
RPCValet:
NI-Driven Tail-Aware Balancing of µs-Scale RPCs

Alexandros Daglis∗
Georgia Institute of Technology
alexandros.daglis@cc.gatech.edu

Mark Sutherland
EcoCloud, EPFL

mark.sutherland@epfl.ch

Babak Falsafi
EcoCloud, EPFL

babak.falsafi@epfl.ch

Abstract
Modern online services come with stringent quality require-
ments in terms of response time tail latency. Because of their
decomposition into fine-grained communicating software
layers, a single user request fans out into a plethora of short,
µs-scale RPCs, aggravating the need for faster inter-server
communication. In reaction to that need, we are witness-
ing a technological transition characterized by the emer-
gence of hardware-terminated user-level protocols (e.g., In-
finiBand/RDMA) and new architectures with fully integrated
Network Interfaces (NIs). Such architectures offer a unique
opportunity for a new NI-driven approach to balancing RPCs
among the cores of manycore server CPUs, yielding major
tail latency improvements for µs-scale RPCs.

We introduce RPCValet, an NI-driven RPC load-balancing
design for architectures with hardware-terminated protocols
and integrated NIs, that delivers near-optimal tail latency.
RPCValet’s RPC dispatch decisions emulate the theoretically
optimal single-queue system, without incurring synchro-
nization overheads currently associated with single-queue
implementations. Our design improves throughput under
tight tail latency goals by up to 1.4×, and reduces tail latency
before saturation by up to 4× for RPCs with µs-scale service
times, as compared to current systems with hardware sup-
port for RPC load distribution. RPCValet performs within
15% of the theoretically optimal single-queue system.

ACM Reference Format:
Alexandros Daglis∗, Mark Sutherland, and Babak Falsafi. 2019. RPC-
Valet: NI-Driven Tail-Aware Balancing of µs-Scale RPCs. In 2019
Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS ’19), April 13–17, 2019, Providence, RI, USA.ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3297858.3304070

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
ASPLOS ’19, April 13–17, 2019, Providence, RI, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6240-5/19/04. . . $15.00
https://doi.org/10.1145/3297858.3304070

1 Introduction
Modern datacenters deliver a breadth of online services to
millions of daily users. In addition to their huge scale, online
services come with stringent Service Level Objectives (SLOs)
to guarantee responsiveness. Often expressed in terms of tail
latency, SLOs target the latency of the slowest requests, and
thus bound the slowest interaction a user may have with the
service. Tail-tolerant computing is one of the major ongoing
challenges in the datacenter space, as long-tail events are rare
and rooted in convoluted hardware-software interactions.
A key contributor to the well-known "Tail at Scale" chal-

lenge [15] is the deployment of online services’ software
stacks in numerous communicating tiers, where the inter-
actions between a service’s tiers take the form of Remote
Procedure Calls (RPCs). Large-scale software is often built
in this fashion to ensure modularity, portability, and devel-
opment velocity [26]. Not only does each incoming request
result in a wide fan-out of inter-tier RPCs [10, 23], each one
lies directly on the critical path between the user and the
online service [6, 16, 29, 50]. The amalgam of the tail latency
problem with the trend towards ephemeral and fungible soft-
ware tiers has created a challenge to preserve the benefits of
multi-tiered software while making it tail tolerant.
To lower communication overheads and tighten tail la-

tency, there has been an intensive evolution effort in data-
center-scale networking hardware and software, away from
traditional POSIX sockets and TCP/IP and towards lean user-
level protocols such as InfiniBand/RDMA [21] or dataplanes
such as IX and ZygOS [7, 47]. Coupling protocol innova-
tions with state-of-the-art hardware architectures such as
Firebox [4], Scale-Out NUMA [43] or Mellanox’s BlueField
Smart-NIC [37], which offer tight coupling of the network
interface (NI) with compute logic, promises even lower com-
munication latency. The net result of rapid advancements
in the networking world is that inter-tier communication
latency will approach the fundamental lower bound of speed-
of-light propagation in the foreseeable future [20, 50]. The
focus of optimization hence will completely shift to effi-
ciently handling RPCs at the endpoints as soon as they are
delivered from the network.
The growing number of cores on server-grade CPUs [36,

38] exacerbates the challenge of distributing incoming RPCs
to handler cores. Any delay or load imbalance caused by

∗ This work was done while the author was at EPFL.

https://doi.org/10.1145/3297858.3304070
https://doi.org/10.1145/3297858.3304070

this initial stage of the RPC processing pipeline directly im-
pacts tail latency and thus overall service quality. Modern
NIC mechanisms such as Receive-Side Scaling (RSS) [42]
and Flow Direction [24] offer load distribution and connec-
tion affinity, respectively. However, the key issue with these
mechanisms, which apply static rules to split incoming traffic
into multiple receive queues, is that they do not truly achieve
load balancing across the server’s cores. Any resulting load
imbalance after applying these rules must be handled by sys-
tem software, introducing unacceptable latency for the most
latency-sensitive RPCs with µs-scale service times [47, 53].
In this paper, we propose RPCValet, a co-designed hard-

ware and software system to achieve dynamic load balanc-
ing across CPU cores, based on the key insight that on-chip
NIs offer the ability to monitor per-core load in real time
and steer RPCs to lightly loaded cores. The enabler for this
style of dynamic load balancing is tight CPU-NI integration,
which allows fine-grained, nanosecond-scale communica-
tion between the two, unlike conventional PCIe-attached
NIs. To demonstrate the benefits of our design, we first clas-
sify existing load-distribution mechanisms from both the
hardware and software worlds as representative of different
queuing models, and show how none of them is able to reach
the performance of the theoretical best case. We then de-
sign a minimalistic set of hardware and protocol extensions
to Scale-Out NUMA (soNUMA) [43], an architecture with
on-chip integrated NIs, to show that a carefully architected
system can indeed approach the best queuing model’s per-
formance, significantly outperforming prior load-balancing
mechanisms. To summarize, our contributions include:
• RPCValet, an NI-driven dynamic load-balancing design
that outperforms existing hardware mechanisms for load
distribution, and approaches the theoretical maximum
performance predicted by queuing models.

• Hardware and protocol extensions to soNUMA for na-
tive messaging support, a required feature for efficient
RPC handling. We find that, in contrast to prior judg-
ment [43], native messaging support is not disruptive to
the key premise of NI hardware simplicity, which such
architectures leverage to enable on-chip NI integration.

• An RPCValet implementation on soNUMA that delivers
near-ideal RPC throughput under strict SLOs, attaining
within 3–16% of the theoretically optimal queuing model.
For µs-scale RPCs, RPCValet outperforms software-based
and RSS-like hardware-driven load distribution by 2.3–
2.7× and 29–76%, respectively.
The paper is organized as follows: §2 outlines the per-

formance differences between multi- and single-queue sys-
tems, highlighting the challenges in balancing incoming
RPCs with short service times among cores. §3 presents
RPCValet’s design principles, followed by an implementation
using soNUMA as a base architecture in §4. We detail our
methodology in §5 and evaluate RPCValet in §6. Finally, we
discuss related work in §7 and conclude in §8.

2 Background
2.1 Application and technology trends
Modern online services are decomposed into deep hierar-
chies of mutually reliant tiers [26], which typically interact
using RPCs. The deeper the software hierarchy, the shorter
each RPC’s runtime, as short as a few µs for common soft-
ware tiers such as data stores. Fine-grained RPCs exacerbate
the tail latency challenge for services with strict SLOs, as ac-
cumulated µs-scale overheads can result in a long-tail event.
To mitigate the overheads of RPC-based communication,

network technologies have seen renewed interest, with the
InfiniBand fabric and protocol beginning to appear in data-
centers [21] due to its low latency and high IOPS. With net-
working latency approaching the fundamental limits of prop-
agation delays [20], any overhead added to the raw RPC pro-
cessing time at a receiving server critically impacts latency.
For example, while InfiniBand significantly reduces latency
compared to traditional TCP/IP over Ethernet, InfiniBand
adapters still remain attached to servers over PCIe, which
contributes an extra µs of latency to each message [33, 43].
Efficiently handling µs-scale RPCs requires the elimina-

tion of these µs-scale overheads, which is the goal of fully
integrated solutions (e.g., Firebox [4], soNUMA [43]). Such
architectures employ lean, hardware-terminated network
stacks and integrated NIs to achieve sub-µs inter-server com-
munication, representing the best fit for latency-sensitive
RPC services. NI integration enables rapid fine-grained in-
teraction between the CPU, NI, and memory hierarchy, a fea-
ture leveraged previously to accelerate performance-critical
operations, such as atomic data object reads from remote
memory [14]. In this paper, we leverage NI integration to
break existing tradeoffs in balancing RPCs across CPU cores
and significantly improve throughput under SLO.

2.2 Load Balancing: Theory
To study the effect of load balancing across cores on tail la-
tency, we conduct a first-order analysis using basic queuing
theory. We model a hypothetical 16-core server after a queu-
ing system that features a variable number of input queues
and 16 serving units. Fig. 1 shows three different queuing
system organizations. The notation Model Q × U denotes
a queuing system with Q FIFOs where incoming messages
arrive and U serving units per FIFO. The invariant across
the three illustrated models isQ ×U = 16. The 16× 1 system
cannot perform any load balancing; incoming requests are
uniformly distributed across 16 queues, each with a single
serving unit. 1 × 16 represents the most flexible option that
achieves the best load balancing: all serving units pull re-
quests from a single FIFO. Finally, 4 × 4 represents a middle
ground: incoming messages are uniformly distributed across
four FIFOs with four serving units each.
To evaluate different queuing organizations, we employ

discrete event simulationsmodeling Poisson arrivals and four

Model 4x4

P(λ)
uni[0,15]

S0

Model 16x1

S15

…

FIFOs

…

S0

Model 1x16

S15

…FIFO

P(λ)
uni[0,3]

FIFOs

S3
S2

S1
S0

S7
S6

S5
S4

S11
S10

S9
S8

S15
S14

S13
S12

P(λ)

Figure 1.Different queuingmodels for 16 serving units (CPU
cores). P(λ) stands for Poisson arrival distribution.

different service time distributions: fixed, uniform, exponen-
tial, and generalized extreme value (GEV). Poisson arrivals
are commonly used to model the independent nature of in-
coming requests. §5 details each distribution’s parameters.
Fig. 2a shows the performance of five queuing systems

Q × U with (Q,U) = (1,16), (2,8), (4,4), (8,2), (16,1), for an
exponential service time distribution. The system’s achieved
performance is directly connected to its ability to assign
requests to idle serving units. As expected, performance is
proportional toU . The best and worst performing configu-
rations are 1 × 16 and 16 × 1 respectively, while 2 × 8, 4 × 4
and 8 × 2 lie in between these two.
Fig. 2b and 2c show the relation of throughput and 99th

percentile latency for the two extreme queuing system con-
figurations, namely 1×16 and 16×1. As seen in Fig. 2a, 1×16
significantly outperforms 16×1. 16×1’s inability to assign re-
quests to idle cores results in higher tail latencies and a peak
throughput 25–73% lower than 1 × 16 under a tail latency
SLO at 10× the mean service time S̄ . In addition, the degree
of performance degradation is affected by the service time
distribution. For both queuing models, we observe that the
higher a distribution’s variance, the higher the tail latency
(TL) before the saturation point is reached, hence TLf ixed <
TLuni < TLexp < TLGEV . Also, the higher the distribution’s
variance, the more dramatic the performance gap between
1 × 16 and 16 × 1, as is clearly seen for GEV.

The application’s service time distribution is beyond an
architect’s control, as it is affected by numerous software and
hardware factors. However, they can control the queuing
model that the underlying system implements. The theoreti-
cal results suggest that systems should implement a queuing
configuration that is as close as possible to a single-queue
(1 × 16) configuration.

2.3 Load Balancing: Practice
A subtlety not captured by our queuing models is the prac-
tical overhead associated with sharing resources (i.e., the
input queue). In a manycore CPU, allowing all the cores to
pull incoming network messages from a single queue re-
quires synchronization. We refer to this RPC dispatch mode

as "pull-based". Especially for short-lived RPCs, with service
times of a few µs, such synchronization represents signifi-
cant overhead. Architectures that share a pool of connections
between cores have this pitfall; common examples include
using variants of Linux’s poll system call, or locked event
queues supported by libevent.
An alternative approach for distributing load to multiple

cores, advocated by recent research, is dedicating a private
queue of incoming network messages to each core [7, 45].
Although this design choice corresponds to a rigid N × 1
queuing model (N being the number of cores), it completely
eschews overheads related to sharing (i.e., synchronization
and coherence), delivering significant throughput gains. By
leveraging RSS [42] inside the NI, messages are consistently
distributed at arrival time to one of the N input queues. This
ultimately results in a different mode of communication:
instead of the cores pullingmessages from a single queue, the
NI hardware actively pushesmessages into each core’s queue.
We refer to this load distribution mode as "push-based".

FlexNIC [30] extends the push-based model by proposing
a P4-inspired domain-specific language, allowing software
to install match-action rules into the NI. Despite their many
differences, both FlexNIC and RSS completely rely on deci-
sions based on the RPC packets’ header content. Whether
configured statically or by the application, push-based load
distribution still fundamentally embodies a multi-queue sys-
tem vulnerable to load imbalance, as no information pertain-
ing to the system’s current load is taken into account. §2.2’s
queuing models demonstrate the effect of this imbalance as
compared to a system with balanced queues.

The two aforementioned approaches to load distribution,
pull- and push-based, represent a tradeoff between synchro-
nization and load imbalance. In this paper, we leverage the on-
chip NI logic featured in emerging fully integrated architec-
tures such as soNUMA [43] to introduce a novel push-based
NI-driven load-balancing mechanism capable of breaking
that tradeoff by making dynamic load-balancing decisions.

3 RPCValet Load-Balancing Design
This section describes the insights and foundations guiding
RPCValet’s design. Our goal is to achieve a synchronization-
free system that behaves like the theoretical best single-
queue model. We begin by setting forth our basic assump-
tions about the underlying hardware and software, then
explain the roadblocks to achieving dynamic load balancing,
and conclude with the principles of RPCValet’s design.

3.1 Basic Architecture
We design RPCValet for emerging architectures featuring
fully integrated NIs and hardware-terminated transport pro-
tocols.We target these architectures for two reasons. First, an
important class of online services exhibits RPCs with service
times that are frequently only a few µs long. For example,

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

99
th

 p
ct

 la
te

nc
y

Load

1x16 2x8
4x4 8x2
16x1

(a) Exponential service time.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

99
th

 p
ct

 la
te

nc
y

Load

fixed-1x16 uni-1x16

exp-1x16 gev-1x16

(b)Model 1 × 16.

0

2

4

6

8

10

0 0.2 0.4 0.6 0.8 1

99
th

 p
ct

 la
te

nc
y

Load

fixed-16x1
uni-16x1
exp-16x1
gev-16x1

(c) Model 16 × 1.

Figure 2. Tail latency as a function of throughput for different queuing systems and service time distributions. Y-axis values
are shown as multiples of the mean service time S̄ .

the average service time for Memcached [2] is ∼ 2µs [47].
Even software with functionality richer than simple data re-
trieval can exhibit µs-scale service times: the average TPC-C
query service time on the Silo in-memory database [53] is
only 33µs [47]. Software tiers with such short service times
necessitate network architectures optimized for the lowest
possible latency, using techniques such as kernel bypass and
polling rather than receiving interrupts.

Second, unpredictable tail-inducing events for these short-
lived RPCs often disrupt application execution for periods
of time that are comparable to the RPCs themselves [6]. For
example, the extra latency imposed by TLB misses or context
switches spans from a few hundred ns to a few µs. At such
fine granularities, any load-balancing policy implemented at
the distal end of an I/O-attached NI is simply too far from the
CPU cores to adjust its load dispatch decisions appropriately.
Therefore, we argue that mitigating load imbalance at the
µs level requires µs-optimized hardware.

The critical feature of our µs-optimized hardware is a fully
integrated NI with direct access to the server’s memory hier-
archy, eliminating costly roundtrips over traditional I/O fab-
rics such as PCIe. Each server registers a part of its DRAM in
advance with a particular context that is then exported to all
participating servers, creating a partitioned global address
space (PGAS) where every server can read/write remote
memory in RDMA fashion. The architecture’s programming
model is a concrete instantiation of the Virtual Interface Ar-
chitecture (VIA) [18], where each CPU core communicates
with the NI through memory-mapped queue pairs (QPs).
Each QP consists of a Work Queue (WQ) where the core
writes entries (WQEs) to be processed by the NI, and a Com-
pletion Queue (CQ), where the NI writes entries (CQEs) to
indicate that the cores’ WQEs were completed. For more de-
tails, refer to the original VIA [18] and soNUMA [43] work.

3.2 NI Integration: The Key Enabler
The NI’s integration on the same piece of silicon as the CPU
is the key enabler for handling µs-scale events. By leveraging
the fact that such integration enables fine-grained real-time
(nanosecond-scale) information to be passed back and forth
between the NI and the server’s CPU, the NI has the ability to

respond to rapidly changing load levels and make dynamic
load-balancing decisions. To illustrate the importance of
ns-scale interactions, consider a data serving tier such as
Redis [3], maintaining a sorted array in memory. Since the
implementation of its sorted list container uses a skip list to
provide add/remove operations in O (loд (N)) time, an RPC
to add a new entry may incur multiple TLB misses, stalling
the core for a few µs while new translations are installed.
While this core is stalled on the TLB miss(es), it is best to
dispatch RPCs to other available cores on the server.

An integrated NI can, with proper hardware support, mon-
itor each core’s state and steer RPCs to the least loaded cores.
Such monitoring is implausible without NI integration, as
the latency of transferring load information over an I/O bus
(e.g., ∼ 1.5µs for a 3-hop posted PCIe transaction) would
mean that the NI will make delayed—hence sub-optimal, or
even wrong—decisions until the information arrives.

The active feedback of information from the server’s com-
pute units (which are not restricted to CPU cores) to the
NI can take many forms, ranging from monitoring memory
hierarchy events to metadata directly exposed by the appli-
cation. Regardless of the exact policy, the underlying enabler
for RPCValet’s ability to handle µs-scale load imbalance is
that load dispatch decisions are driven by an integrated NI.

3.3 Design Principles
Our design goal is to break the tradeoff between the load
imbalance inherent in multi-queue systems and the synchro-
nization associated with pulling load from a single queue.
To begin, we retain the VIA’s design principle of allocating
a single virtual interface (identical to a QP in IB/soNUMA
terminology) to each participating thread, which is critically
important for handling µs-scale RPCs. Registering indepen-
dent QPs with the NI helps us achieve the goal of elimi-
nating synchronization, as each thread polls on its own QP
and waits for the arrival of new RPCs. This simplifies the
load-balancing problem to simply choosing the correct QP
to dispatch the RPC to. By allowing the NI to choose the QP
at message arrival time, based on one of the many possible
heuristics for estimating per-core load, our design achieves
the goal of synchronization-free push-based load balancing.

C cores

c

poll

N
✕

S
sl

ot
s

S
sl

ot
s

N✕S✕C slots total

NI
on

e-
si

de
d

w
rit

es

…

c
…

(a) Emulated messaging.

poll

dispatch

N✕S slots total

…

C cores
& C QPs

NI

c

c
1

2

(b) RPCValet.

Figure 3. Emulated messaging versus RPCValet.

Unfortunately, realizing such a design with our baseline
architecture (§ 3.1) is not possible, as existing primitives are
not expressive enough for push-based dispatch. In particular,
architectures with on-chip NIs such as soNUMA [43] do not
provide native support for messaging operations, favoring
RDMA operations for hardware simplicity that facilitates NI
integration. These RDMA operations (a.k.a. "one-sided" ops)
enable direct read/write access of remote memory locations,
without involving a CPU at the remote end. Hence, a recep-
tion of a one-sided op is not associated with a creation of a
CPU notification event by the NI.
Messaging can be emulated on top of one-sided ops by

allocating shared bounded buffers in the PGAS [17, 27, 43],
into which threads directly place messages using one-sided
writes. Fig. 3a illustrates the high-level operation of emu-
lated messaging. As emulated messaging is performed in
a connection-oriented fashion from thread to thread, each
RPC-handling thread allocates N bounded buffers, each with
S message slots; N is the number of nodes that can send
messages. Each of the C cores polls at the head slots of its
corresponding N buffers for incoming RPCs.

The fundamental drawback of such emulated messaging is
that the sending thread implicitly determines which thread
at the remote end will process its RPC request, because the
memory location the RPC is written to is tied to a specific
thread. The result is a multi-queue system, vulnerable to load
imbalance. Although it may be possible to implement some
form of load-aware messaging (e.g., per-thread client-server
flow control), such mechanisms will have little to no benefit
due to the relatively high network round-trip time for load
information to diffuse between the two endpoints, especially
when serving short-lived RPCs.

A key reason why, in the case of emulated messaging, the
NI at the destination cannot affect the a priori assignment
of an incoming RPC to a thread is that the protocol does not
enable the NI to distinguish a "message" (i.e., a one-sided
write triggering two-sided communication) from a default
one-sided op. Protocol support for native messaging with
innate semantics of two-sided operations overcomes this lim-
itation and enables the NI at the message’s destination node

NI frontend NI backend

N
etw

o
rk

 R
o

u
ter

Figure 4. Manycore NI architecture.

to perform push-based load balancing. Fig. 3b demonstrates
RPCValet’s high-level operation. The NI first writes every in-
coming message into a single PGAS-resident message buffer
of N × S slots, as in the case of emulated messaging. Then,
the NI uses a selected core’s QP to notify it to process the
incoming RPC request. In effect, RPCValet decouples a mes-
sage’s arrival and location in memory from its assignment
to a core for processing, thus achieving the best of both
worlds: the load-balancing flexibility of a single-queue sys-
tem, and the synchronization-free, zero-copy behavior of
partitioned multi-queue architectures. Fig. 3b demonstrates
how NI-driven dynamic dispatch decisions result in balanced
load, in contrast to Fig. 3a’s example.
In conclusion, RPCValet requires extensions to both the

on-chip NI hardware and the networking protocol, to first
provide support for native messaging and, second, realize
dynamic load-balancing decisions. In the following section,
we describe an implementation of an architecture featuring
both of these mechanisms.

4 RPCValet Implementation
In this section, we describe our RPCValet implementation
as an extension of the soNUMA architecture [43], including
a lightweight extension of the baseline protocol for native
messaging and support for NI-driven load balancing.

4.1 Scale-Out NUMA with Manycore NI
soNUMA enables rapid remote memory access through a
lean hardware-terminated protocol and on-chip NI integra-
tion. soNUMA deploys a QP interface for CPU-NI interaction
(§3.1) and leverages on-chip cache coherence to accelerate
QP-entry transfers between the CPU and NI.

Fig. 4 shows soNUMA’s scalable NI architecture for many-
core CPUs [13]. The conventionally monolithic NI is split
into two heterogeneous parts, a frontend and a backend.
The frontend is the "control" component, and is collocated
with each core to drastically accelerate QP interactions. The
backend is replicated across the chip’s edge, to scale the NI’s
capability with growing network bandwidth, and handles
all data and network packets. Pairs of frontend and back-
end entities, which together logically comprise a complete

c0

c2

c1

c3

NI0

NI1

Node 0 memory hierarchy

…

Send buffers

N
od

e
0

N
od

e
N

-1c0 local buf

tail

1
2

3
4

5

C

send

WQ0

WQ3

…

(a) Sender (source).

Node 1 memory hierarchy

…

Recv buffers

N
od

e
1

N
od

e
N

-1

6

CQ0

CQ3

…
7

9

WQ0

WQ3

…

B

A

replenish

Shared CQ

8

NI0

NI1

c0

c2

c1

c3

poll

(b) Receiver (destination).

Figure 5. Messaging illustration. Node 0 (sender) sends a message to node 1 (receiver).

NI, communicate with special packets over the chip’s in-
terconnect. Our RPCValet implementation relies on such a
Manycore NI architecture.

4.2 Lightweight Native Messaging
We devise a lightweight implementation of native messag-
ing as a required building block for dynamic load-balancing
decisions at the NI. A key difficulty to overcome is support
for multi-packet messages, that must be reassembled by the
destination NI. This goal conflicts with soNUMA’s stateless
request-response protocol, which unrolls large requests into
independent packets each carrying a single cache block pay-
load. Emulated messaging (see §3.3) does not require any
reassembly at the destination, because all packets are directly
written to the bounded buffer specified by the sender.

One workaround to avoid message reassembly complica-
tions would be to limit the maximum message size to the
link layer’s MTU. Prior work has adopted this approach to
build an RPC framework on an IB cluster [27]. Such a de-
sign choice may be an acceptable limitation for IB networks
which have a relatively large MTU of 4KB. However, fully in-
tegrated solutions with on-chip NIs will likely feature small
MTUs (e.g., a single cache line in soNUMA), so limiting the
maximum message size to the link-layer MTU is impractical.

Our approach to avoiding the hardware overheads associ-
ated with message reassembly is keeping the buffer provi-
sioning of the emulated messaging mechanism, which allows
the sender to determine the memory location the message
will be written to. Therefore, soNUMA’s request-response
protocol can still handle the message as a series of inde-
pendent cache-block-sized writes to the requester-specified
memory location. While this mechanism may seem identical
to one-sided operations, we introduce a new pair of send
and replenish operations which expose the semantics of
multi-packet messages to the NI—it can then distinguish true
one-sided operations from messaging operations, which are
eligible for load balancing. The NI keeps track of packet re-
ceptions belonging to a send, deduces when it has been fully
received, and then hands it off to a core for processing.

Fig. 5 shows the delivery of amessage fromNode 0 to Node
1 in steps. Completing the message delivery requires the
execution of a send operation on Node 0 and a replenish
operation on Node 1. Fig. 5 only shows NI backends; NI
frontends are collocated with every core. We start with the
required buffer provisioning associated with messaging.

Buffer provisioning. We introduce the notion of a mes-
saging domain, which includes N nodes that can exchange
messages and is defined by a pair of buffers allocated in each
node’s memory, the send buffer and the receive buffer. The
send buffer comprises N × S slots, as described in §3.3.
Fig. 5a illustrates a send buffer with S=3 and different

shades of gray distinguishing the send slots per participating
node. Each send slot contains bookkeeping information for
the local cores to keep track of their outstanding messages.
It contains a valid bit, indicating whether the send slot is
currently being used, a pointer to a buffer in local memory
containing the message’s payload, and a field indicating the
size of the payload to be sent. A separate in-memory data
structure maintains the head pointer for each of the N sets of
send slots, which the cores use to atomically enqueue new
send requests (not shown).
The receive buffer, shown in Fig. 5b, is the dual of the

send buffer, where incoming send messages from remote
nodes end up, and is sized similarly (N × S receive slots).
Unlike send slots, receive slots are sized to accommodate
message payloads. Each receive slot also contains a counter
field, used to determine whether all of a message’s packets
have arrived. The counter field should provide enough bits to
represent the number of cache blocks comprising the largest
message; we overprovision by allocating a full cache block
(64B), to avoid unaligned accesses for incoming payloads.

Overall, the messaging mechanism’s memory footprint
is 32 × N × S + (max_msд_size + 64) × N × S bytes. We ex-
pect that for current deployments, that number should not
exceed a few tens of MBs. Systems adopting fully integrated
solutions will likely be of contained scale (e.g., rack-scale
systems), featuring a few hundred nodes, hence bounding
the N parameter. In addition, most communication-intensive

latency-sensitive applications send small messages, bound-
ingmax_msд_size . For instance, the vast majority of objects
in object stores like Memcached are <500B [5], while 90% of
all packets sent within Facebook’s datacenters are smaller
than 1KB [49]. Finally, given the low network latency fully
integrated solutions like soNUMA deliver, the number of
concurrent outstanding requests S required to sustain peak
throughput per node pair would be modest (a few tens). Dy-
namic buffer management mechanisms to reduce memory
footprint are possible, but beyond the scope of this paper.

Importantly, a fixedmax_msд_size does not preclude the
exchange of larger messages altogether. A rendezvous mech-
anism [51] can be used, where the sending node’s initial
message specifies the location and size of the data, and the
receiving node uses a one-sided read operation to directly
pull the message’s payload from the sending node’s memory.

Send operation. Sending a message to a remote node in-
volves the following steps. First, the core writes the message
in a local core-private buffer (Fig. 5a, 1), updates the tail
entry of the send buffer set corresponding to the target node
(e.g., Node 1) 2 and enqueues a send operation in its private
WQ 3 . The send operation specifies a messaging domain,
the target node id, the remote receive buffer slot’s address,
a pointer to the local buffer containing the outgoing message,
and the message’s size. The target receive buffer slot’s ad-
dress can be trivially computed, as the number of nodes in the
messaging domain, the number of send/receive slots per
node, and themax_msд_size are all defined at the messaging
domain’s setup time. The NI polls on the WQ 4 , parses the
command, reads the message from the local memory buffer
5 , and sends it to the destination node.
At the destination, the NI writes each send packet directly

in the local memory hierarchy, into the specified receive
slot, and increments that receive slot’s counter (Fig. 5b, 6).
When the counter matches the send operation’s total packet
count (contained in each packet’s header), the NI writes a
message arrival notification entry in a shared CQ 7 . The
shared CQ is a memory-mapped and cacheable FIFO where
the NI enqueues pointers to received send requests. When
it is time for a dispatch decision, the NI selects a core and
assigns the head entry of the shared CQ to it by writing the
receive slot’s index, contained in the shared CQ entry, into
that core’s corresponding CQ 8 . This is a crucial step that
enables RPCValet’s NI-driven dynamic load balancing, which
we expand in §4.3. Finally, the core receives the new send
request 9 polling the head of its private CQ, then directly
reads the message from the receive buffer and processes it.

Replenish operation. A replenish operation always fol-
lows the receipt of a send operation as a form of end-to-
end flow control: a replenish notifies the send operation’s
source node that the request has been processed and hence
its corresponding send buffer slot is free and can be reused.
In Fig. 5b’s example, when core 3 is done processing the

send request, it enqueues a replenish in its private WQ
A . The replenish only contains the target node and the
target send buffer slot’s address, trivially deduced from the
receive buffer index the corresponding send was retrieved
from. The NI, which is polling at the head of core 3’s WQ,
reads the new replenish request B and sends the message
to node 0. When the replenish message arrives at node
0, the NI invalidates the corresponding send buffer slot by
resetting its valid field (Fig. 5a, C), indicating its availability
to be reused. In practice, a replenish operation is syntactic
sugar for a special remote write operation, which resets the
valid field of a send buffer slot.

4.3 NI-driven Dynamic Load Balancing
With the NI’s newly added ability to recognize and manage
message arrivals, we now proceed to introduce NI-driven dy-
namic load balancing. Load-balancing policies implemented
by the NIs can be sophisticated and can take various affini-
ties and parameters into account (e.g., certain types of RPCs
serviced by specific cores, or data-locality awareness). Im-
plementations can range from simple hardwired logic to mi-
crocoded state machines. However, we opt to keep a simple
proof-of-concept design, to illustrate the feasibility and effec-
tiveness of load-balancing decisions at the NIs and demon-
strate that we can achieve the load-balancing quality of a
single-queue system without synchronization overheads.
Fig. 5b’s step 8 is the crucial step that determines the

balancing of incoming requests to cores. In RPCValet, the
receiving node’s NI keeps track of the number of outstanding
send requests assigned to each core. Receiving a replenish
operation from a core implies that the core is done processing
a previously assigned send. Allowing only one outstanding
request per core and dispatching a new request only after
receiving a notification of the previous one’s completion
corresponds to true single-queue system behavior, but leaves
a small execution bubble at the core. The bubble can be
eliminated by setting the number of outstanding requests
per core to two. We found that introducing a small multi-
queue effect is offset by eliminating the bubble, resulting in
marginal performance gains for ultra-fast RPCs with service
times of a few 100s of nanoseconds.
A challenge that emerges from the distributed nature of

a Manycore NI architecture is that the otherwise indepen-
dent NI backends, each of which is handling send message
arrivals from the network, need to coordinate to balance
incoming load across cores. Our proposed solution is simple,
yet effective: centralize the last step of message reception
and dispatch. One of the NI backends—henceforth referred
to as the NI dispatcher—is statically assigned to handle mes-
sage dispatch to all the available cores. Network packet and
data handling still benefit from the parallelism offered by the
Manycore NI architecture, as all NI backends still indepen-
dently handle incoming network packets and access memory

directly. However, once an NI backendwrites all packets com-
prising a message in their corresponding receive buffer slots,
it creates a special message completion packet and forwards
it to the NI dispatcher over the on-chip interconnect. Once
the NI dispatcher receives the message completion packet, it
enqueues the information in the shared CQ, from which it
dispatches messages to cores in FIFO order as soon as it re-
ceives a replenish operation. As all the incoming messages
are dispatched from a single queue to all available cores,
RPCValet behaves like a true single-queue queuing system.

Having a single NI dispatcher eschews software synchro-
nization, but raises scalability questions. However, for
modern server processor core counts, the required dispatch
throughput should be easily sustainable by a single central-
ized hardware unit, while the additional latency due to the
indirection from any NI backend to the NI dispatcher is negli-
gible. From the throughput perspective, even an RPC service
time as low as 500ns corresponds to a new dispatch deci-
sion every ∼31/8ns for a 16/64-core chip, respectively. Both
dispatch frequencies are modest enough for a single hard-
ware dispatch component to handle, especially for our simple
greedy dispatch implementation. The same observation also
holds for more sophisticated dispatch policies if their hard-
ware implementation can be pipelined. Latency-wise, the
indirection from any NI backend to the NI dispatcher costs
a couple of on-chip interconnect hops, adding just a few ns
to the end-to-end message delivery latency. In case of exotic
system deployments where the above assumptions do not
hold, an intermediary design point is possible where each
NI backend can dispatch to a limited subset of cores on the
chip. As an example of this design point, we also implement
and evaluate a 4 × 4 queuing system in §6.

4.4 soNUMA Extensions for RPCValet
We now briefly summarize the modifications to soNUMA’s
hardware to enable RPCValet, including the necessary pro-
tocol extensions for messaging and load balancing. Load
balancing itself is transparent to the protocol and only af-
fects a pipeline stage in the NI backends.

Additional hardware state. Most of the state required for
messaging (i.e., send/receive buffers) is allocated in host
memory. The only metadata kept in dedicated SRAM are the
send and receive buffers’ location and size, as they require
constant fast access. On each node, the maintained state
per registered soNUMA context includes a memory address
range per node and a QP per local core. In total, we add 20B of
stored state per context, including: the base virtual addresses
for the send/receive buffers, the maximum message size
(max_msд_size), the # of nodes (N) in the messaging domain,
and the # of messaging slots (S) per node.

Hardware logic extensions. soNUMA’s NI features three
distinct pipelines for handling Request Generations, Request
Completions, and Remote Request Processing, respectively

[43]. We extend these pipelines to support the new messag-
ing primitives and load-balancing functionality. Receiving
a new send or replenish request is very similar to the re-
ception of a remote write operation in the original soNUMA
design. To support our native messaging design, we add a
field containing the total message size to the network layer
header; this is necessary so the NI hardware can identify
when all of a message’s packets have been received.

We add five new stages to the NI pipelines in total. A new
stage in Request Generation differentiates between send
and replenish operations, and operates on the messag-
ing domain metadata. All other modifications are limited
to the Remote Request Processing Pipeline, which is only
replicated across NI backends. When a send is received, the
pipeline performs a fetch-and-increment operation to the
corresponding counter field of the target receive buffer
slot (§4.2, "Send operation"). The next stage checks if the
counter’s new value matches the message’s length, carried
in each packet header. If all of the send operation’s pack-
ets have arrived, the next stage enqueues a pointer to the
corresponding receive buffer slot in the shared CQ.
The final stage added to the Remote Request Processing

pipeline, Dispatch, keeps track of the number of outstanding
requests assigned to each core and determines when and
to which core to dispatch send requests to from the shared
CQ. A core is "available" when its number of outstanding
requests is below the threshold defined; in our implemen-
tation, this number is two. Whenever there is an available
core, the Dispatch stage dequeues the shared CQ’s first en-
try and sends it to the target core’s NI frontend, where the
Request Completion pipeline writes it into the core’s private
CQ. The complexity of the Dispatch stage is very simple for
our greedy algorithm, but varies based on the logic and algo-
rithm involved in making load-balancing decisions. Finally,
after completing the request, the core signals its availability
by enqueuing a replenish operation in its WQ, which is
propagated by the core’s NI frontend to the NI backend that
originally dispatched the request.
In summary, the additional hardware complexity is mod-

est, thus compatible with architectures featuring ultra-light-
weight protocols and on-chip integratedNIs, such as soNUMA.
Given the on-chip NI’s fast access to its local memory hierar-
chy, it is possible to virtualizemost of the bulky state required
for the messaging mechanism’s send and receive buffers
in the host’s memory. The dedicated hardware requirements
are limited to a small increase in SRAM capacity, while the
NI logic extensions are contained and straightforward.

5 Methodology
We now detail our methodology for evaluating RPCValet’s
effectiveness in balancing load transparently in hardware.

System organization. We model a single tiled 16-core chip
implementing soNUMA with a Manycore NI, as illustrated

Cores
ARM Cortex-A57-like; 64-bit, 2GHz, OoO
3-wide dispatch/retirement, 128-entry ROB, TSO

L1 Caches
32KB 2-way L1d, 48KB 3-way L1i, 64-byte blocks
2 ports, 32 MSHRs, 3-cycle latency (tag+data)

LLC
Shared block-interleaved NUCA, 2MB total
16-way, 1 bank/tile, 6-cycle latency

Coherence Directory-based Non-Inclusive MESI
Memory 50ns latency, 4×25.6GBps (DDR4)

Interconnect 2D mesh, 16B links, 3 cycles/hop
Table 1. Flexus simulation parameters.

in Fig. 4. The modeled chip is part of a 200-node cluster,
with remote nodes emulated by a traffic generator which
creates synthetic send requests following Poisson arrival
rates, from randomly selected nodes of the cluster. The traffic
generator also generates synthetic replies to the modeled
chip’s outgoing requests. We use Flexus [54] cycle-accurate
simulation with Table 1’s parameters.

Microbenchmark. Weuse amultithreadedmicrobenchmark
that emulates different service time distributions, where each
thread executes the following actions in a loop: (i) spins on
its CQ, until a new send request arrives; (ii) emulates the
execution of an RPC by spending processing time X , whereX
follows a given distribution as detailed below; (iii) generates
a synthetic RPC reply, which is sent back to the requester
using a send operation with a 512B payload; and (iv) issues
a replenish corresponding to the processed send request,
marking the end of of the incoming RPC’s processing. The
overall service time for an emulated RPC (i.e., the total time
a core is occupied) is the sum of steps (ii) to (iv).

RPC processing time distributions. To evaluate RPCValet
on a range of RPC profiles, we utilize processing time dis-
tributions generated with three different methods. First, we
develop an RPC processing time generator that samples val-
ues from a selected distribution. We experiment with four
different distributions: fixed, uniform, exponential, and GEV.
Fixed represents the ideal case, where all requests take the
same processing time. GEV represents a more challenging
case with infrequent long tails, which may arise from events
like page faults or interrupts. Uniform and exponential dis-
tributions fall between fixed and GEV in terms of impact
on load balancing, as established in Fig. 2. For our synthetic
processing time distributions, we use 300ns as a base latency
and add an extra 300ns on average, following one of the four
distributions. The parameters we use for GEV are (location,
scale, shape) = (363, 100, 0.65), which result in a mean of 600
cycles (i.e., 300ns at 2GHz) [1]. Fig. 6a illustrates the PDFs of
the four resulting processing time distributions.

Second, we run the HERD [27] key-value store and collect
the distribution of the RPCs’ processing times. We use a dual-
socket Xeon E5-2680 Haswell server and pin 12 threads on an
equal number of a single socket’s physical cores. The second
socket’s cores generate load. Our parameters for HERD are:

0 500 1000
0.00

0.25

0.50

0.75

1.00
×10−2

m
ean

(a) Synthetic

GEV
Uniform
Exp

0 500 1000

(b) HERD

m
ean

0.0 0.2 0.4 0.6 0.8 1.0
Processing Time (ns)

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ili

ty
(1

e-
2)

0 500 1000 1500 2000 2500 3000 3500 4000
Processing Time (ns)

0

1

2

pr
ob

.(
1e

-3
) ×10−3

m
ean

(c) Masstree

Figure 6. Modeled RPC processing time distributions.

95/5% read/write query mix, uniform key popularity, and a
4GB dataset (256MB per thread). Fig. 6b displays a histogram
of HERD’s RPC processing times after the request has exited
the network, which have a mean of 330ns.
Finally, we evaluate the Masstree data store [40], which

stores key-value pairs in a trie-like structure and supports or-
dered scans in addition to put/get operations. Ordered scans
are common in database/analytics applications and compete
with latency-critical operations for CPU time when access-
ing the same data store. To collect RPC processing times,
we use the same platform and dataset we used for HERD
and load the server with 99% single-key gets, interleaved
with 1% long-running scans which return 100 consecutive
keys. The resulting distribution for gets is shown in Fig-
ure 6c and has an average of 1.25 µs. The runtime of scans
is 60–120 µs (not shown in Fig. 6c due to the X-axis bounds).

Load-balancing implementations. We first compare the
performance of two RPCValet variants, 1 × 16 and the less
flexible 4 × 4. In 4 × 4, each NI backend is limited to balanc-
ing load across the four cores corresponding to its on-chip
network row. We also consider a 16× 1 system, representing
partitioned dataplanes where every incoming message is as-
signed to a core at arrival timewithout any rebalancing. 16×1
is the only currently existing NI-driven load distribution
mechanism. Next, we compare the best-performing hardware
load-balancing implementation, 1 × 16, to a software-based
counterpart. In our software implementation, NIs enqueue
incoming send requests into a single CQ from which all 16
threads pull requests in FIFO order. We use an MCS queue-
based lock [41] for the shared request queue.

We assume a 99th percentile Service Level Objective (SLO)
of ⩽ 10× the mean service time S̄ we measure in each exper-
iment and evaluate all configurations in terms of throughput
under SLO. We measure each request’s latency as the time
from the reception of a send message until the thread that
services the request posts a replenish operation.

0
1
2
3
4
5
6

0 5 10 15 20 25 30

99
th

 p
ct

 l
at

en
cy

 (!
s)

Throughput (M reqs/s)

16x1 4x4 1x16

SLO

(a) HERD.

0

15

30

45

60

75

0 2 4 6 8

99
th

 p
ct

 l
at

en
cy

 (!
s)

Throughput (M reqs/s)

16x1 4x4 1x16

SLO

(b)Masstree.

0
2
4
6
8
10
12
14

0 2 4 6 8 10 12 14

99
th

 p
ct

 l
at

en
cy

 (!
s)

Throughput (M reqs/s)

16x1_fixed 4x4_fixed 1x16_fixed
16x1_gev 4x4_gev 1x16_gev

SLO

(c) Synthetic distributions.

Figure 7. Load balancing with three different hardware queuing implementations.

6 Evaluation
6.1 Load Balancing: Hardware Queuing Systems
Fig. 7a shows the performance of HERD with each of the
three evaluatedNI-driven load-balancing configurations.With
a resulting S̄ of ∼ 550ns, 1 × 16 delivers 29MRPS, 1.16× and
1.18× higher throughput than 4 × 4 and 16 × 1, respectively.
1 × 16 consistently delivers the best performance, thanks to
its superior flexibility in dynamically balancing load across
all 16 available cores. In comparison, 4 × 4 offers limited
flexibility, while 16 × 1 offers none at all. The flexibility to
balance load from a single queue to multiple cores not only
results in higher peak throughput under SLO, but also up to
4× lower tail latency before reaching saturation load. Con-
versely, lower tail means that the throughput gap between
RPCValet and 1 × 16 would be larger for SLOs stricter than
the assumed 10 × S̄ . Note that data points appearing slightly
lower at mid load as compared to low load in Fig. 7a is a
measurement artifact: for low arrival rates, the relatively
small number of completed requests during our simulation’s
duration results in reduced tail calculation accuracy.
Fig. 7b shows the tail latency of Masstree’s get oper-

ations with each queuing configuration. We set the SLO
for Masstree at 10× the service time of the get operations,
equalling 12.5µs; we do not consider the scan operations la-
tency critical. Due to interference from the scans, 16×1 can-
not meet the SLO even for the lowest arrival rate of 2MRPS,
while even 4 × 4 quickly violates the SLO at 3MRPS. 1 × 16
delivers 4.1MRPS at SLO, outperforming 4× 4 by 37%. Under
a more relaxed SLO of 75µs, RPCValet’s 1 × 16 configuration
delivers 54% higher throughput than 16 × 1 and 20% higher
than 4×4. In the presence of long-running scans that occupy
cores for many µs, RPCValet leverages occupancy feedback
from the cores to eliminate excess queuing of latency-critical
gets and improve throughput under SLO.
Fig. 7c shows the results for two of our synthetic service

time distributions, fixed and GEV. The results for uniform
and exponential distributions fall between these two, are
omitted for brevity, and are available in [12]. The results
follow the expectations set in §2.2. For the fixed distribution,
1 × 16 delivers 1.13× and 1.2× higher throughput than 4 × 4

and 16 × 1 under SLO, respectively. For GEV, the throughput
improvement grows to 1.17× and 1.4×, respectively. Similar
to HERD results, in addition to throughput gains, RPCValet
also delivers up to 4× lower tail latency before saturation.
In all of Fig. 7’s experiments we set RPCValet’s number

of outstanding requests per core to two (see §4.3). Reducing
this to one marginally degrades HERD’s throughput, because
of its short sub-µs service times, but has no measurable
performance difference in the rest of our experiments.
In conclusion, RPCValet significantly improves system

throughput under tight tail latency goals. Implementations
that enable request dispatch to all available cores (i.e., 1× 16)
deliver the best performance. However, even implementa-
tions with limited balancing flexibility, such as 4 × 4, are
competitive. As realizing a true single-queue system incurs
additional design complexity, such limited-flexibility alterna-
tives introduce viable options for system designers willing
to sacrifice some performance in favor of simplicity.

6.2 Hardware Versus Software Load Balancing
Fig. 8 compares the performance of RPCValet to a software
implementation, both of which implement the same theoret-
ically optimal queuing system (i.e., 1 × 16). The difference
between the two is how load is dispatched to a core. Soft-
ware requires a synchronization primitive (in our case, an
MCS lock) for cores to atomically pull incoming requests
from the queue. In contrast, RPCValet does not incur any
synchronization costs, as dispatch is driven by the NI.

The software implementation is competitive with the hard-
ware implementation at low load, but because of contention
on the single lock, it saturates significantly faster. As a re-
sult, our hardware implementation delivers 2.3–2.7× higher
throughput under SLO, depending on the request process-
ing time distribution. A comparison between Fig. 7b and 8
reveals that the 1×16 software implementation is not only in-
ferior to the 1×16 hardware implementation, but to all of the
evaluated hardware implementations. The fact that even the
16 × 1 hardware implementation is superior to the software
1 × 16 implementation indicates that the software synchro-
nization costs outweigh the dispatch flexibility they provide,

0
2
4
6
8
10
12
14

0 2 4 6 8 10 12 14

99
th

 p
ct

 l
at

en
cy

 (!
s)

Throughput (M reqs/s)

fixed_hw uni_hw

exp_hw gev_hw

fixed_sw uni_sw

exp_sw gev_sw

SLO

Figure 8. 1 × 16 load balancing: hardware vs. software.

a direct consequence of the µs-scale RPCs we focus on. In
addition, we corroborate the findings of prior work on data-
planes [7, 47]—which effectively build a 16 × 1 system using
RSS—showing that elimination of software synchronization
from the critical path offsets the resulting load imbalance.

6.3 Comparison to Queuing Model
Our results in §6.1 qualitatively meet the expectations set
by the queuing analysis presented in §2.2. We now quantita-
tively compare the obtained results to the ones expected from
purely theoretical models, to determine the performance gap
between RPCValet and the theoretical 1 × 16 system.

To make RPCValet measurements comparable to the theo-
retical queuing results, we devise the following methodology.
We measure the mean service time S̄ on our implementation;
a part D of this service time is synthetically generated to
follow one of the distributions in §5, and the rest, S̄ − D, is
spent on the rest of the microbenchmark’s code (e.g., event
loop, executing send for the RPC response and replenish
to free the RPC slot). We conservatively assume that this
S̄ − D part of the service time follows a fixed distribution.
Using discrete-event simulation, we model and evaluate the
performance of theoretical queuing systems with a service
time S̄ , where D

S̄ of the service time follows a certain distri-
bution (fixed, uniform, exponential, GEV) and S̄−D

S̄ of the
service time is fixed.
Fig. 9 compares RPCValet to the theoretical 1 × 16. The

graphs show the 99th percentile latency as a function of of-
fered load, with four different distributions for the D part of
the service time. RPCValet performs as close as 3% to 1 × 16,
and within 15% in the worst case (GEV). We attribute the gap
between the implementation and the model to contention
that emerges under high load in the implemented systems,
which is not captured by the model. Furthermore, assum-
ing a fixed service time distribution for the S̄ − D part of
the service time is a conservative simplifying assumption:
modeling variable latency for this component would have
a detrimental effect on the performance predicted by the
model, thus shrinking the gap between the model and the
implementation. In conclusion, RPCValet leaves no signifi-
cant room for improvement; neither centralizing dispatch
nor maintaining private request queues per core introduces
performance concerns.

7 Related Work
Other Techniques toReduce Tail Latency. Priorwork aim-
ing to control the tail latency of Web services deployed at
datacenter scale introduced techniques that duplicate/hedge
requests across multiple servers hosting replicated data [15].
The goal of such replication is to shrink the probability of
an RPC experiencing a long-latency event and consequently
affecting the response latency of its originating request. A
natural side-effect of replication is the execution of more re-
quests than strictly necessary, also necessitating extra server-
side logic to reduce the load added by duplicated requests. As
compared to ms-scale applications where the network RTT
is a negligible latency contributor, applying the same tech-
nique for µs-scale applications requires a more aggressive
duplication of requests, further increasing the generation of
unnecessary server load. In contrast to such client-side tech-
niques, RPCValet’s server-side operation offers an alternative
that does not increase the global server load.
RPCValet improves tail latency by minimizing the effect

of queuing. Queuing is only one of many sources of tail la-
tency, which lie in all layers of the server’s software stack.
Therefore, no single solution can wholly address the tail
challenge; a synergy of many techniques is necessary, each
targeting specific issues in particular layers (e.g., IX [7] tar-
gets protocol and interrupt processing). However, despite the
complex nature of the problem, managing on-server queu-
ing is a universal approach that helps mitigate all sources of
tail latency. Our work does not prevent straggler RPCs, but
eliminates the chance that such stragglers will cascadingly
impact the latency of other queued RPCs by providing a true
single-queue system on each RPC-handling server. RPCValet
is synergistic with techniques on both clients and servers to
address specific sources of tail latency in the workflow of
serving RPCs.
A range of prior work also leverages queuing insights to

balance web requests within a datacenter, by mainly focusing
on algorithmic aspects of load distribution among backend
servers rather than a single server’s cores. Examples of such
algorithms are Join-Shortest-Queue [22], Power-of-d [9], and
Join-Idle-Queue [39]. Pegasus [34] is a rack-scale solution
where the ToR switch applies load-aware request schedul-
ing by either estimating per-server load, or by leveraging
load statistics reported directly by the servers. In the context
of balancing µs-scale RPCs among a single server’s cores,
challenges such as dispatcher-to-core latency are of minor
importance, because of the integrated NI’s proximity. Our
results show that single-queue behavior is feasible by defer-
ring dispatch until a core is free, which is unattainable at
cluster scale due to the latency of the off-chip network.

Load Distribution Frameworks. Most modern NICs dis-
tribute load between multiple hardware queues, which can
be privately assigned to cores, through Receive Side Scaling
(RSS) [42] or Flow Director [24]. Systems like IX [7] and

0
2
4
6
8

10

0 0.2 0.4 0.6 0.8 1

99
th

 p
ct

 la
te

nc
y

Load

Model

Simulation

(a) 1 × 16 – fixed.

0
2
4
6
8

10

0 0.2 0.4 0.6 0.8 1

99
th

 p
ct

 la
te

nc
y

Load

Model

Simulation

(b) 1 × 16 – uniform.

0
2
4
6
8

10

0 0.2 0.4 0.6 0.8 1

99
th

 p
ct

 la
te

nc
y

Load

Model

Simulation

(c) 1 × 16 – exponential.

0
2
4
6
8

10

0 0.2 0.4 0.6 0.8 1

99
th

 p
ct

 la
te

nc
y

Load

Model
Simulation

(d) 1 × 16 – GEV.

Figure 9. RPCValet comparison to theoretical 1× 16 queuing model. Y-axis values shown as multiples of the avg service time S̄ .

MICA [35] leverage these mechanisms to significantly boost
their throughput under tail latency constraints. The disad-
vantage of RSS/Flow Director is that they blindly spread load
across multiple receive queues based on specific network
packet header fields, and are oblivious to load imbalance.
ZygOS [47] ameliorates the shortcomings of partitioned

dataplanes, which suffer from increased tail latency under
load imbalance. ZygOS introduces an intermediate shuffling
layer where idle CPU threads can performwork stealing from
other input queues. Due to the added synchronization over-
head of work stealing, there is a measurable performance gap
between ZygOS and the best single-queue system, inversely
proportional to the RPC service times. RPCValet achieves the
best of both worlds, offering single-queue performance with-
out synchronization; instead of adding layers to rebalance
load, we co-design hardware and software to implement a
single-queue system.

The Shinjuku operating system [25] improves throughput
under SLO by preempting long-running RPCs instead of run-
ning every RPC to completion. Their approach is particularly
effective for workloads with extreme service time variability
and CPUs with limited core count. Shinjuku preempts re-
quests every 5–15µs, which is higher than the vast majority
of our evaluated RPC runtimes. A system combining Shin-
juku and RPCValet would rigorously handle RPCs of a broad
runtime range, from hundreds of ns to hundreds of µs.

Programmable Network Interfaces. Offloading compute
to programmable network processors is an old idea that has
seen rekindled interest; FLASH [32] and Typhoon [48] inte-
grated general-purpose processors with the NI, enabling cus-
tomhandler execution uponmessage reception. NI-controlled
message dispatch to cores has been proposed in the context
of parallel protocol handler execution for DSMs to eschew
software synchronization overheads [19, 46]. Programming
abstractions such as PDQ [19] could be deployed as load-
balancing decisions in RPCValet’s NI dispatch pipeline.

Today’s commercial “SmartNICs” target protocol process-
ing or high-level application acceleration, with the goal of
reducing CPU load; they integrate either CPU cores (e.g.,
Mellanox’s BlueField [37]), or FPGAs (e.g., Microsoft’s Cata-
pult [11, 33]). FlexNIC [30, 31] draws inspiration from SDN
switches [8], deploying a match-action pipeline for line-rate

header processing. The programmable logic in these Smart-
NICs could be leveraged to implement non-static load balanc-
ing, adding flexibility to RSS or Flow Director. However, our
dynamic load balancing scheme relies on ns-scale interac-
tion between the NI and CPU logic, which is only attainable
through tight NI integration and CPU-NI co-design.

RPCLayers on InfiniBandNICs. Latency-critical software
systems for key-value storage [27, 28], distributed transac-
tion processing [17, 28], distributed durable data storage [44],
and generalized datacenter RPCs [52], have already begun
using RDMA NICs due to their low latency and high IOPS.
All of these systems are fine-tuned to maximize RPC through-
put given the underlying limitations of their discrete NICs
and the IB verbs specification. We distinguish RPCValet from
these software-only systems by our focus on balancing the
load of incoming RPCs across the CPU cores. Furthermore,
all of the above proposals are adversely affected by the short-
comings of PCIe-attached NICs, and use specific optimiza-
tions to ameliorate their inherent latency bottlenecks; this
strengthens our insight that NI integration is the key enabler
for handling RPCs in true single-queue fashion.

8 Conclusion
We introduced RPCValet, anNI-driven dynamic load-balancing
mechanism forµs-scale RPCs. RPCValet behaves like a single-
queue system, without incurring the synchronization over-
heads typically associated with single-queue implementa-
tions. RPCValet performs within 3–15% of the ideal single-
queue system and significantly outperforms current RPC
load-balancing approaches.

Acknowledgements
We thank Edouard Bugnion, James Larus, Dmitrii Ustiu-
gov, Virendra Marathe, Dionisios Pnevmatikatos, Mario Dru-
mond, Arash Pourhabibi, Marios Kogias and the anonymous
reviewers for their precious feedback. This work was par-
tially funded by Huawei Technologies, the Nano-Tera YINS
project, the Oracle Labs Accelarating Distributed Systems
with Advanced One-Sided Operations grant, and the SNSF’s
Memory-Centric Server Architecture for Datacenters project.

References
[1] Generalized Extreme Value distribution. https://

www.wolframalpha.com/input/?i=MaxStableDistribution%
5B363,100,0.65%5D.

[2] Memcached. http://memcached.org/.
[3] Redis. https://redis.io/.
[4] Krste Asanović. A Hardware Building Block for 2020 Warehouse-Scale

Computers. USENIX FAST Keynote, 2014.
[5] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. Workload analysis of a large-scale key-value store. In
Proceedings of the 2012 ACM SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems, pages 53–64, 2012.

[6] Luiz André Barroso, Mike Marty, David A. Patterson, and
Parthasarathy Ranganathan. Attack of the killer microseconds. Com-
mun. ACM, 60(4):48–54, 2017.

[7] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos
Kozyrakis, and Edouard Bugnion. IX: A Protected Dataplane Operating
System for High Throughput and Low Latency. In Proceedings of
the 11th Symposium on Operating System Design and Implementation
(OSDI), pages 49–65, 2014.

[8] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. P4: programming protocol-independent
packet processors. Computer Communication Review, 44(3):87–95,
2014.

[9] Maury Bramson, Yi Lu, and Balaji Prabhakar. Randomized load bal-
ancing with general service time distributions. In Proceedings of the
2010 ACM SIGMETRICS International Conference on Measurement and
Modeling of Computer Systems, pages 275–286, 2010.

[10] Nathan Bronson, Zach Amsden, George Cabrera, Prasad Chakka, Peter
Dimov, Hui Ding, Jack Ferris, Anthony Giardullo, Sachin Kulkarni,
Harry C. Li, Mark Marchukov, Dmitri Petrov, Lovro Puzar, Yee Jiun
Song, and Venkateshwaran Venkataramani. TAO: Facebook’s Dis-
tributed Data Store for the Social Graph. In Proceedings of the 2013
USENIX Annual Technical Conference (ATC), pages 49–60, 2013.

[11] Adrian M. Caulfield, Eric S. Chung, Andrew Putnam, Hari Angepat,
Jeremy Fowers, Michael Haselman, Stephen Heil, Matt Humphrey,
Puneet Kaur, Joo-Young Kim, Daniel Lo, Todd Massengill, Kalin
Ovtcharov, Michael Papamichael, Lisa Woods, Sitaram Lanka, Derek
Chiou, and Doug Burger. A cloud-scale acceleration architecture. In
Proceedings of the 49th Annual IEEE/ACM International Symposium on
Microarchitecture (MICRO), pages 7:1–7:13, 2016.

[12] Alexandros Daglis. Network-Compute Co-Design for Distributed
In-Memory Computing . EPFL PhD Thesis, September 2018.

[13] Alexandros Daglis, Stanko Novakovic, Edouard Bugnion, Babak Falsafi,
and Boris Grot. Manycore network interfaces for in-memory rack-
scale computing. In Proceedings of the 42nd International Symposium
on Computer Architecture (ISCA), pages 567–579, 2015.

[14] Alexandros Daglis, Dmitrii Ustiugov, Stanko Novakovic, Edouard
Bugnion, Babak Falsafi, and Boris Grot. SABRes: Atomic object reads
for in-memory rack-scale computing. In Proceedings of the 49th An-
nual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 6:1–6:13, 2016.

[15] Jeffrey Dean and Luiz André Barroso. The tail at scale. Commun. ACM,
56(2):74–80, 2013.

[16] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan
Kakulapati, Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubra-
manian, Peter Vosshall, and Werner Vogels. Dynamo: amazon’s highly
available key-value store. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles (SOSP), pages 205–220, 2007.

[17] Aleksandar Dragojevic, Dushyanth Narayanan, Miguel Castro, and
Orion Hodson. FaRM: Fast Remote Memory. In Proceedings of the 11th
Symposium on Networked Systems Design and Implementation (NSDI),
pages 401–414, 2014.

[18] Dave Dunning, Greg J. Regnier, Gary L. McAlpine, Don Cameron, Bill
Shubert, Frank Berry, Anne Marie Merritt, Ed Gronke, and Chris Dodd.
The Virtual Interface Architecture. IEEE Micro, 18(2):66–76, 1998.

[19] Babak Falsafi and David A. Wood. Parallel Dispatch Queue: A Queue-
Based Programming Abstraction to Parallelize Fine-Grain Communi-
cation Protocols. In Proceedings of the 5th IEEE Symposium on High-
Performance Computer Architecture (HPCA), pages 182–192, 1999.

[20] Peter Xiang Gao, Akshay Narayan, Sagar Karandikar, Joao Carreira,
Sangjin Han, Rachit Agarwal, Sylvia Ratnasamy, and Scott Shenker.
Network Requirements for Resource Disaggregation. In Proceedings of
the 12th Symposium on Operating System Design and Implementation
(OSDI), pages 249–264, 2016.

[21] Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye,
Jitu Padhye, and Marina Lipshteyn. RDMA over Commodity Ethernet
at Scale. In Proceedings of the ACM SIGCOMM 2016 Conference, pages
202–215, 2016.

[22] Varun Gupta, Mor Harchol-Balter, Karl Sigman, andWardWhitt. Anal-
ysis of join-the-shortest-queue routing for web server farms. Perform.
Eval., 64(9-12):1062–1081, 2007.

[23] Qi Huang, Petchean Ang, Peter Knowles, Tomasz Nykiel, Iaroslav
Tverdokhlib, Amit Yajurvedi, Paul Dapolito IV, Xifan Yan, Maxim
Bykov, Chuen Liang, Mohit Talwar, AbhishekMathur, Sachin Kulkarni,
Matthew Burke, and Wyatt Lloyd. SVE: Distributed Video Processing
at Facebook Scale. In Proceedings of the 26th ACM Symposium on
Operating Systems Principles (SOSP), pages 87–103, 2017.

[24] Intel Corp. Introduction to Intel Ethernet Flow Director and
Memcached Performance. http://www.intel.com/content/dam/
www/public/us/en/documents/white-papers/intel-ethernet-flow-
director.pdf.

[25] Kostis Kaffes, Timothy Chong, Jack Tigar Humphries, Adam Belay,
David Mazieres, and Christos Kozyrakis. Shinjuku: Preemptive Sched-
uling for µsecond-scale Tail Latency. In Proceedings of the 16th USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2019.

[26] Gopal Kakivaya, Lu Xun, Richard Hasha, Shegufta Bakht Ahsan,
Todd Pfleiger, Rishi Sinha, Anurag Gupta, Mihail Tarta, Mark Fussell,
Vipul Modi, Mansoor Mohsin, Ray Kong, Anmol Ahuja, Oana Pla-
ton, Alex Wun, Matthew Snider, Chacko Daniel, Dan Mastrian, Yang
Li, Aprameya Rao, Vaishnav Kidambi, Randy Wang, Abhishek Ram,
Sumukh Shivaprakash, Rajeet Nair, Alan Warwick, Bharat S. Narasim-
man, Meng Lin, Jeffrey Chen, Abhay Balkrishna Mhatre, Preetha Sub-
barayalu, Mert Coskun, and Indranil Gupta. Service fabric: a dis-
tributed platform for building microservices in the cloud. In Proceed-
ings of the 2018 EuroSys Conference, pages 33:1–33:15, 2018.

[27] Anuj Kalia, Michael Kaminsky, and David G. Andersen. Using RDMA
efficiently for key-value services. In Proceedings of the ACM SIGCOMM
2014 Conference, pages 295–306, 2014.

[28] Anuj Kalia, Michael Kaminsky, and David G. Andersen. FaSST: Fast,
Scalable and Simple Distributed Transactions with Two-Sided (RDMA)
Datagram RPCs. In Proceedings of the 12th Symposium on Operating
System Design and Implementation (OSDI), pages 185–201, 2016.

[29] Svilen Kanev, Juan Pablo Darago, Kim M. Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David M. Brooks. Pro-
filing a warehouse-scale computer. In Proceedings of the 42nd Inter-
national Symposium on Computer Architecture (ISCA), pages 158–169,
2015.

[30] Antoine Kaufmann, Simon Peter, Thomas E. Anderson, and Arvind
Krishnamurthy. FlexNIC: Rethinking Network DMA. In Proceedings
of The 15th Workshop on Hot Topics in Operating Systems (HotOS-XV),
2015.

[31] Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas E. An-
derson, and Arvind Krishnamurthy. High Performance Packet Process-
ing with FlexNIC. In Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS-XXI), pages 67–81, 2016.

https://www.wolframalpha.com/input/?i=MaxStableDistribution%5B363,100,0.65%5D
https://www.wolframalpha.com/input/?i=MaxStableDistribution%5B363,100,0.65%5D
https://www.wolframalpha.com/input/?i=MaxStableDistribution%5B363,100,0.65%5D
http://memcached.org/
https://redis.io/
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/intel-ethernet-flow-director.pdf

[32] Jeffrey Kuskin, David Ofelt, Mark Heinrich, John Heinlein, Richard
Simoni, Kourosh Gharachorloo, John Chapin, David Nakahira, Joel
Baxter, Mark Horowitz, Anoop Gupta, Mendel Rosenblum, and John L.
Hennessy. The Stanford FLASH Multiprocessor. In Proceedings of the
21st International Symposium on Computer Architecture (ISCA), pages
302–313, 1994.

[33] Bojie Li, Zhenyuan Ruan, Wencong Xiao, Yuanwei Lu, Yongqiang
Xiong, Andrew Putnam, Enhong Chen, and Lintao Zhang. KV-Direct:
High-Performance In-Memory Key-Value Store with Programmable
NIC. In Proceedings of the 26th ACM Symposium on Operating Systems
Principles (SOSP), pages 137–152, 2017.

[34] Jialin Li, Jacob Nelson, Xin Jin, and Dan R. K. Ports. Pegasus: Load-
Aware Selective Replication with an In-Network Coherence Directory.
UW CSE Technical Report, December 2018.

[35] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. MICA: A Holistic Approach to Fast In-Memory Key-Value Storage.
In Proceedings of the 11th Symposium on Networked Systems Design
and Implementation (NSDI), pages 429–444, 2014.

[36] Linley Group. Epyc Relaunches AMD Into Servers. Microprocessor
Report, June 2017.

[37] Linley Group. Mellanox Accelerates BlueField SoC. Microprocessor
Report, August 2017.

[38] Linley Group. X-Gene 3 Up and Running. Microprocessor Report, March
2017.

[39] Yi Lu, Qiaomin Xie, Gabriel Kliot, Alan Geller, James R. Larus, and Al-
bert G. Greenberg. Join-Idle-Queue: A novel load balancing algorithm
for dynamically scalable web services. Perform. Eval., 68(11):1056–1071,
2011.

[40] Yandong Mao, Eddie Kohler, and Robert Tappan Morris. Cache crafti-
ness for fast multicore key-value storage. In Proceedings of the 2012
EuroSys Conference, pages 183–196, 2012.

[41] JohnM.Mellor-Crummey andMichael L. Scott. Algorithms for Scalable
Synchronization on Shared-Memory Multiprocessors. ACM Trans.
Comput. Syst., 9(1):21–65, 1991.

[42] Microsoft Corp. Receive Side Scaling. http://msdn.microsoft.com/
library/windows/hardware/ff556942.aspx.

[43] Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi,
and Boris Grot. Scale-out NUMA. In Proceedings of the 19th Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS-XIX), pages 3–18, 2014.

[44] John K. Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry

Qin, Mendel Rosenblum, Stephen M. Rumble, Ryan Stutsman, and
Stephen Yang. The RAMCloud Storage System. ACM Trans. Comput.
Syst., 33(3):7:1–7:55, 2015.

[45] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, DougWoos, Arvind
Krishnamurthy, Thomas E. Anderson, and Timothy Roscoe. Arrakis:
The Operating System Is the Control Plane. ACM Trans. Comput. Syst.,
33(4):11:1–11:30, 2016.

[46] Ilanthiraiyan Pragaspathy and Babak Falsafi. Address Partitioning in
DSMClusters with Parallel Coherence Controllers. In Proceedings of the
9th International Conference on Parallel Architecture and Compilation
Techniques (PACT), pages 47–56, 2000.

[47] George Prekas, Marios Kogias, and Edouard Bugnion. ZygOS: Achiev-
ing Low Tail Latency for Microsecond-scale Networked Tasks. In
Proceedings of the 26th ACM Symposium on Operating Systems Princi-
ples (SOSP), pages 325–341, 2017.

[48] Steven K. Reinhardt, James R. Larus, and David A. Wood. Tempest
and Typhoon: User-Level Shared Memory. In Proceedings of the 21st
International Symposium on Computer Architecture (ISCA), pages 325–
336, 1994.

[49] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C.
Snoeren. Inside the Social Network’s (Datacenter) Network. In Pro-
ceedings of the ACM SIGCOMM 2015 Conference, pages 123–137, 2015.

[50] Stephen M. Rumble, Diego Ongaro, Ryan Stutsman, Mendel Rosen-
blum, and John K. Ousterhout. It’s Time for Low Latency. In Pro-
ceedings of The 13th Workshop on Hot Topics in Operating Systems
(HotOS-XIII), 2011.

[51] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K. Panda.
RDMA read based rendezvous protocol for MPI over InfiniBand: design
alternatives and benefits. In Proceedings of the 11th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming (PPoPP),
pages 32–39, 2006.

[52] Shin-Yeh Tsai and Yiying Zhang. LITE Kernel RDMA Support for
Datacenter Applications. In Proceedings of the 26th ACM Symposium
on Operating Systems Principles (SOSP), pages 306–324, 2017.

[53] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and Samuel
Madden. Speedy transactions in multicore in-memory databases. In
Proceedings of the 24th ACM Symposium on Operating Systems Principles
(SOSP), pages 18–32, 2013.

[54] Thomas F. Wenisch, Roland E. Wunderlich, Michael Ferdman, Anas-
tassia Ailamaki, Babak Falsafi, and James C. Hoe. SimFlex: Statistical
Sampling of Computer System Simulation. IEEE Micro, 26(4):18–31,
2006.

http://msdn.microsoft.com/library/windows/ hardware/ff556942.aspx
http://msdn.microsoft.com/library/windows/ hardware/ff556942.aspx

	Abstract
	1 Introduction
	2 Background
	2.1 Application and technology trends
	2.2 Load Balancing: Theory
	2.3 Load Balancing: Practice

	3 RPCValet Load-Balancing Design
	3.1 Basic Architecture
	3.2 NI Integration: The Key Enabler
	3.3 Design Principles

	4 RPCValet Implementation
	4.1 Scale-Out NUMA with Manycore NI
	4.2 Lightweight Native Messaging
	4.3 NI-driven Dynamic Load Balancing
	4.4 soNUMA Extensions for RPCValet

	5 Methodology
	6 Evaluation
	6.1 Load Balancing: Hardware Queuing Systems
	6.2 Hardware Versus Software Load Balancing
	6.3 Comparison to Queuing Model

	7 Related Work
	8 Conclusion
	References

