
Patching up Network Data Leaks with Sweeper
Marina Vemmou

School of Computer Science
Georgia Institute of Technology

Atlanta, USA
mvemmou@gatech.edu

Albert Cho
School of Electrical and Computer Engineering

Georgia Institute of Technology
Atlanta, USA

acho44@gatech.edu

Alexandros Daglis
School of Computer Science

Georgia Institute of Technology
Atlanta, USA

alexandros.daglis@cc.gatech.edu

Abstract—Datacenters have witnessed a staggering evolution
in networking technologies, driven by insatiable application de-
mands for larger datasets and inter-server data transfers. Modern
NICs can already handle 100s of Gbps of traffic, a bandwidth
capability equivalent to several memory channels. Direct Cache
Access mechanisms like DDIO that contain network traffic inside
the CPU’s caches are therefore essential to effectively handle
growing network traffic rates. However, a growing body of work
reveals instances of a critical DDIO weakness known as “leaky
DMA”, occurring when a significant fraction of network traffic
leaks from the CPU’s caches to memory. We find that such
network data leaks cap the network bandwidth a server can
effectively utilize.

We identify that a major culprit for such network data leaks
are evictions of already consumed dirty network buffers. Our
key insight is that buffers already consumed by the application
typically need not be written back to memory, as their next reuse
will be a full overwrite with new network data by the NIC. We
introduce Sweeper, a hardware extension and API that allows
applications to mark such consumed network buffers. Hardware
then skips writing marked buffers back to memory, drastically
reducing memory bandwidth consumption and mitigating the
performance penalty of network data leaks. Sweeper boosts a
24-core server’s peak sustainable network bandwidth by up to
2.6× as compared to DDIO-based configurations.

I. INTRODUCTION

The rapid growth of data and application demands is
driving rapidly increasing networking demands in modern
datacenters. To illustrate, Google’s internal datacenter network
traffic reportedly doubled every 15 months over six years [50].
Networking latency is also a critical figure of merit, as the
trend for fine-grained software decomposition places inter-
server communication latency on the critical path [14]. The net
result is that datacenter operators have been rapidly evolving
the entire networking stack, ranging from bespoke fabrics and
protocol stacks [15], [19], [20], [39], [50] to specialized hard-
ware endpoints for accelerated networking functionality [7],
[13], [55]. Unsurprisingly, NIC vendors are quickly ramping
up their bandwidth offerings, with 400Gbps devices already
commercially available [43]. From a server architecture design
perspective, such data rates represent unprecedented network-
associated data movement, raising implications on the memory
system design. To put numbers into perspective, a 400Gbps
endpoint corresponds to the bandwidth capacity of several
DDR4 memory channels.

The implications of growing network bandwidth on a
server’s memory hierarchy performance necessitates revisit-

ing the conventional DMA-based approach that moves data
between the NIC and CPU through DRAM. Therefore, tech-
nologies like Intel’s DDIO [26], which allow the NIC to
directly move data through the CPU’s last-level cache (LLC),
are already becoming standard. Although a step in the right
direction, recent studies have identified deficiencies in DDIO’s
data movement policies when heavily loaded networked sys-
tems start leaking network data from the LLC to memory at
considerable rates [12], [57], [58]. We study this problem and
find that such leaks can significantly hamper the maximum
network rate a server can effectively sustain, degrading peak
performance by up to 2.65×.

Prior work has proposed a range of approaches to ad-
dress DDIO limitations. ResQ [57] and NeBuLa [53] pro-
pose limiting the aggregate capacity of network buffers to
improve LLC residency. However, shallow versus deep buffer
provisioning presents a tradeoff. While effective in certain
scenarios, provisioning shallow buffers is not a panacea, as
it reduces resiliency to packet arrival bursts that can result
in undesirable packet drops, which could be avoided with
deeper buffers. In addition, minimum buffer depth provision-
ing is driven by rapidly increasing NIC line rates [12]. Other
approaches propose dynamic resizing of the LLC capacity
allocated to DDIO [58], placing network data in higher-level
caches in addition to the LLC [1], [53], or selective cache
bypassing [12]. While many of these mechanisms mitigate
performance problems by delaying the onset of network data
leaks, they do not fundamentally tackle the leaks’ root cause.

In this work, we study the origin and classify network data
leaks in systems with highly provisioned network capabilities.
We corroborate prior findings that memory bandwidth interfer-
ence is the main culprit of performance degradation [53] and
identify that dirty but already consumed network buffers that
get eventually evicted from the LLC are the main contributor
of such interference. This critical observation suggests that the
crux of the problem is writebacks of useless data that can be
omitted without violating correctness, because the subsequent
reuse of a consumed network buffer is a complete overwrite
with new network data by the NIC.

We propose Sweeper, a hardware extension in the cache
hierarchy that mitigates the performance implications of net-
work data leaks, by drastically mitigating memory bandwidth
interference caused by network data churn between the LLC
and memory. Sweeper skips writing consumed network buffers

back to memory when it is safe to do so. A new instruction
and API allows software to indicate when the contents of
a network buffer instance have been conclusively used—a
concept very similar to the well-known free() operation
used in high-level languages like C, that instructs reclamation
of allocated memory. The cache hierarchy then ensures that
cache blocks corresponding to such marked buffers are not
needlessly written back to memory, thus conserving precious
memory bandwidth resources. Our evaluation on a set of
scenarios with heavy networking activity demonstrate that
Sweeper conserves up to 1.3× of memory bandwidth, allowing
a server to utilize a 2.6× higher peak network throughput
compared to using DDIO alone.

We make the following contributions:
• We study the performance implications of network data

leaks in server architectures with highly provisioned network
bandwidth and find that dirty evictions of already consumed
network buffers significantly contribute to increased mem-
ory bandwidth utilization and overall system performance
degradation.

• We identify that writebacks of such consumed network
buffers are wasteful and can typically be avoided for mem-
ory bandwidth savings. Based on that insight, we propose
Sweeper, a hardware extension and API complementary to
DDIO, that allows the cache hierarchy to avoid wasteful
writebacks, after the application explicitly marks consumed
network buffers.

• Our evaluation of scenarios with heavy networking activity
shows that Sweeper improves memory bandwidth utilization
efficiency by up to 1.3×, yielding throughput improvements
of up to 2.6× over plain DDIO configurations.

• Sweeper breaks the current tradeoff between shallow buffer
provisioning to reduce performance implications due to their
large footprint and deep buffer provisioning for resilience
to packet drops, by removing the performance bottlenecks
associated with the latter.

Paper outline: §II provides a brief background on DDIO and
the problem of network data leaks from the LLC to memory.
§III briefly introduces the methodology we use throughout the
paper, first to trace the problem of network data leaks to its
sources in §IV’s study and later to comprehensively evaluate
Sweeper. §V introduces Sweeper’s design. We evaluate key
parameters affecting the impact of network data leaks and
Sweeper’s efficacy in eliminating such leaks in §VI. Finally,
we discuss related work in §VII and conclude in §VIII.

II. BACKGROUND

A. Data Direct I/O

Data movement between host memory and I/O devices,
including Network Interface Controllers (NICs), has histori-
cally been handled by Direct Memory Access (DMA). DMA
directly transfers data between the device and the host’s
main memory, bypassing the cache hierarchy and invalidating
any cached blocks that fall into the range of the accessed
address range. Although traditional DMA functionality has

been sufficient for all forms of I/O for decades, it is becoming
a bottleneck for modern high-bandwidth I/O devices, such as
NVMe storage and NICs handling 100Gbps+ data rates. Net-
work capabilities in particular have been ramping up rapidly,
fueled by the growing needs of modern applications handling
massive datasets, distributed across the memory of thousands
of servers. Commercially available NICs already offer up to
400Gbps full-duplex data movement [43], equivalent to the
capability of four to eight (depending on their frequency)
DDR4 DRAM channels. Evidently, using traditional DMA to
pump such volumes of I/O traffic through memory can quickly
become a severe performance bottleneck.

To address the challenges stemming from the shrinking gap
between I/O and memory bandwidth offerings, Data Direct
I/O (DDIO) technology allows I/O devices to avoid involving
main memory in their data transfers by using the multi-
MB Last-Level Cache (LLC) of modern CPUs for network
data placement. In this work, we specifically focus on the
implications of DDIO on systems with high-bandwidth NICs
and the data movement behavior on the ingress path (i.e.,
arriving packets from the network to the CPU host). The key
difference between the ingress paths of traditional DMA and
DDIO is that the latter directly writes incoming network traffic
in the LLC. If the target address range’s corresponding cache
blocks are not already present in the LLC, they are directly
write-allocated, without triggering a memory access. To pre-
vent write-allocated incoming network data from thrashing
the entire LLC, DDIO by default uses two LLC ways for
NICs, with model-specific registers allowing the number to be
configured [2]. DDIO technology thus achieves two benefits.
First, it reduces access latency to network data for both the
CPU and NIC to that of an LLC access instead of a memory
access. Second, it reduces memory bandwidth pressure, as
much (or all) of the network data movement is absorbed by the
SRAM-based LLC’s ample bandwidth, instead of consuming
precious DRAM bandwidth resources. For further details on
DDIO’s operation, we refer the interested reader to prior work
that extensively analyzes DDIO technology [2], [26].

Note that Intel’s DDIO technology is a specific instance
of the general approach of Direct Cache Access (DCA) [23]
for network data, and other CPU vendors implement their
own version of DCA (e.g., ARM’s Cache Stashing [4]). All
such DCA mechanisms are fundamentally similar. Although
we use the term “DDIO” throughout this paper, our study is
not tied to any artifacts of the specific implementation and
our observations and proposed solution apply to all alternative
mechanisms in the DCA family.

B. Network Data Movement Overheads

DDIO has proven to be a powerful tool in the efforts to boost
the performance of network-heavy applications, but is not
without caveats. Effective use of DDIO relies on successfully
containing the majority of network traffic in a subset of
the LLC, which is a shared resource of finite capacity. A
plethora of prior work has identified scenarios that have been
problematic for DDIO, resulting in severely underperforming

2

systems [12], [16], [40], [44], [53], [57], [58]. Performance
problems have been broadly associated with failure to contain
network data within the LLC, resulting in significant rates of
data spilling to memory. The umbrella term “leaky DMA”,
coined by Tootoonchian et al. [57], has been broadly used to
describe such problematic scenarios. Some prior work uses
the term “leaky DMA” to specifically refer to network buffers
that have been write-allocated in the LLC by the NIC, but
were evicted to memory due to cache pressure before the
CPU picked the network data up. In this paper, we use
the term “network data leaks” to refer to all instances of
network data movement from the LLC to memory. There
are two semantically different classes of network data leaks,
which we analyze in this paper. Understanding the distinction
between these two classes is important, as they have different
performance implications and require different solutions.

The first class of data leaks is what is usually referred to
as “leaky DMA”: incoming network data that is written to the
LLC by the NIC, but is evicted to memory before the receiving
application is done processing it. We call data leaks of this
first class “premature buffer evictions”. The implications
of premature buffer evictions are two-fold. First, the CPU’s
latency to access the network data increases by a latency equal
to a memory access. That added latency cost alone is only
noticeable for the most latency-sensitive applications deployed
on the most latency-optimized architectures [41], [53]. Second,
such data leaks consume memory bandwidth, potentially even
more than a traditional DMA, as an incoming network data
block may evict another cache block to memory, get evicted
due to capacity pressure, and then be brought back again
upon a demand access from the CPU. At modern network
line rates, a considerable fraction of network traffic leaking in
that manner can represent a large fraction of a server CPU’s
total available memory bandwidth (c.f. §II-A). In turn, memory
bandwidth oversubscription can introduce significant queuing
delays, degrading overall system performance.

The second class of data leaks consists of network buffers
containing data that have been already consumed by the
application. We call data leaks of this second class “consumed
buffer evictions”. Unlike premature buffer evictions, con-
sumed buffer evictions do not introduce latency concerns.
The next time the same buffer is reused by the NIC, the
newly arrived network data will be directly write-allocated in
the LLC, without memory involvement. For the same reason,
every cache block holding a buffer written by the NIC is dirty.
Therefore, every consumed buffer eviction triggers a writeback
to memory, consuming precious memory bandwidth. A key
difference between writebacks for consumed and premature
buffer evictions is that the former correspond to data that
will never be read again. This distinction is critical, as it can
lead to solutions that are uniquely applicable to performance
problems caused by premature buffer evictions, as is the case
for Sweeper.

In §IV, we study problematic scenarios with heavy network
data leaks and distinguish between premature and consumed
buffer evictions. Although we find that premature buffer

evictions are present in extreme scenarios, the first bottleneck
encountered is consumed buffer evictions.

C. Network Data Leaks in Userspace Network Stacks

A key parameter affecting the advent and severity of net-
work data leaks is the aggregate number of receive (RX)
buffers used by the network stack: the more the used buffers,
the larger their memory footprint, and the more challenging
it is to keep them LLC-resident. Based on this observation,
ResQ proposes limiting the number of provisioned buffers, so
that they can comfortably reside in the LLC DDIO ways [57].
NeBuLa proposes a specialized architecture for services with
very stringent response latency SLOs, featuring a hardware
mechanism that dynamically monitors the queue depth of
pending incoming requests. When queuing conditions are
heavy enough to result in application SLO violations, NeBuLa
explicitly drops new incoming packets, thus implicitly tackling
buffer bloat performance concerns [53]. While limiting the
number of receive buffers works well in several cases, it is
not a panacea, as it incurs a toll: shallow buffering is less
resilient to packet arrival bursts and can lead to undesirable
packet drops [12].

Userspace network stacks like a DPDK dataplane allo-
cate a receive ring buffer per core, resulting in buffer sizes
comparable to modern LLC capacities. To illustrate, with a
default ring buffer size of 1024 entries for typical MTU-sized
(1.5KB) packets and 20 cores, the total size of network buffers
is ∼30MB. For networked systems implementing a Virtual
Interface Architecture (VIA) [10], like RDMA, the buffer
bloat can be even more pronounced, as high-performance,
synchronization-free reliable communication requires allocat-
ing dedicated receive buffers not only per core, but also
per communicating endpoint [9], [31], [42], [51]. Thus, it is
possible for the aggregate size of allocated receive buffers in
such cases to be in the range of 100MB, exceeding the entire
LLC capacity of even high-end servers.

III. METHODOLOGY

We briefly introduce the most critical methodological as-
pects of the system used throughout this paper’s studies
and defer details to Appendix A. We employ microarchi-
tectural simulation to model a server CPU with 24 cores,
a shared 36MB 12-way LLC, and four memory chan-
nels. As we will demonstrate, memory bandwidth avail-
ability significantly affects performance degradation due to
network data leaks. Our memory setup corresponds to a
medium-range memory-bandwidth-per-core provisioning en-
countered in modern server CPUs. Current commercial of-
ferings range from one DDR4 channel per eight cores (e.g.,
AMD EPYC [22]) to one per four cores (e.g., Xeon Gold
6342 [29]). We base our initial study in §IV on such medium
provisioning and demonstrate the generality of our findings as
a function of memory bandwidth availability in §VI-D.

Our evaluation does not cap the available network band-
width. Instead, we investigate the peak network bandwidth
the CPU can effectively handle in each system configuration,

3

and demonstrate that network data leaks directly affect this
attainable peak. Without loss of generality in our study’s
observations, we model a network architecture similar to
Scale-Out NUMA [41], which features an integrated NIC and
implements a lightweight userspace and hardware-terminated
network protocol that uses memory-mapped Queue Pairs (QPs)
similar to RDMA. Our evaluation varies the total size of
allocated buffers, as it is a critical parameter affecting the
network-buffer-related pressure in the LLC and, by extension,
the occurrence of network buffer leaks (c.f., §II-C). We report
that size for each experiment.
Baseline configurations. We compare three baseline packet
injection configurations:
• DMA: Conventional Direct Memory Access I/O that places

incoming packets directly into DRAM.
• DDIO: LLC injection of incoming packets, to a specified

number of ways (c.f., §II-A).
• Ideal-DDIO: An unrealistic system with a separate infinite

LLC only for incoming network packets. The CPU always
finds network packets in the LLC and there is zero memory
traffic due to network data movements.

Workloads. We use two network-intensive applications: the
high-performance MICA key-value store (KVS) and an L3 for-
warder network function, both ported to the Scale-Out NUMA
transport: MICA from its RDMA-based version (HERD [30])
and L3 forwarder adapted from its stock DPDK version [25].
We additionally employ the X-Mem tool [18] to represent col-
located applications competing for LLC capacity and memory
bandwidth.

IV. TRACING THE LEAK TO ITS SOURCE

In this section, we study scenarios of heavy networking
load where the problem of network data leaks occurs. We
distinguish between the two potential sources of such leaks
introduced in §II-B: consumed and premature buffer evictions.
We find that consumed buffer evictions are the predominant
leak source, while leaks attributed to premature buffer evic-
tions require operation under extreme conditions, and are
therefore less prevalent.

A. Consumed Buffer Evictions

Under the ideal operation case for DDIO, all the receive
buffers fit in the DDIO ways, and data transfers from the
NIC to the CPU do not result in memory access. However, in
many realistic scenarios, the aggregate receive buffer footprint
exceeds the DDIO capacity, thus the cache blocks required
to accommodate an incoming packet may not reside in the
LLC at the time of packet arrival. A NIC write miss write-
allocates the cache block in the DDIO ways, triggering an
eviction. Such evicted cache blocks are most likely in a dirty
state compared to main memory, as most blocks in the DDIO
ways hold data written earlier by the NIC, and thus require
a memory writeback. Compared to the ideal case where no
memory trips are required, now, with high probability, every
NIC write operation adds memory bandwidth pressure with a
writeback.

Figure 1 shows the performance (in terms of throughput)
and key memory access statistics for our KVS running on
all 24 cores of our simulated server. We evaluate a write-
heavy workload with 1KB items (details in Appendix A),
resulting in commensurate network packet size, and vary the
number of allocated receive buffers per core (i.e., ring buffer
size in an equivalent DPDK setting) from 512 to 2048. We
compare conventional DMA packet injections against three
DDIO configurations (2-, 4-, and 6-way; we evaluate up to
12-way DDIO in §VI-A) and ideal-DDIO (c.f., §III).

We start by noting that although Figure 1a may suggest that
provisioning fewer buffers is always preferable, as it improves
the peak sustainable throughput, shallow buffering comes at a
cost, as it is more vulnerable to undesirable packet loss in the
event of packet arrival bursts. Therefore, buffer provisioning
presents a tradeoff: shallow buffering reduces buffer bloat
and its performance implications, while deep buffering offers
improved resiliency to packet drops. We later show that
our proposed solution breaks this tradeoff, preserving high
performance regardless of buffer size provisioning (§VI-A).

Figure 1a clearly shows DDIO’s benefit, yielding up to 2.1×
throughput gains over conventional DMA. DDIO decreases
average memory access time (AMAT), which in turn results
in reduced average service time and, equivalently, increased
throughput. AMAT improves by finding network buffers in
the LLC and by spending less time for every memory access,
in the less loaded DRAM—we later show the considerable
increase in memory access latency caused by DRAM pressure
(§VI-B). DMA results in 9–35% higher memory bandwidth
utilization than DDIO (Figure 1b), despite operating at a
significantly lower application throughput.

Figure 1c’s per-request memory access breakdown provides
deeper insight into data movement and the resulting memory
bandwidth utilization gap between DMA and DDIO. The
breakdown attributes memory traffic to its sources: buffer
accesses by the CPU and NIC, and application data accesses
by the CPU. Figure 1c particularly focuses on providing
a fine-grained breakdown among network buffer accesses.
“CPU Other Rd” refers to direct CPU accesses to memory
locations other than RX/TX buffers, while “Other Evct” refers
to evictions of dirty application data from LLC to memory. As
Figure 1c demonstrates, DDIO completely eliminates memory
traffic directly generated by the NIC (writes on RX path, reads
on TX path), as all NIC accesses are serviced from the LLC,
reducing memory accesses per request by up to 70%.

Despite the significant performance improvement DDIO
achieves over DMA, Figure 1a shows a significant gap be-
tween DDIO configurations and ideal-DDIO. As shown in
Figure 1c, the main difference stems from the average number
of memory accesses performed per application request: DDIO
incurs a 1.3−2× data movement premium over ideal-DDIO.
Although allocating more ways to DDIO helps shrink that data
movement gap, if the entirety of the network buffers cannot
be contained in the LLC, there will be excess memory traffic,
resulting in performance degradation. To illustrate, 512, 1024,
and 2048 receive buffers per core for 1KB packets correspond

4

512 1024 2048

Receive Buffers per Core

0

10

20

30

40

50

60

T
h
ro

u
g
h
p
u
t

(M
rp

s)
DMA

DDIO 2 Ways

DDIO 4 Ways

DDIO 6 Ways

Ideal DDIO

(a) Application throughput.

512 1024 2048

Receive Buffers per Core

0

10

20

30

40

50

60

70

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
G

B
/s

)

DMA

DDIO 2 Ways

DDIO 4 Ways

DDIO 6 Ways

Ideal DDIO

(b) Memory bandwidth utilization at each config-
uration’s peak throughput.

DM
A

DDIO
 2

 W
ay

s

DDIO
 4

 W
ay

s

DDIO
 6

 W
ay

s

Id
ea

l D
DIO

0

10

20

30

40

50

60

70

M
e
m

o
ry

 A
cc

e
ss

e
s

p
e
r

R
e
q
u
e
st

RX buffers
per core: 512

NIC RX Wr

NIC TX Rd

CPU RX Rd

CPU TX Rd/Wr

CPU Other Rd

RX Evct

TX Evct

Other Evct

DM
A

DDIO
 2

 W
ay

s

DDIO
 4

 W
ay

s

DDIO
 6

 W
ay

s

Id
ea

l D
DIO

RX buffers
per core: 1024

DM
A

DDIO
 2

 W
ay

s

DDIO
 4

 W
ay

s

DDIO
 6

 W
ay

s

Id
ea

l D
DIO

RX buffers
per core: 2048

(c) Breakdown of memory accesses per KVS request.

Fig. 1: KVS application demonstrating performance effect of network data leaks.

to 12MB, 24MB, and 48MB, which are equivalent to 33%,
67%, and 133% of the entire LLC capacity. For our 36MB
12-way LLC, 2-, 4- and 6-way DDIO restricts the capacity
usable by the NIC to 6MB, 12MB, and 18MB, respectively.
As a result, there is significant churn of network data between
the LLC and memory, exhibiting itself in Figure 1c as RX
buffer evictions (RX Evct). Unsurprisingly, increasing DDIO
ways helps reduce such churn and improve performance, but
even when the network buffers entirely fit in the allocated
DDIO ways (e.g., 4- and 6-way DDIO with 512 RX buffers
per core), detrimental data movement cannot be completely
avoided.

Importantly, Figure 1c highlights the source of network data
leaks that introduce performance problems: premature versus
consumed buffer evictions. A premature buffer eviction would
eventually cause the CPU to miss in the LLC and access
memory for the RX buffer—hance, premature evictions are
identified in Figure 1c as CPU RX Rd. As seen in the figure,
even in the most space-constrained 2-way DDIO configuration,
memory traffic attributed to premature buffer evictions is
negligible. In contrast, virtually all network data leaks are
attributed to consumed buffer evictions (RX Evct in Figure 1c).

B. Premature Buffer Evictions

§IV-A demonstrated that consumed buffer evictions are the
prevalent source of network data leaks. Unlike premature
buffer evictions, consumed buffer evictions do not introduce
bottlenecks directly on the application execution’s critical
path, but rather create system-level contention that introduces
queuing effects at the memory. We expect that premature
buffer evictions, when they occur, would have an even more
profound performance degradation effect, as they result in even
higher bandwidth consumption overhead.

A system must be operating under extreme conditions to
continuously experience premature buffer evictions. Funda-
mentally, premature evictions require deep queue buildup of
packets waiting to be serviced. As packets in such a queue
wait for a prolonged amount of time, their probability of
getting evicted from the LLC before being consumed by the

CPU increases. On one hand, spurious queue buildups due to
packet arrival spikes are possible, but the temporary nature of
such events make them less of a concern, at least in terms
of sustained throughput (they may still pose a tail latency
concern). On the other hand, a steady state of premature buffer
evictions would require packet arrival rates exceeding the
server’s sustainable service rate. Such pathological scenarios
fundamentally correspond to unstable, ill-provisioned systems,
which are beyond the scope of our study.

A typical modus operandi that can result in steady queue
buildup by design is batching of packet processing. For exam-
ple, that is a common option in the DPDK protocol stack—the
protocol stack picks up arrived packets to process in batches
of D. To emulate such operation under batching of degree D,
we construct scenarios where the RX buffer always contains D
unconsumed packets waiting to be processed. We achieve that
by modifying our load generator to monitor and ensure that
the number of unconsumed packets in each core’s RX buffer
is always at least D, by injecting new packets. We employ
an L3 forwarder network function (L3fwd NF) handling 1KB
packets and perform experiments with D = {50,250,450}. As
a point of reference, DPDK’s default batching degree is 32, but
we push to considerably higher batching degrees to gauge the
prevalence of premature buffer evictions under more extreme
scenarios.

Figure 2 illustrates the same data for this L3fwd experiment
as Figure 1 did for the KVS application. Instead of per-core
RX buffer depth, the x-axis of Figures 2a and 2b sweeps the
D parameter. The per-core RX buffer depth is fixed to 2048
and we evaluate 2-, 6-, and 12-way DDIO configurations.

The trends we observe generally align with those in §IV-A.
A major difference is that ideal-DDIO consumes negligible
memory bandwidth (Figure 2b), as L3fwd’s minimal memory
footprint rarely results in memory access. Hence, in this
experiment, memory traffic is dominated by network buffer
movement and any application data accesses represent a very
small fraction of memory accesses per packet processed in
Figure 2c. The key observation from Figure 2c aligns with
our previous takeaway from Figure 1c: memory traffic is dom-

5

50 250 450

Queued Packets per Core

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(M
rp

s)
DDIO 2 ways

DDIO 6 ways

DDIO 12 ways

Ideal DDIO

(a) Application throughput.

50 250 450

Queued Packets per Core

0

10

20

30

40

50

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
G

B
/s

)

DDIO 2 ways

DDIO 6 ways

DDIO 12 ways

Ideal DDIO

(b) Memory bandwidth utilization at each
configuration’s peak throughput.

D
D
IO

 2
 w

ay
s

D
D
IO

 6
 w

ay
s

D
D
IO

 1
2

w
ay

s

Id
ea

l D
D
IO

0

5

10

15

20

M
e
m

o
ry

 A
cc

e
ss

e
s

p
e
r

R
e
q
u
e
st

queued
packets: 50

D
D
IO

 2
 w

ay
s

D
D
IO

 6
 w

ay
s

D
D
IO

 1
2

w
ay

s

Id
ea

l D
D
IO

queued
packets: 250

CPU RX Rd

CPU TX Rd/Wr

CPU Other Rd

Other Evct

RX Evct

TX Evct

D
D
IO

 2
 w

ay
s

D
D
IO

 6
 w

ay
s

D
D
IO

 1
2

w
ay

s

Id
ea

l D
D
IO

queued
packets: 450

(c) Breakdown of memory accesses per packet
processed.

Fig. 2: L3 forwarder NF demonstrating performance effect of network data leaks.

inated by consumed buffer evictions. A key difference from
Figure 1c is that in this experiment we start seeing a different
type of evictions as well: premature buffer evictions, indicated
by CPU RX buffer read misses (annotated as CPU RX Rd
in the figure). However, the magnitude of premature buffer
evictions is only considerable in the most constrained 2-way
DDIO configuration, and even then, they are overshadowed by
consumed buffer evictions.

In conclusion, § IV-A and IV-B’s studies show that con-
sumed buffer evictions are the predominant source of network
data leaks. Although premature buffer leaks can become a
problem under heavy queuing conditions, even in such sce-
narios, consumed buffer evictions are still significant network
data leak contributors. Therefore, addressing this type of leaks
will have a positive effect in all problematic scenarios.

V. SWEEPER DESIGN

Our exploratory analysis in §IV demonstrates that perfor-
mance implications due to network data leaks mainly stem
from consumed network buffer evictions, namely, RX buffers
that have already fulfilled their purpose: the data placed in
them by the NIC has been consumed by the application. Any
reuse to these memory locations will start with a write by
the NIC, when the buffer is reused to accommodate a newly
arrived packet.

Our first critical insight is that the data in the cache blocks
comprising a consumed RX buffer are dead: they have served
their purpose from the application’s perspective, and the CPU
will never access the same data again. The memory location
will most likely be accessed again by the CPU in the future,
but only after the NIC has reused that same buffer location
to store different data; in other words, the CPU would only
access a different instance of the RX buffer. At the same
time, such dead cache blocks corresponding to RX buffers
are guaranteed to be dirty. Therefore, if the NIC does not
reuse them in the immediate future, they will be evicted from
the LLC and will—by default—be written back to memory,

introducing the memory bandwidth interference that renders
network data leaks a performance concern.

Given there exists a well-defined point in time when the
contents of an RX buffer’s instance will never again be
read by any entity (CPU or NIC), writing this buffer’s data
back to memory is wasteful. Thus, our second key insight is
that cache lines belonging to such a consumed buffer need
not be written back to memory and can simply be dropped
for bandwidth savings. From a purely hardware perspective,
dropping a dirty cache line without writing it back to memory
would appear to be a memory corruption. However, if the
software guarantees that it will not access the contents of
the same buffer instance, dropping dirty cachelines without
writeback to memory does not raise correctness issues. A read
access after such a guarantee has been declared would have
undefined behavior, no different from software accessing a
buffer it explicitly deallocated earlier by invoking free().
Additionally, a critically important observation is that the
NIC’s future access to write the next instance of the RX buffer
will not be affected by the omission of the previous instance’s
writeback to memory, because the NIC directly write-allocates
the new data at cache-block granularity, fully overwriting any
previous data contents.

Based on these insights, we propose Sweeper, a software-
hardware co-design aiming to alleviate memory bandwidth
interference due to wasteful evictions of consumed network
buffers. The software explicitly declares when the lifetime
of a network buffer’s instance has expired and exposes this
information to the underlying hardware. The hardware then
evicts this buffer from the cache hierarchy without triggering
a writeback to memory, thus conserving memory bandwidth.
Next, we discuss Sweeper’s components, including its software
API (§V-A) and the associated required ISA and microarchi-
tectural extensions (§V-B). Finally, we walk through Sweeper’s
end-to-end operation with an example (§V-C).

6

A. Software Interface

We introduce a function that an application can use to
indicate that it relinquishes access to the indicated buffer:
relinquish(buffer_address, size). The buffer’s
contents are considered to be lost after the execution of
the function, as the cache blocks comprising the buffer are
invalidated from the cache hierarchy without being written
back to memory. A networking library that uses relinquish
must always do so before recycling the buffer for reuse by the
NIC, to avoid race conditions. In the most common use of
the network stack where the packet is copied from the RX
buffer to a local application buffer, the RX buffer can be
trivially relinquished after that copy is performed. In systems
utilizing zero-copy packet reception, the packet buffers should
be relinquished right after the last use by the application, in a
manner conceptually similar to freeing a dynamically allocated
object as early as possible.

B. Hardware Support

An invocation to the relinquish function requires prop-
agating new semantics to the processor and underlying cache
hierarchy that are not readily available in current systems.
Therefore, both ISA and microarchitectural extensions are
required. We introduce clsweep, an unprivileged instruction,
which takes a single register argument, holding the address of
the cache block that must be swept: i.e., invalidated without
being written back to memory. A clsweep triggers a sweep
message that propagates through the cache hierarchy to inval-
idate every copy of the target cache block. A sweep is a
variant of a classic invalidate message that sets a cache
block’s state to Invalid.

Several ISAs provide variants of instructions, similar to
clsweep, that invalidate a cache block in the cache hierarchy
without triggering a writeback. Although the introduction
of such an instruction is not a novel contribution of its
own, its use as a building block to eliminate detrimental
performance effects in high-performance networked systems
is new. Across ISAs that feature variants of such invalidation
instructions, their common intended use is to support non-
coherent producer-consumer communication that interact over
DMA—for example, when the consumer wants to invalidate
any data in its local cache hierarchy to force a fresh copy
of the data to be fetched from the producer’s non-coherent
memory. Such communication typically involves at least one
peripheral device and is orchestrated by the OS, therefore the
related instructions are usually privileged.

x86 offers two instructions that are close to clsweep’s
intended semantics, but neither of them is sufficient for our
purpose. CLFLUSHOPT [27] invalidates the specified cache
block from every level of the cache hierarchy, writing it back
to memory if found dirty. The INVD [27] privileged instruction
empties all caches without writing back dirty data. clsweep
combines elements of CLFLUSHOPT and INVD.

Arm offers a rich collection of cache maintenance in-
structions [3, §C5.3]. DC IVAC allows invalidation without
writeback of a specific virtual address, but can only be used in

core

L1

L2

LLC

Memory

while !(new_packet);
read(*recv_buff);
... //business logic
relinquish(*recv_buff);
... //construct response
send(response);

Server app pseudocode ...

...

...

: RX buffer cache blocks (dirty)

1

: RX buffer cache blocks (clean)

3

4

5

: Invalidate cache block

Legend

2

no writebacks

6

Fig. 3: Sweeper’s buffer cleaning.

privileged mode. The same capabilities and restrictions apply
for POWER’s CLI [24] and TILE-Gx’s Inv [56] instruction.
CBO.INVAL from RISC-V’s recent extension for cache man-
agement operations (Zicbom) appears to match the desired
semantics, but its required privilege level is unclear [48]. All
these instruction instances indicate that the required mecha-
nisms to realize clsweep are largely in place and are not
disruptive to coherence or other critical microarchitectural
components. Sweeper presents a novel use case for such
instructions, motivating their use in a new context.
Correctness and security concerns. Careless use of the
clsweep instruction can result in memory corruption of the
user’s process, but that effect is similar to a memory bug
(e.g., accessing a dynamically allocated object after it has been
freed). Special care is required when the operating system
reclaims a page and allocates it to a different process, as it
could result in a privacy breach. Although the operating system
zeroes out (”resets”) the page before transferring ownership
between processes, the new owner process could read the
previous one’s values in that page by invoking clsweep to
prevent the page’s newly zeroed out values from propagating
to memory.

There are several possible solutions to address such privacy
breaches. First, if the OS zeroes out pages by scheduling
a conventional DMA that does not make use of DDIO,
the aforementioned concern does not arise. If zeroing out a
page before transferring ownership to a new process involves
caching the page’s zeroed out cache blocks, a kernel extension
to CLWB all of a page’s cache blocks right after resetting their
value to zero again mitigates the privacy concern. Instead of
doing this for every newly allocated page, the writeback could
be enforced only for pages that are allocated to processes
that make use of clsweep. Distinguishing processes as such
would require marking a process’ control block accordingly,
after the process initially uses a new dedicated system call that
requests permission for use of clsweep in userspace.

C. Sweeper in Action

Figure 3 demonstrates Sweeper’s operation, which saves ex-
cess memory bandwidth usage by avoiding writing consumed
network buffers back to memory, after taking explicit hints
from the software. The top left core executes a networked

7

server application, shown as a pseudocode snippet. At step
1 , the following sequence of events has already happened:
(i) The NIC write-allocated an incoming network packet (here

assumed to occupy two cache blocks) into the LLC. The
corresponding cache blocks are therefore dirty.

(ii) The core identified the packet arrival and read the RX
buffer from the LLC, bringing clean copies of the corre-
sponding cache blocks into its private L1 and L2 caches.

After the application is done reading the contents of the RX
buffer, it uses our introduced relinquish function (§V-A)
(step 2). Note that this does not imply the application can
only read the RX buffer once; rather, the application relin-
quishes the buffer after the last time it uses that buffer instance.
By executing this function call, the application declares that
no entity, CPU or NIC, will read this buffer again before
the NIC overwrites it with a new packet’s data. The function
call is compiled into a set of clsweep instructions, one per
cache block comprising the target buffer, which in turn inject
sweep messages into the cache hierarchy (step 3). As the
sweep messages propagate down the cache hierarchy, they
invalidate the corresponding cache blocks found in each of
the cache levels—L1, L2, and LLC (steps 3 to 5). Step 6
demonstrates that a dirty cache block invalidated by a sweep
does not trigger a writeback to memory, conserving memory
bandwidth.

D. Sweeper on the Transmit Path

We have so far only focused on network data movement
implications on the RX path, as this is where data buffer
bloat commonly results in network data leaks and performance
problems. Similar complications may arise on the transmit
path, either due to overprovisioned transmit buffers, or because
of applications implementing a zero-copy receive-to-transmit
optimization scheme, using the RX buffer where a packet was
received to transmit the same packet back to the network. The
latter is a pattern often implemented by Network Functions
(NFs): the NF performs in-place operations on the packet
received in an RX buffer, and then passes a pointer to this
modified RX buffer to the NIC, thus avoiding an explicit
copy from the RX buffer to a transmit buffer prior to the
packet’s transmission. This optimization is very specific to NFs
that transmit the same packets they receive, only minimally
modified. NFs employing such zero-copy packet transmission
cannot directly leverage Sweeper in the form described earlier
in this section, because, in this mode of operation, the CPU is
not the last entity to access an RX buffer during its lifetime.
The RX buffer only becomes dead after the NIC reads it on
the transmit path. Thus, on the transmit path, it is the NIC—
and not the application—that must declare the buffer’s lifetime
expiration.

Our proposed approach is equally applicable when network
data leaks emerge and become problematic on the transmit
path. Sweeper’s design can be slightly adapted for use in such
scenarios, whereby buffer sweeping is initiated by the NIC
instead of the CPU, with the core of the mechanism remaining
the same. Sweeping relies on the same sweep coherence

CPU

N
IC

M
em

ory
hierarchy

Work Queue

dest.
node opQP id transfer

length
buffer
addr

Sweep
Buffer

12

3
4

sweep

Fig. 4: Sweeper’s NIC-driven buffer cleaning for zero-copy
networking.

message (§V-B), but an additional software API is required for
instructing the NIC to initiate a buffer sweep after transmitting
its contents and releasing it. Such API is less intrusive than an
ISA extension. All that is necessary is an additional boolean
SweepBuffer field in the memory-mapped Work Queue that
the CPU uses to schedule packet transmissions, as exemplified
in Figure 4 for a sample Work Queue entry of the Scale-Out
NUMA protocol (similar to RDMA). The CPU may opt to
set this field when it creates the Work Queue entry (step 1).
When the NIC reads the Work Queue entry (step 2), it checks
that field. Once the transmission of the Work Queue entry’s
corresponding transmit buffer completes (step 3), and before
releasing the buffer to be reused by the CPU at a later time,
the NIC injects sweep coherence messages into the cache
hierarchy, for the cache blocks comprising the buffer (step
4).

Instead of offloading TX buffer sweeping to the NIC, and
alternative approach would be to delegate this responsibility
back to the CPU, after the packet’s transmission. The required
protocol modifications would be similar, but on the inverse
direction (i.e., NIC notifies CPU to sweep after transmission,
via a Completion Queue entry). The drawback of this alter-
native approach is that such hand-off introduces timeliness
implications, as the core’s reaction time to the NIC’s sweeping
hint depends on software events and the CPU’s occupancy.

For the sake of clarity and brevity, our evaluations are
focused on demonstrating Sweeper’s ability to alleviate prob-
lems arising from network data leaks on the ingress path.
Therefore, our evaluation in §VI does not include results for
instances with transmit buffer bloat, or with applications that
use the aforementioned receive-to-transmit zero-copy mecha-
nism occurring in certain instances of NF processing. The key
takeaways and results are equally applicable to such cases, by
leveraging the additional support for Sweeper described in this
subsection.

VI. EVALUATION

In this section we extend the evaluations presented in §IV
to provide a sensitivity analysis of key system parameters
that affect the onset and magnitude of network data leaks,
along with their impact on performance. In addition, we
demonstrate the benefits of our proposed Sweeper technique.
We implement Sweeper in our simulation infrastructure and

8

00
DDIO 2 Ways DDIO 2 Ways + Sweeper DDIO 6 Ways DDIO 6 Ways + Sweeper DDIO 12 Ways DDIO 12 Ways + Sweeper Ideal DDIO

512 1024 20480

20

40

60

80

100

T
h
ro

u
g
h
p
u
t

(M
rp

s)

packet size: 512B

512 1024 2048

packet size: 1024B

0.0 0.2 0.4 0.6 0.8 1.0

Receive Buffers per Core

0.0

0.2

0.4

0.6

0.8

1.0

(a) Application throughput.

512 1024 20480

10

20

30

40

50

60

70

M
e
m

o
ry

 B
a
n
d
w

id
th

 (
G

B
/s

)

packet size: 512B

512 1024 2048

packet size: 1024B

0.0 0.2 0.4 0.6 0.8 1.0

Receive Buffers per Core

0.0

0.2

0.4

0.6

0.8

1.0

(b) Memory bandwidth utilization at each configuration’s peak throughput.

DDIO
 2

 w
ay

s

+
 S

wee
pe

r

DDIO
 6

 w
ay

s

+
 S

wee
pe

r

DDIO
 1

2
way

s

+
 S

wee
pe

r

Id
ea

l D
DIO

0

5

10

15

20

25

30

35

40

M
e
m

o
ry

 A
cc

e
ss

e
s

p
e
r

R
e
q
u
e
st

RX buffers per core: 512

DDIO
 2

 w
ay

s

+
 S

wee
pe

r

DDIO
 6

 w
ay

s

+
 S

wee
pe

r

DDIO
 1

2
way

s

+
 S

wee
pe

r

Id
ea

l D
DIO

Packet size: 512B
RX buffers per core: 1024

CPU RX Rd CPU TX Rd/Wr CPU Other Rd RX Evct TX Evct Other Evct

DDIO
 2

 w
ay

s

+
 S

wee
pe

r

DDIO
 6

 w
ay

s

+
 S

wee
pe

r

DDIO
 1

2
way

s

+
 S

wee
pe

r

Id
ea

l D
DIO

RX buffers per core: 2048

DDIO
 2

 w
ay

s

+
 S

wee
pe

r

DDIO
 6

 w
ay

s

+
 S

wee
pe

r

DDIO
 1

2
way

s

+
 S

wee
pe

r

Id
ea

l D
DIO

RX buffers per core: 512

DDIO
 2

 w
ay

s

+
 S

wee
pe

r

DDIO
 6

 w
ay

s

+
 S

wee
pe

r

DDIO
 1

2
way

s

+
 S

wee
pe

r

Id
ea

l D
DIO

Packet size: 1024B
RX buffers per core: 1024

DDIO
 2

 w
ay

s

+
 S

wee
pe

r

DDIO
 6

 w
ay

s

+
 S

wee
pe

r

DDIO
 1

2
way

s

+
 S

wee
pe

r

Id
ea

l D
DIO

RX buffers per core: 2048

(c) Breakdown of memory accesses per KVS request.

Fig. 5: Effect of DDIO ways allocation on network data leaks and KVS performance.

base our evaluation on the methodology previously covered in
§III, with further details available in Appendix A.

Sweeper improves performance by eliminating network data
leaks due to consumed buffer evictions. We quantify its impact
in §VI-A. We then demonstrate that Sweeper’s bandwidth
savings also translate to improved average memory access time
in §VI-B. Next, §VI-C repeats §IV-B’s scenario and illustrates
that Sweeper is beneficial even in the presence of prema-
ture buffer evictions. We proceed to showcase that Sweeper
remains an effective performance-boosting mechanism even
when available memory bandwidth is overprovisioned in
§VI-D. We then employ a scenario of collocated applications
to verify that Sweeper’s benefit also extends to non-networked
applications in §VI-E. Finally, §VI-F demonstrates that the
alternative approach of shallow buffering to mitigate network
data leaks results in increased packet drop rates.

A. Sensitivity to DDIO Configuration

The root cause of network data leaks is insufficient LLC
capacity to hold the entirety or majority of all used network
buffers. Thus, a straightforward first attempt to alleviate the
problem would be to allocate additional DDIO ways. We
employ the MICA KVS from §IV-A to study its sensitivity to
the number of DDIO ways, and evaluate the effect of Sweeper
in each case. In this study, we also vary the KVS item size,
resulting in commensurate sizes for packets carrying data. We
evaluate scenarios with 512B and 1KB items.

Figure 5 shows our KVS’ peak performance when DDIO
is allocated 2, 4, 6 or 12 ways. Note that the 12-way con-
figuration allows DDIO to write-allocate in any of the LLC
ways without restrictions. As the allocated space for DDIO
grows, the application’s performance—measured in Millions
of requests per second (Mrps)—improves (Figure 5a), because
the rate of RX buffer evictions to memory diminishes, as
evidenced in Figure 5c. Fewer consumed buffer evictions di-
rectly correlate to higher application throughput, with 12-way
DDIO outperforming 2-way DDIO by 1.2− 1.6×. Still, the
best-performing 12-way DDIO configuration only approaches
ideal-DDIO for the smallest 512-buffers/512B-packet scenario
(Figure 5a leftmost bar cluster), which corresponds to a 6MB
buffer footprint that can comfortably fit in the 36MB LLC.
In every other case, even 12-way DDIO achieves 11− 55%
lower throughput than ideal-DDIO. The performance obstacle
is excess data movement, as each processed request triggers up
to 2× more memory accesses (Figure 5c), resulting in higher
memory bandwidth consumption per unit of work.

Figure 5c shows that Sweeper completely eliminates write-
backs of consumed RX buffers (RX Evct in the figure),
virtually matching ideal-DDIO’s memory access count per
KVS request. In turn, that reduction in memory bandwidth
pressure yields drastic performance improvements over DDIO,
as illustrated in Figure 5a. When applied on top of each DDIO
configuration, Sweeper boosts performance by 1.02− 2.6×,
delivering performance within 2− 18% of ideal-DDIO. The

9

200 400 600 800
1000

1200
1400

0.0

0.2

0.4

0.6

0.8

1.0

Maximum throughput

DDIO 2 ways

DDIO 12 ways

DDIO 2 ways + Sweeper

DDIO 12 ways + Sweeper

200 400 600 800
1000

1200
1400

Iso-throughput (26 Mrps)

0.0 0.2 0.4 0.6 0.8 1.0

Access Latency (cycles)

0.0

0.2

0.4

0.6

0.8

1.0

T
o
ta

l
A

cc
e
ss

e
s

C
D

F

Fig. 6: Memory access latency CDFs for the KVS application.
Left: at each configuration’s peak load. Right: iso-throughput
comparison, at 2-way DDIO configuration’s achieved peak.
Vertical lines mark the respective curve’s effective average
memory access latency.

remaining performance gap is attributed to the fact that, with
ideal-DDIO, RX buffers do not consume any capacity in the
entire multi-level cache hierarchy, yielding exclusive use of all
the cache resources to application data.

Ultimately, Sweeper enables maximum performance and is
largely insensitive to RX buffer provisioning, in stark contrast
to baseline DDIO, whose performance noticeably degrades
as RX buffer provisioning grows. Sweeper thus breaks the
tradeoff of choosing between shallow buffering for higher
steady-state performance and deep buffering for packet drop
resilience. Sweeper allows deployment of deep buffers to ab-
sorb heavy packet arrival bursts without paying a performance
cost for that added resilience.

B. Effect on Memory Access Latency

As mentioned in §IV-A, a key benefit of reduced memory
bandwidth utilization is lowered average memory access time,
which in turn reduces service time and increases throughput.
To illustrate this effect, Figure 6 shows the CDFs of memory
access latency (i.e., DRAM access time) for the 1024 buffers
of 1KB packets scenario, corresponding to Figure 5a’s fifth
bar cluster.

Figure 6(left) compares the resulting memory access latency
distribution for 2- and 12-way DDIO, with and without
Sweeper. For both DDIO configurations, Sweeper noticeably
reduces both average and tail memory access latency, despite
operating at higher application throughput. For 2-way/12-way
DDIO, Sweeper reduces average latency by 12%/21% and
p99 latency by 3%/6%, while achieving 1.57−1.79× higher
application throughput (c.f. Figure 5a).

Figure 6(right) compares the resulting memory access la-
tency distribution for the same four configurations, but at
the 2-way DDIO configuration’s peak achieved throughput of
26Mrps. Sweeper’s elimination of unnecessary memory traffic
reduces average and p99 memory access latency by 47% and
20% respectively.

250 450

Queued Packets per Core

0

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(M
rp

s)

DDIO 2 ways

DDIO 6 ways

DDIO 12 ways

Ideal DDIO

DDIO 2 ways + Sweeper

DDIO 6 ways + Sweeper

DDIO 12 ways + Sweeper

(a) Application throughput.

D
D
IO

 2
 w

ay
s

 +

 S
w
ee

pe
r

D
D
IO

 6
 w

ay
s

+
 S

w
ee

pe
r

D
D
IO

 1
2

w
ay

s

+
 S

w
ee

pe
r

Id
ea

l D
D
IO

 0

5

10

15

20

M
e
m

o
ry

 A
cc

e
ss

e
s

p
e
r

R
e
q
u
e
st

queued
packets: 250

D
D
IO

 2
 w

ay
s

 +

 S
w
ee

pe
r

D
D
IO

 6
 w

ay
s

+
 S

w
ee

pe
r

D
D
IO

 1
2

w
ay

s

+
 S

w
ee

pe
r

Id
ea

l D
D
IO

queued
packets: 450

CPU RX Rd

CPU TX Rd/Wr

CPU Other Rd

RX Evct

TX Evct

Other Evct

(b) Breakdown of memory accesses per
packet processed.

Fig. 7: Sweeper’s effect on premature buffer evictions.

C. Sweeper with Premature Buffer Evictions

Sweeper mitigates performance implications of memory
bandwidth waste due to consumed buffer evictions. As our
study in §IV showed, although premature buffer evictions are
less common, in some cases they are also a considerable
memory bandwidth consumption contributor. We now revisit
the two specific L3fwd scenarios with deep queues of uncon-
sumed network packets from §IV-B that exhibited noticeable
premature buffer evictions.

Figure 7 shows the performance and breakdown of memory
accesses for the two scenarios of interest, including results
with Sweeper. Overall, Sweeper reduces the number of mem-
ory accesses per processed packet (Figure 7b), resulting in per-
formance improvements of 1.2−2.4× (Figure 7a). Figure 7b
reveals that Sweeper completely eliminates consumed buffer
evictions in every DDIO configuration. That is evidenced
by the fact that, with Sweeper enabled, the remaining RX
evictions (RX Evct) exactly match the CPU’s misses to RX
buffers (CPU RX Rd). Hence, all remaining network-related
data movements between the LLC and memory are attributed
to premature buffer evictions, as every RX buffer that is evicted
is later accessed by the CPU.

The memory breakdown behavior (Figure 7b) for the 2-way
DDIO configuration is an interesting outlier, with Sweeper
increasing CPU RX Rd misses compared to plain DDIO,
implying more premature buffer evictions. This behavior is
attributed to network buffers spillover from the DDIO ways:
as network buffers are prematurely evicted from the LLC, they
are brought back to non-DDIO LLC ways when later accessed
by the CPU and stay there, effectively increasing the LLC
fraction occupied by network buffers. In contrast, Sweeper
cleans such runaway buffers after their use, thus truly con-
taining network buffers to two ways. The increased contention
then results in more premature evictions. However, even in
this case, Sweeper reduces the aggregate added network-data-
related memory traffic, leading to an overall performance gain.

10

3 4 80

20

40

60

80

100

120

T
h
ro

u
g
h
p
u
t

(M
rp

s)

Packet size: 512B
RX buffers per core: 512

DDIO 2 Ways

DDIO 6 Ways

DDIO 12 Ways

DDIO 2 Ways + Sweeper

DDIO 6 Ways + Sweeper

DDIO 12 Ways + Sweeper

Ideal DDIO

3 4 8

Packet size: 1024B
RX buffers per core: 512

3 4 8

Packet size: 1024B
RX buffers per core: 2048

0.0 0.2 0.4 0.6 0.8 1.0

Memory Channels

0.0

0.2

0.4

0.6

0.8

1.0

(a) Application throughput.

3 4 80

20

40

60

80

100

M
e
m

o
ry

 B
a
n
d
w

id
th

(G
B

/s
)

Packet size: 512B
RX buffers per core: 512

3 4 8

Packet size: 1024B
RX buffers per core: 512

3 4 8

Packet size: 1024B
RX buffers per core: 2048

0.0 0.2 0.4 0.6 0.8 1.0

Memory Channels

0.0

0.2

0.4

0.6

0.8

1.0

(b) Memory bandwidth utilization.

Fig. 8: Effect of network data leaks and Sweeper on perfor-
mance as a function of memory bandwidth availability.

D. Sensitivity to Memory Bandwidth

As demonstrated in §VI-A, memory bandwidth utilization
is a critical performance determinant for network-intensive
applications resulting in network data leaks. Our evaluation
so far was based on a 24-core server CPU provisioned with
four DDR4 channels, which is a medium-range setup: memory
bandwidth provisioning in modern server-grade CPUs typi-
cally ranges from one DDR4 channel per eight cores (e.g.,
AMD EPYC [22]) to one per three cores (e.g., Xeon Gold
6342 [29]). These bandwidth-to-core ratios correspond to 3–8
memory channels in our simulated 24-core CPU.

Figure 8 shows a performance sensitivity analysis as a
function of available memory bandwidth, controlled by pro-
visioning 3, 4, and 8 memory channels. Results are based
on the MICA KVS application. The general trends observed
in §VI-A’s thorough analysis hold across memory channel
configurations. Increasing DDIO ways improves the KVS
performance, but still lags behind ideal-DDIO due to ex-
cess memory bandwidth usage. Sweeper noticeably boosts
performance even in the system provisioned with 8 memory
channels and the smallest RX buffer footprint configuration
(512 buffers per core and 512B packets—Figure 8a left).
Unsurprisingly, the larger the buffer configuration, the more
pronounced Sweeper’s impact is. For the largest configuration
(2048 buffers per core and 1KB packets), Sweeper on a
system with 4 memory channels boosts application throughput
by 2.1 − 2.6×, as previously seen in Figure 5a. For this
configuration, Sweeper’s relative performance boost grows to
2.2− 2.7× when memory controllers are reduced to 3, and
drops to 1.6−2× when increased to 8. In conclusion, although
higher memory bandwidth provisioning partially mitigates the

performance impact of network data leaks, Sweeper’s miti-
gation of wasteful data movement delivers significant perfor-
mance improvements even in systems with highly provisioned
memory bandwidth.

E. Application Collocation Scenarios

§VI-A’s results indicate that the fewer the LLC ways
allocated to DDIO, the more pronounced Sweeper’s effect.
Equivalently, Sweeper’s relative performance improvement
diminishes, as DDIO is configured to use more LLC ways.
However, maxing out DDIO ways is not always the optimal
choice. Although that is usually the case for network-intensive
applications running in isolation, like our evaluated KVS,
doing so in a multi-tenant scenario can hurt the performance
of collocated applications. Therefore, limiting DDIO ways is
desirable, as hinted by DDIO’s default two-way setting. To
demonstrate this case, we evaluate a collocated scenario.

We use §IV-B’s L3fwd application as a network-intensive
tenant, and X-Mem [18] as a memory-intensive tenant. We
run 12 instances of each, matching the total number of cores.
L3fwd’s allocates 2048 RX buffers per core and handles 1KB
packets, and its dataset is L1-resident, so any pressure it
generates in the LLC or memory is due to packet RX/TX.
Each X-Mem process performs sequential random accesses to
a private 2MB dataset, which exceeds the aggregate capacity
of private L1 and L2 caches.

Figure 9 shows results for two collocated application sce-
narios. The first scenario (Figure 9a) isolates X-Mem threads
and DDIO ways hosting the L3fwd’s network traffic in non-
overlapping LLC partitions. We partition the LLC into two
disjoint parts A and B and assign DDIO ways to partition
A, X-Mem ways to partition B. We evaluate six (A, B)
configurations, with the invariant A+ B = 12. For instance,
(2, 10) means that DDIO is assigned 2 ways, and X-Mem is
restricted to the remaining 10 ways.

Figure 9a shows the normalized performance of the two
applications on a 2-D plane. As we reallocate more cache ways
from X-Mem to DDIO, L3fwd performance increases and X-
Mem’s performance drops. As X-Mem’s dataset is squeezed
out of the LLC, its performance deteriorates by up to 35%, due
to a 12× increase in LLC miss ratio. The performance points
on the 2-D plane form a Pareto frontier—the closer to the
top right corner, the better. Sweeper noticeably improves both
L3fwd’s and X-Mem’s performance, as its entire performance
frontier is closer to the top right corner than plain DDIO’s
frontier. The most balanced configuration for the two applica-
tions is (4, 8). In this configuration, Sweeper boosts L3fwd’s
and X-Mem’s performance by 1.5× and 1.14×, respectively.

In the second collocation scenario (Figure 9b), we always
allow X-Mem to use the entire LLC, and gradually increase the
DDIO ways from 2 to 12. As expected, X-Mem’s performance
degrades as DDIO’s expansion evicts more of its data from the
LLC. Sweeper boosts X-Mem’s performance by 1.18−1.42×.
Without Sweeper, 2-way DDIO results in 39% lower L3fwd
performance than with 12-way DDIO. With Sweeper, L3fwd

11

0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
L3FWD Throughput

Normalized to Throughput @ (4,8) Sweeper

0.5

0.6

0.7

0.8

0.9

1.0

1.1

XM
EM

 IP
C

No
rm

al
ize

d
to

 IP
C

@
 (2

,1
0)

 D
DI

O

(2,10)

(4,8)

(6,6)
(8,4) (10,2)

(2,10) (4,8)

(6,6)
(8,4)

(10,2)

(DDIO Ways , XMEM Ways)

DDIO
DDIO + Sweeper

(a) Collocation with non-overlapping LLC way partitions.

(b) Collocation with overlapping LLC way partitions.

Fig. 9: Performance of collocated network- and memory-
intensive applications.

remains completely insensitive to the allocated DDIO ways,
achieving its maximum performance with as few as two ways.

F. Shallow Buffering

An alternative approach to mitigate network data leaks is
to employ shallow buffering, like ResQ [57]. Limiting the
number of available buffers to contain them in the LLC
introduces tradeoffs, as it can limit a server’s peak throughput
and result in increased packet drops. For example, a core
with 1024 descriptors forwarding packets at 100Gbps must
pause senders every 500 packets to avoid drops [12, §3.1].
Optimal a priori RX buffer sizing to find the sweet spot of
footprint and performance is challenging, especially in large-
scale systems, and, even when possible, it requires application
profiling and high level of expertise. Furthermore, optimal siz-
ing for an application in isolation won’t hold when collocation
conditions on the same server change. Sweeper alleviates this
optimization burden, by allowing application deployment with
the benefits of deep buffers and without their performance
implications.

We construct a simple scenario to demonstrate the draw-
backs of shallow buffering. With the KVS workload as a base,
we develop a microbenchmark where, with a small probability,
each request suffers a processing delay randomly sampled
from the [1,100]µs range, causing temporal queue buildup
spikes—an effect also functionally equivalent to packet arrival
bursts. Request packets are 1KB and we evaluate a range of

128 256 512 1024 2048

Buffer Size (#entries)

0

5

10

15

20

25

30

35

40

T
h
ro

u
g
h
p
u
t

(M
rp

s)

Baseline

Sweeper

(a) Peak throughput.

0 10 20 30 40 50 60

Arrival Rate (Mrps)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

P
a
ck

e
t

D
ro

p
 R

a
te

 (
%

) 128 buffers

2048 buffers

+ Sweeper

(b) Packet drop rate.

Fig. 10: Effect of buffer provisioning on performance of
workload with spiky behavior.

buffer depths per core using the default 2-way DDIO configu-
ration. Note that among the buffer provisioning configurations
evaluated, both 128 and 256 entirely fit in the allocated DDIO
space.

Figure 10a shows the peak throughput achievable without
packet drops, demonstrating the benefits of deeper buffers.
Shallow buffering handicaps peak throughput. While more
buffers generally improve robustness, we observe a drop when
growing from 1024 to 2048 buffers, as bandwidth interference
from network data leaks overshadows the gains of further re-
silience. However, Sweeper’s addition alleviates that problem,
pushing throughput even higher.

Figure 10b shows the fraction of packet drops as a function
of request arrival rate, for 128 and 2048 RX buffers per core.
Deep buffering delivers 3.3× higher throughput without packet
drops compared to shallow buffering, which grows to 3.7×
with Sweeper. Without Sweeper, shallow buffering appears to
sustain higher arrival rates once packet drop rate exceeds 2%.
However, such drop rate is already unacceptably high for most
realistic applications. Packet drops in datacenters critically
disrupt performance [59]. Typical drop rates are in the 10−5

range [21] and anything near 1% is considered extraordinarily
high and potentially prohibitive [20], [60].

In conclusion, sizing buffers to fit within DDIO does not de-
liver best performance. Sweeper delivers performance robust-
ness for applications with spiky behavior and—unlike ResQ—
achieves that without any expert buffer sizing or empirical
profiling. Therefore, Sweeper is a versatile technique that can
facilitate deployment of applications with intensive network
activity, while improving performance robustness with only
minimal additional developer effort.

VII. RELATED WORK

The problem of network data leaks we address has been
identified in several prior works and is often referred to as
“leaky DMA” [12], [16], [40], [44], [53], [57], [58]. ResQ
[57] mitigates leaky DMA by shrinking the network stack’s
RX ring buffer. NeBuLa [53] targets applications with ex-
tremely tight tail-latency SLO and implements a specialized
architecture featuring a hardware mechanism that proactively
drops packets when the queue depth of waiting packets is such
that will lead to SLO violation. This policy implicitly bounds

12

network buffer occupancy in the LLC, preventing network
data leaks to memory. Constraining data buffer depth is an
effective solution to the leak problem in some cases, but is not
generally applicable. Shallow buffer provisioning runs the risk
of undesirable packet drop on packet arrival bursts. Sweeper
breaks that tradeoff, by removing the performance implications
of network data leaks in presence of large network buffers.

IAT monitors and dynamically reallocates LLC ways be-
tween DDIO and all collocated applications to minimize the
performance impact of leaky DMA and maximize overall
system performance [58]. IDIO [1] selectively steers incoming
packets to the large private L2 cache of modern server CPUs,
effectively expanding the cache capacity network buffers can
leverage, beyond a few LLC ways. Sweeper is orthogonal
to such techniques, which dynamically expand the aggregate
cache capacity network buffers can occupy.

Several prior works characterize architectural limitations
of direct cache injections of network traffic in the cache
hierarchy [34], [38], [52]. Farshin et al. [12] study DDIO
behavior in depth and demystify the mechanism’s low-level
operational details. To the best of our knowledge, no prior
work identifies that the primary contributor of performance-
hampering network data leaks are due to consumed network
buffers, which can be avoided to recoup the associated perfor-
mance loss.
Other data movement optimizations. Self-invalidation cache
block and page mechanisms have been used in the context
of shared-memory multiprocessors and DSMs to reduce co-
herence overheads [35], [37]. A similar approach has been
proposed to mitigate TLB shootdown costs [5]. Dead-block
prediction is a general technique used to make better caching
and prefetching decisions, based on predicted data reuse
patterns [32], [36]. Sweeper does not simply invalidate buffers,
but avoids writing them back to memory, and only does so
after explicit software hints rather than predictions, as any
wrong prediction would result in memory corruption.

In the context of network data movement and network
function processing optimization, CacheDirector [11] places
each packet’s header in the LLC slice that is closest to the
processing core, improving tail latency. PayloadPark [17],
nicmem [45], and NFSlicer [49] share a conceptually similar
data movement reduction optimization to improve the effi-
ciency of shallow network function handling. These solutions
minimize the movement of packet payloads, based on the
insight that CPUs executing shallow NFs only manipulate
packet headers, and temporarily store packet payloads in
switch and NIC memory, respectively. Sweeper also targets
overheads associated with excess data movement, particularly
focusing on the effect of memory bandwidth contention rather
than network and PCIe bandwidth, and has a broader scope,
as it is not limited to shallow NFs.

VIII. CONCLUSION

Growing network rates are promoting the efficiency of
data movement within a server’s memory hierarchy to a
major performance determinant. Modern DDIO technology

alleviates data movement overheads by attempting to avoid
memory involvement and contain network data traffic within
the server’s LLC. However, prior work has demonstrated sev-
eral instances of significant network data leaks into memory,
causing considerable memory bandwidth interference and, in
turn, performance degradation.

In this work, we study the problem of network data leaks
and identify that a major contributor to bandwidth interference
is the eviction of dirty buffers that have already been consumed
by the application. Writebacks of these buffers are both costly
and wasteful, as they will typically not be read again before
being fully overwritten by the NIC with a new incoming
packet. We propose Sweeper, a hardware extension and API
that allows applications to mark network buffers that have
been conclusively consumed, indicating that their writeback to
memory can be safely omitted. By omitting consumed buffer
writebacks, Sweeper significantly reduces memory bandwidth
consumption by up to 1.3×, resulting in up to 2.6× higher
application throughput. Sweeper breaks a tradeoff in network
buffer provisioning, as it allows allocating large buffers to
minimize the probability of packet drops without resulting in
increased network data leak rates typically caused by larger
buffers.

Sweeper’s key strength is its simplicity. It has practical
value, as the hardware extensions required are minimal, with-
out involving any new disruptive low-level operation within
the memory subsystem and coherence mechanism. On the
software front, applications require very limited modifications
to benefit from Sweeper, akin to memory management most
programmers are familiar with. Sweeper is therefore well-
positioned for commercialization by mainstream CPU vendors.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd for
their suggestions that improved this paper, including pointing
out the potential privacy perils from allowing the use of
clsweep in userspace without additional precautions. We
also thank Moin Qureshi, Mark Sutherland, Anirudh Sarma,
Hamed Seyedroudbari, and Divya Kadiyala for their construc-
tive feedback on early drafts of the paper. This work was
partially supported by a Georgia Tech School of Computer
Science Incubator Graduate Fellowship and by the National
Science Foundation under the award NSF-CCF-2006602.

APPENDIX

This appendix complements §III’s methodology with addi-
tional details of our experimental setup. We extend the zSim
simulator [54] with a NIC component implementing the Scale-
Out NUMA userspace, hardware-terminated protocol [41] and
with a traffic generator that injects packets at configurable
Poisson arrival rate. We simulate a 24-core server-grade CPU,
modeled after Intel Xeon Gold 6342 [29]. Table I summarizes
key parameters of the simulated system.

Workload configurations. We use the MICA KVS throughout
the paper’s evaluations (§ IV-A, VI-A, VI-B, VI-D and VI-F)

13

with a write-heavy 5/95 GET/SET workload and medium to
large items (512B or 1KB), as specified in each experiment.
The MICA KVS is populated with 2.4M key-value pairs, and
uses 1M buckets and a 256MB circular log. Requests for data
items follow a zipf 0.99 key popularity distribution.

We use an L3 forwarder network function (L3fwd) as a
representative of a network-intensive application with mini-
mal service time and small dataset in §IV-B and §VI-E. In
§VI-E’s experiments, L3fwd’s dataset fits in the L1 cache,
introducing negligible LLC and memory accesses. In §IV-B’s
and §VI-C’s experiment that aim to increase LLC pressure
to demonstrate premature buffer evictions, L3fwd uses 16k
forwarding rules, which barely fit in each core’s private L2
cache. Both the MICA KVS and L3fwd were ported to the
Scale-Out NUMA [53] protocol for our evaluation. Finally,
we use X-Mem [18] as a memory-intensive application in our
evaluated collocation scenarios (§VI-E).

With the exception of §IV-B, §VI-C, and §VI-F, which
purposely push into deep buffering operational regions with
heavy queuing to study premature buffer evictions, all results
refer to peak application throughput achieved under a p99
latency SLO of 100× the deployed workload’s average service
time; hence, reported throughput improvements achieved by
Sweeper over the respective baseline system refer to the same
SLO target.

Buffer sizing. Buffer sizing affects both packet drops and
network data leaks from the LLC to memory. Buffers must
be sized to accommodate at minimum the bandwidth-delay
product between the communicating endpoints, but also offer
resilience to arrival bursts and service time spikes. DPDK’s
default RX size used to be 128 at the 1G NIC era, with 1024
being a value typically encountered today. The reduced oppor-
tunity for buffer multiplexing in user-level stacks exacerbates
the need for more buffers, resulting in overprovisioning as a
function of communicating endpoints (§II-C). To exemplify,
a server with 1024 total RX entries communicating with 256
clients means each client can only have four packets in flight.
Alternatively, if each of these 256 endpoint pairs provisions an
RX ring to allow 128 packets in flight, the server’s aggregate
RX size grows to 32k.

High-performance systems often resort to per-core buffer
provisioning, to mitigate inter-core synchronization [6], [8],

CPU
24 x86-64 cores modeled after Ice Lake, 3.2GHz, OoO,
5-wide dispatch/retirement, 352-entry ROB

L1 Caches
Split L1d/i, 48/32KB 12/8-way, 64B blocks, 4-cycle
access

L2 Caches 1.25MB, 20-way, 14-cycle access

LLC
Shared non-inclusive operating as victim cache for L2
evictions [28], 36MB, 12-way, 35-cycle access

NoC Crossbar, 8-cycle latency

Memory
DDR4-3200, 3 to 8 memory channels
4 ranks per channel, 8 banks per rank
Configuration parameters from Ramulator [33], [47]

TABLE I: System parameters for simulation on zSim.

[46], [53]. Given the latency-sensitive applications we study,
we provision B∈ [512,2048] network buffers per core, but also
study effects of shallower buffering in §VI-F. While we set up
experiments with each core handling a single RX ring of size
B, the setup is also indicative of alternative scenarios where
each core manages N M-deep RX rings with N×M = B (e.g.,
a core handling N InfiniBand connections).

REFERENCES

[1] M. Alian, J. Shin, K.-D. Kang, R. Wang, A. Daglis, D. Kim, and
N. S. Kim, “IDIO: Orchestrating Inbound Network Data on Server
Processors,” IEEE Comput. Archit. Lett., vol. 20, no. 1, pp. 30–33, 2021.

[2] M. Alian, Y. Yuan, J. Zhang, R. Wang, M. Jung, and N. S. Kim,
“Data Direct I/O Characterization for Future I/O System Exploration,” in
Proceedings of the 2020 IEEE International Symposium on Performance
Analysis of Systems and Software (ISPASS), 2020, pp. 160–169.

[3] Arm Limited, “Arm® Architecture Reference Manual for A-profile ar-
chitecture,” https://developer.arm.com/documentation/ddi0487/ha/?lang=
en, accessed August 2022.

[4] Arm Limited, “Arm DynamIQ Shared Unit Technical Reference Man-
ual r3p0,” 2018, https://developer.arm.com/documentation/100453/0300/
functional-description/l3-cache/cache-stashing, accessed August 2022.

[5] A. Awad, A. Basu, S. Blagodurov, Y. Solihin, and G. H. Loh, “Avoiding
TLB Shootdowns Through Self-Invalidating TLB Entries,” in Proceed-
ings of the 26th International Conference on Parallel Architecture and
Compilation Techniques (PACT), 2017, pp. 273–287.

[6] A. Belay, G. Prekas, M. Primorac, A. Klimovic, S. Grossman,
C. Kozyrakis, and E. Bugnion, “The IX Operating System: Combining
Low Latency, High Throughput, and Efficiency in a Protected Data-
plane,” ACM Trans. Comput. Syst., vol. 34, no. 4, pp. 11:1–11:39, 2017.

[7] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat, J. Fowers,
M. Haselman, S. Heil, M. Humphrey, P. Kaur, J.-Y. Kim, D. Lo,
T. Massengill, K. Ovtcharov, M. Papamichael, L. Woods, S. Lanka,
D. Chiou, and D. Burger, “A cloud-scale acceleration architecture,” in
Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), 2016, pp. 7:1–7:13.

[8] A. Daglis, M. Sutherland, and B. Falsafi, “RPCValet: NI-Driven Tail-
Aware Balancing of µs-Scale RPCs,” in Proceedings of the 24th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXIV), 2019, pp. 35–48.

[9] A. Dragojevic, D. Narayanan, M. Castro, and O. Hodson, “FaRM: Fast
Remote Memory,” in Proceedings of the 11th Symposium on Networked
Systems Design and Implementation (NSDI), 2014, pp. 401–414.

[10] D. Dunning, G. J. Regnier, G. L. McAlpine, D. Cameron, B. Shubert,
F. Berry, A. M. Merritt, E. Gronke, and C. Dodd, “The Virtual Interface
Architecture,” IEEE Micro, vol. 18, no. 2, pp. 66–76, 1998.

[11] A. Farshin, A. Roozbeh, G. Q. M. Jr., and D. Kostic, “Make the Most
out of Last Level Cache in Intel Processors,” in Proceedings of the 2019
EuroSys Conference, 2019, pp. 8:1–8:17.

[12] A. Farshin, A. Roozbeh, G. Q. M. Jr., and D. Kostic, “Reexamining
Direct Cache Access to Optimize I/O Intensive Applications for Multi-
hundred-gigabit Networks,” in Proceedings of the 2020 USENIX Annual
Technical Conference (ATC), 2020, pp. 673–689.

[13] D. Firestone, A. Putnam, S. Mundkur, D. Chiou, A. Dabagh, M. An-
drewartha, H. Angepat, V. Bhanu, A. M. Caulfield, E. S. Chung,
H. K. Chandrappa, S. Chaturmohta, M. Humphrey, J. Lavier, N. Lam,
F. Liu, K. Ovtcharov, J. Padhye, G. Popuri, S. Raindel, T. Sapre,
M. Shaw, G. Silva, M. Sivakumar, N. Srivastava, A. Verma, Q. Zuhair,
D. Bansal, D. Burger, K. Vaid, D. A. Maltz, and A. G. Greenberg,
“Azure Accelerated Networking: SmartNICs in the Public Cloud,” in
Proceedings of the 15th Symposium on Networked Systems Design and
Implementation (NSDI), 2018, pp. 51–66.

[14] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi, N. Katarki, A. Bruno,
J. Hu, B. Ritchken, B. Jackson, K. Hu, M. Pancholi, Y. He, B. Clancy,
C. Colen, F. Wen, C. Leung, S. Wang, L. Zaruvinsky, M. Espinosa,
R. Lin, Z. Liu, J. Padilla, and C. Delimitrou, “An Open-Source Bench-
mark Suite for Microservices and Their Hardware-Software Implications
for Cloud & Edge Systems,” in Proceedings of the 24th International
Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-XXIV), 2019, pp. 3–18.

14

https://developer.arm.com/documentation/ddi0487/ha/?lang=en
https://developer.arm.com/documentation/ddi0487/ha/?lang=en
https://developer.arm.com/documentation/100453/0300/functional-description/l3-cache/cache-stashing
https://developer.arm.com/documentation/100453/0300/functional-description/l3-cache/cache-stashing

[15] D. Gibson, H. Hariharan, E. Lance, M. McLaren, B. Montazeri,
A. Singh, S. Wang, H. M. G. Wassel, Z. Wu, S. Yoo, R. Balasubra-
manian, P. Chandra, M. Cutforth, P. Cuy, D. Decotigny, R. Gautam,
A. Iriza, M. M. K. Martin, R. Roy, Z. Shen, M. Tan, Y. Tang, M. Wong-
Chan, J. Zbiciak, and A. Vahdat, “Aquila: A unified, low-latency fabric
for datacenter networks,” in Proceedings of the 19th Symposium on
Networked Systems Design and Implementation (NSDI), 2022, pp. 1249–
1266.

[16] H. Golestani, A. Mirhosseini, and T. F. Wenisch, “Software Data Planes:
You Can’t Always Spin to Win,” in Proceedings of the 2019 ACM
Symposium on Cloud Computing (SOCC), 2019, pp. 337–350.

[17] S. Goswami, N. Kodirov, C. Mustard, I. Beschastnikh, and M. I.
Seltzer, “Parking packet payload with P4,” in Proceedings of the 2020
ACM Conference on Emerging Networking Experiments and Technology
(CoNEXT), 2020, pp. 274–281.

[18] M. Gottscho, S. Govindan, B. Sharma, M. Shoaib, and P. Gupta, “X-
Mem: A cross-platform and extensible memory characterization tool for
the cloud,” in Proceedings of the 2016 IEEE International Symposium
on Performance Analysis of Systems and Software (ISPASS), 2016, pp.
263–273.

[19] A. G. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri,
D. A. Maltz, P. Patel, and S. Sengupta, “VL2: a scalable and flexible
data center network,” Commun. ACM, vol. 54, no. 3, pp. 95–104, 2011.

[20] C. Guo, H. Wu, Z. Deng, G. Soni, J. Ye, J. Padhye, and M. Lipshteyn,
“RDMA over Commodity Ethernet at Scale,” in Proceedings of the ACM
SIGCOMM 2016 Conference, 2016, pp. 202–215.

[21] C. Guo, L. Yuan, D. Xiang, Y. Dang, R. Huang, D. A. Maltz, Z. Liu,
V. Wang, B. Pang, H. Chen, Z.-W. Lin, and V. Kurien, “Pingmesh:
A Large-Scale System for Data Center Network Latency Measurement
and Analysis,” in Proceedings of the ACM SIGCOMM 2015 Conference,
2015, pp. 139–152.

[22] L. Gwennap, “AMD Milan Extends Server Lead,” Linley Group Micro-
processor Report, March 2021.

[23] R. Huggahalli, R. R. Iyer, and S. Tetrick, “Direct Cache Access for
High Bandwidth Network I/O,” in Proceedings of the 32nd International
Symposium on Computer Architecture (ISCA), 2005, pp. 50–59.

[24] IBM, “cli (Cache Line Invalidate) instruction,” https://www.ibm.com/
docs/en/aix/7.2?topic=set-cli-cache-line-invalidate-instruction, accessed
August 2022.

[25] Intel Corporation, “Data plane development kit (DPDK),” https://www.
dpdk.org, accessed August 2022.

[26] Intel Corporation, “Intel Data Direct I/O Technology,” 2012, https://
www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.
html, accessed August 2022.

[27] Intel Corporation, “CLFLUSHOPT—Flush Cache Line Optimized,”
2016, intel 64 and IA-32 Architectures Software Developer’s
Manual, Volume 2A: Instruction Set Reference, A-L –
https://www.intel.com/content/dam/www/public/us/en/documents/
manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf,
page 3-141, accessed August 2022.

[28] Intel Corporation, “Intel Xeon Processor Scalable Family Technical
Overview,” 2019, https://www.intel.com/content/www/us/en/developer/
articles/technical/xeon-processor-scalable-family-technical-overview.
html, accessed August 2022.

[29] Intel Corporation, “Intel Xeon Gold 6342 Processor,” 2021,
https://www.intel.com/content/www/us/en/products/sku/215276/
intel-xeon-gold-6342-processor-36m-cache-2-80-ghz/specifications.
html, accessed August 2022.

[30] A. Kalia, M. Kaminsky, and D. G. Andersen, “Using RDMA efficiently
for key-value services,” in Proceedings of the ACM SIGCOMM 2014
Conference, 2014, pp. 295–306.

[31] A. Kalia, M. Kaminsky, and D. G. Andersen, “FaSST: Fast, Scalable
and Simple Distributed Transactions with Two-Sided (RDMA) Datagram
RPCs,” in Proceedings of the 12th Symposium on Operating System
Design and Implementation (OSDI), 2016, pp. 185–201.

[32] S. M. Khan, Y. Tian, and D. A. Jiménez, “Sampling Dead Block
Prediction for Last-Level Caches,” in Proceedings of the 43rd Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO),
2010, pp. 175–186.

[33] Y. Kim, W. Yang, and O. Mutlu, “Ramulator: A Fast and Extensible
DRAM Simulator,” IEEE Comput. Archit. Lett., vol. 15, no. 1, pp. 45–
49, 2016.

[34] A. Kumar, R. Huggahalli, and S. Makineni, “Characterization of Direct
Cache Access on multi-core systems and 10GbE,” in Proceedings of

the 15th IEEE Symposium on High-Performance Computer Architecture
(HPCA), 2009, pp. 341–352.

[35] A.-C. Lai and B. Falsafi, “Selective, accurate, and timely self-
invalidation using last-touch prediction,” in Proceedings of the 27th
International Symposium on Computer Architecture (ISCA), 2000, pp.
139–148.

[36] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-block prediction & dead-
block correlating prefetchers,” in Proceedings of the 28th International
Symposium on Computer Architecture (ISCA), 2001, pp. 144–154.

[37] A. R. Lebeck and D. A. Wood, “Dynamic Self-Invalidation: Reducing
Coherence Overhead in Shared-Memory Multiprocessors,” in Proceed-
ings of the 22nd International Symposium on Computer Architecture
(ISCA), 1995, pp. 48–59.

[38] G. Liao, X. Zhu, and L. N. Bhuyan, “A new server I/O architecture for
high speed networks,” in Proceedings of the 17th IEEE Symposium on
High-Performance Computer Architecture (HPCA), 2011, pp. 255–265.

[39] T. Ma, T. Ma, Z. Song, J. Li, H. Chang, K. Chen, H. Jiang, and Y. Wu,
“X-RDMA: Effective RDMA Middleware in Large-scale Production En-
vironments,” in Proceedings of the 2019 IEEE International Conference
on Cluster Computing (CLUSTER), 2019, pp. 1–12.

[40] R. Neugebauer, G. Antichi, J. F. Zazo, Y. Audzevich, S. López-Buedo,
and A. W. Moore, “Understanding PCIe performance for end host
networking,” in Proceedings of the ACM SIGCOMM 2018 Conference,
2018, pp. 327–341.

[41] S. Novakovic, A. Daglis, E. Bugnion, B. Falsafi, and B. Grot, “Scale-
out NUMA,” in Proceedings of the 19th International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XIX), 2014, pp. 3–18.

[42] S. Novakovic, Y. Shan, A. Kolli, M. Cui, Y. Zhang, H. Eran, B. Pis-
menny, L. Liss, M. Wei, D. Tsafrir, and M. K. Aguilera, “Storm: a fast
transactional dataplane for remote data structures,” in Proceedings of the
12th ACM International Conference on Systems and Storage (SYSTOR),
2019, pp. 97–108.

[43] NVIDIA, “NVIDIA ConnectX-7 NDR 400G InfiniBand Adapter Card,”
2021, https://www.nvidia.com/content/dam/en-zz/Solutions/networking/
infiniband-adapters/infiniband-connectx7-data-sheet.pdf, accessed Au-
gust 2022.

[44] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Balakrishnan,
“Shenango: Achieving High CPU Efficiency for Latency-sensitive Data-
center Workloads,” in Proceedings of the 16th Symposium on Networked
Systems Design and Implementation (NSDI), 2019, pp. 361–378.

[45] B. Pismenny, L. Liss, A. Morrison, and D. Tsafrir, “The benefits of
general-purpose on-NIC memory,” in Proceedings of the 27th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XXVII), 2022, pp. 1130–1147.

[46] G. Prekas, M. Kogias, and E. Bugnion, “ZygOS: Achieving Low Tail
Latency for Microsecond-scale Networked Tasks,” in Proceedings of the
26th ACM Symposium on Operating Systems Principles (SOSP), 2017,
pp. 325–341.

[47] Ramulator, “DDR4 configuration parameters,” 2018, https://github.
com/CMU-SAFARI/ramulator/blob/master/src/DDR4.h, accessed Au-
gust 2022.

[48] “RISC-V Cache-Block Management Instructions,” https://github.com/
riscv/riscv-CMOs/blob/master/cmobase/Zicbom.adoc#insns-cbo clean,
accessed August 2022.

[49] A. Sarma, H. Seyedroudbari, H. Gupta, U. Ramachandran, and
A. Daglis, “NFSlicer: Data Movement Optimization for Shallow Net-
work Functions,” CoRR, vol. abs/2203.02585, 2022.

[50] A. Singh, J. Ong, A. Agarwal, G. Anderson, A. Armistead, R. Bannon,
S. Boving, G. Desai, B. Felderman, P. Germano, A. Kanagala, H. Liu,
J. Provost, J. Simmons, E. Tanda, J. Wanderer, U. Hölzle, S. Stuart, and
A. Vahdat, “Jupiter rising: a decade of clos topologies and centralized
control in Google’s datacenter network,” Commun. ACM, vol. 59, no. 9,
pp. 88–97, 2016.

[51] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch, M. Wong-Chan,
S. Clark, M. M. K. Martin, M. McLaren, P. Chandra, R. Cauble,
H. M. G. Wassel, B. Montazeri, S. L. Sabato, J. Scherpelz, and A. Vah-
dat, “1RMA: Re-envisioning Remote Memory Access for Multi-tenant
Datacenters,” in Proceedings of the ACM SIGCOMM 2020 Conference,
2020, pp. 708–721.

[52] W. Su, L. Zhang, D. Tang, and X. Gao, “Using Direct Cache Access
Combined with Integrated NIC Architecture to Accelerate Network Pro-
cessing,” in Proceedings of the 2012 IEEE 14th International Conference
on High Performance Computing and Communication & 2012 IEEE 9th

15

https://www.ibm.com/docs/en/aix/7.2?topic=set-cli-cache-line-invalidate-instruction
https://www.ibm.com/docs/en/aix/7.2?topic=set-cli-cache-line-invalidate-instruction
https://www.dpdk.org
https://www.dpdk.org
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/www/us/en/io/data-direct-i-o-technology-brief.html
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-vol-2a-manual.pdf
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/developer/articles/technical/xeon-processor-scalable-family-technical-overview.html
https://www.intel.com/content/www/us/en/products/sku/215276/intel-xeon-gold-6342-processor-36m-cache-2-80-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/215276/intel-xeon-gold-6342-processor-36m-cache-2-80-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/215276/intel-xeon-gold-6342-processor-36m-cache-2-80-ghz/specifications.html
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/networking/infiniband-adapters/infiniband-connectx7-data-sheet.pdf
https://github.com/CMU-SAFARI/ramulator/blob/master/src/DDR4.h
https://github.com/CMU-SAFARI/ramulator/blob/master/src/DDR4.h
https://github.com/riscv/riscv-CMOs/blob/master/cmobase/Zicbom.adoc#insns-cbo_clean
https://github.com/riscv/riscv-CMOs/blob/master/cmobase/Zicbom.adoc#insns-cbo_clean

International Conference on Embedded Software and Systems (HPCC-
ICESSS), 2012, pp. 509–515.

[53] M. Sutherland, S. Gupta, B. Falsafi, V. J. Marathe, D. N. Pnevmatikatos,
and A. Daglis, “The NeBuLa RPC-Optimized Architecture,” in Pro-
ceedings of the 47th International Symposium on Computer Architecture
(ISCA), 2020, pp. 199–212.

[54] D. Sánchez and C. Kozyrakis, “ZSim: fast and accurate microarchitec-
tural simulation of thousand-core systems,” in Proceedings of the 40th
International Symposium on Computer Architecture (ISCA), 2013, pp.
475–486.

[55] The Verge, “ Amazon is reportedly working on custom network-
ing chips,” 2021, https://www.theverge.com/circuitbreaker/2021/3/30/
22358633/amazon-reportedly-custom-network-switch-silicon-aws, ac-
cessed August 2022.

[56] Tilera, “TILE-GX Instruction Set Architecture,” 2013.

[57] A. Tootoonchian, A. Panda, C. Lan, M. Walls, K. J. Argyraki, S. Rat-
nasamy, and S. Shenker, “ResQ: Enabling SLOs in Network Function
Virtualization,” in Proceedings of the 15th Symposium on Networked
Systems Design and Implementation (NSDI), 2018, pp. 283–297.

[58] Y. Yuan, M. Alian, Y. Wang, R. Wang, I. Kurakin, C. Tai, and N. S.
Kim, “Don’t Forget the I/O When Allocating Your LLC,” in Proceedings
of the 48th International Symposium on Computer Architecture (ISCA),
2021, pp. 112–125.

[59] D. Zats, A. P. Iyer, G. Ananthanarayanan, R. Agarwal, R. H. Katz,
I. Stoica, and A. Vahdat, “FastLane: making short flows shorter with
agile drop notification,” in Proceedings of the 2015 ACM Symposium
on Cloud Computing (SOCC), 2015, pp. 84–96.

[60] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury, “Resilient
Datacenter Load Balancing in the Wild,” in Proceedings of the ACM
SIGCOMM 2017 Conference, 2017, pp. 253–266.

16

https://www.theverge.com/circuitbreaker/2021/3/30/22358633/amazon-reportedly-custom-network-switch-silicon-aws
https://www.theverge.com/circuitbreaker/2021/3/30/22358633/amazon-reportedly-custom-network-switch-silicon-aws

	Introduction
	Background
	Data Direct I/O
	Network Data Movement Overheads
	Network Data Leaks in Userspace Network Stacks

	Methodology
	Tracing the Leak to its Source
	Consumed Buffer Evictions
	Premature Buffer Evictions

	Sweeper Design
	Software Interface
	Hardware Support
	Sweeper in Action
	Sweeper on the Transmit Path

	Evaluation
	Sensitivity to DDIO Configuration
	Effect on Memory Access Latency
	Sweeper with Premature Buffer Evictions
	Sensitivity to Memory Bandwidth
	Application Collocation Scenarios
	Shallow Buffering

	Related Work
	Conclusion
	Appendix
	References

