pool’s
capacity from 20% to 1

17 of each workload’s memory footprint.
Fig. 12 shows STARNUMA’s performance sensitivity to

memory pool capacity. A 4× capacity reduction minimally
drops STARNUMA’s average speedup from 1.54× to 1.48×.
FMI is the most affected workload, with its speedup dropping
from 1.22× to 1.05×. BFS and SSSP are more bandwidth-
intensive than latency-sensitive compared to FMI (Fig. 8b).
Thus, with a smaller pool, they benefit from leveraging both
the pool’s extra bandwidth, and the inter-socket links (which
remain underutilized when the pool is larger). Overall, most
workloads are rather insensitive to the pool size, indicating
that a high fraction of remote accesses targets a small fraction
of pages, the hottest of which still fit in the pool.

F. Page Replication versus Memory Pooling

An alternative approach to ameliorate costly remote accesses
to vagabond pages is to replicate them across sockets. Page
replication introduces the major overhead of maintaining co-
herence across page replicas in software. Besides the added
software complexity, heavy read-write activity on shared pages
can incur prohibitive performance overhead. Indeed, we ob-
served high frequency of coherence transactions handled by
the memory pool directory in our workloads (see §V-A).
Furthermore, read-only shared pages are good replication
candidates only when memory capacity waste is not a concern.

Fig. 2 in §II-B showed the page sharing degree and access
distributions for BFS. BFS is representative of workloads
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Fig. 13: Access pattern characteristics for TC.

where most accesses target shared read-write pages, resulting
in a coherence action handled by the pool’s directory every
50 cycles on average. In such cases, replication coupled with
software coherence would incur prohibitive overheads.

Fig. 13 shows the same distributions for one more workload,
TC, as it represents an entirely different workload behavior
class where most memory accesses are to shared read-only
pages. However, 60%/80% of the dataset is touched by 16/8+
sockets, respectively, therefore, while coherence-free, repli-
cation can cause excessive memory capacity pressure. The
remaining workloads fall in between BFS and TC in page
access behavior.

In summary, replication can be effective for read-only
vagabond pages, when these pages also account for a high
fraction of accesses and a low fraction of the memory foot-
print. Ultimately, page replication and STARNUMA can be
jointly leveraged as complementary techniques.

G. Impact of Evaluation Methodology
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Fig. 14: STARNUMA speedup
over baseline, using alternative
simulation configurations.

Due to the system size
and runtime our evaluation
must cover, we devised a
novel simulation methodol-
ogy founded on prior best
practices. To reinforce our
results’ robustness, we re-
peat §V-A’s experiments for
a subset of our workloads
with two additional Simula-
tion Configurations (SC), to
compare against §IV’s con-
figuration SC1 used throughput §V). Thus, we compare
three simulation configurations. The default [SC1]: 100M
instructions simulated per core every 1B-instruction phase;
[SC2]: simulating 3× more detailed instructions (300M per
1B-instruction phase); and [SC3]: doubling system scale (8
cores per socket, 2×memory/interconnect bandwidth, and new
traces for the doubled core count: 8×16 = 128 threads).

Fig. 14 shows that while results are, unsurprisingly, not
quantitatively identical, they are very close, and qualitatively
all in agreement. For TC, SC2 speedup remains identical to
SC1, and SC3 speedup is 4% higher. FMI’s speedup also
remains consistent, with SC2 and SC3 within 5% of SC1.
BFS’s speedup further improves over SC1’s 1.7×, to 2× and
1.8× respectively. Overall, even larger and costlier simulation
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configurations, SC2 and SC3, confirm STARNUMA’s poten-
tial, yielding similar or better results.

VI. RELATED WORK

NUMA systems and data placement. NUMA systems date
back to the early 90s, which witnessed heavy research activity
around the design of large multiprocessor Distributed Shared
Memory (DSM) systems. DSMs aimed to enable fast access
to large physically distributed but logically shared memory,
and are coarsely classified into software- and hardware-based.
Software DSMs typically rely on the OS or other runtime
system support to “fault in” remote memory accesses, at
page [9], [15], [39] or finer [54], [55] granularity. Soft-
ware’s responsibility to maintain coherence by propagating
data updates incurs high performance overheads, even when
employing relaxed memory models. Modern software DSMs
over fast RDMA networks [25], [28], [62] alleviate data
movement overheads, but still encounter software bottlenecks
and exacerbate programming complexity.

Hardware DSMs, or cache-coherent NUMA (ccNUMA)
systems, employ hardware to enable fully transparent cache-
coherent physical memory sharing. Modern multi-socket
shared memory architectures descend from ccNUMA, with
prominent representatives from both academia [5], [35], [37],
[43], [51] and industry [49]. While hardware transparently
identifies the location of each accessed cache block and per-
forms the necessary data movements, frequent remote memory
accesses degrade performance. Hence, data placement, which
is typically governed at page granularity in software by the
OS, plays a critical role in a ccNUMA system’s performance.

Due to its impact on performance, page placement has been
heavily investigated with the advent of ccNUMA systems and
is still an active research topic for multi-socket machines, as
well as heterogeneous and tiered memory systems comprising
multiple different memories with various characteristics and
constraints. Early ccNUMA work demonstrated that judicious
data placement and migration can dramatically impact perfor-
mance [13], [14], [36], [45], [63]. A large body of recent work
focuses on software mechanisms that optimize data placement
and movement in NUMA and/or tiered memory systems of
various characteristics [6], [21], [34], [46], [48], [58]. Doudali
et al. highlight the importance of selected page migration
frequency in hybrid memory systems [22] and propose a
mechanism that leverages machine learning to dynamically
tune it [23]. AutoTiering [34] highlights the significance of
tuning page placement and migration mechanisms to the
precise characteristics of the memory system they operate on.

An orthogonal technique to increase local memory accesses
and mitigate NUMA effects is selective data replication, such
as replication of read-only pages [63]. R-NUMA’s hardware
FSM dynamically identifies opportunities for selective repli-
cation of individual cache blocks, even within read-write
pages [26]. Mitosis [4] and NrOS [12] offer targeted NUMA-
effect mitigations by extending the OS to selectively replicate
page tables and kernel state across sockets, while Dvé [50]
proposes hardware that performs cross-socket replication to

improve performance and resilience. We discussed drawbacks
of replication in §V-F.

CXL-based memory systems. STARNUMA’s key contribu-
tion is the introduction of a new building block for NUMA
systems, to facilitate placement of vagabond pages for long-
latency NUMA latency mitigation. While not fundamentally
tied to CXL, we argue for a CXL-based implementation due to
the technology’s versatility and open standard that is gaining
widespread industry adoption. As CXL has the potential of
being transformative in many dimensions of memory system
design, the technology has garnered significant research at-
tention. Sun et al. characterize first-generation CXL memory
devices and propose guidelines for effective use in future
systems [58]. Cho et al. leverage CXL’s bandwidth superiority
over DDR to redesign the memory system of high-throughput
servers [16]. DirectCXL is one of the first system prototypes
enabling CXL-based memory disaggregation, demonstrating
superiority over prior equivalent RDMA-based solutions [27].
Both DirectCXL and Pond [38] demonstrate use cases of
sharing a pool of CXL-attached memory across multiple hosts.
Both systems focus on scale-out architectures and flexible
partitioning, rather than active sharing of the memory pool
across hosts. In contrast, STARNUMA demonstrates the utility
of a memory pool in the context of a scale-up architecture,
where all memory is actively shared by all sockets.

VII. CONCLUSION

In this paper, we identified that workloads with irregular
memory access patterns pose a challenge in large multi-socket
systems, as they exhibit a large fraction of vagabond pages—
i.e., pages without a natural home socket. As a result, even in-
telligent data placement and migration techniques cannot elim-
inate costly remote memory accesses, which inflate AMAT
and hurt performance. To alleviate this problem, we introduce
STARNUMA, a NUMA architecture augmented with the new
architectural block of a memory pool that is directly accessible
from every socket. Such a memory pool, accessible 2× faster
than the worst-case NUMA latency, can be implemented by
leveraging the emerging CXL interconnect technology, making
STARNUMA a practical design. By placing vagabond pages
in the memory pool, STARNUMA significantly reduces the
fraction of long-latency 2-hop memory accesses, reducing
the AMAT of graph, HPC, data serving, and transactional
workloads by 48% and yielding performance gains of up to
2.17×, and 1.54× on average over a typical 16-socket system.
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