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Fig. 1: The ArchiText system. The topic workspace mode has (a) a control bar, (b) a breadcrumb view, (c) a topic card view, and (f)
a mini overview. The topic card view shows topic cards, which can be flipped to show (d) documents in the selected topic. (e) A
detail view pops up when the mouse hovers over a document.

Abstract— Human-in-the-loop topic modeling allows users to explore and steer the process to produce better quality topics that align
with their needs. When integrated into visual analytic systems, many existing automated topic modeling algorithms are given interactive
parameters to allow users to tune or adjust them. However, this has limitations when the algorithms cannot be easily adapted to
changes, and it is difficult to realize interactivity closely supported by underlying algorithms. Instead, we emphasize the concept of
tight integration, which advocates for the need to co-develop interactive algorithms and interactive visual analytic systems in parallel
to allow flexibility and scalability. In this paper, we describe design goals for efficiently and effectively executing the concept of tight
integration among computation, visualization, and interaction for hierarchical topic modeling of text data. We propose computational
base operations for interactive tasks to achieve the design goals. To instantiate our concept, we present ArchiText, a prototype system
for interactive hierarchical topic modeling, which offers fast, flexible, and algorithmically valid analysis via tight integration. Utilizing
interactive hierarchical topic modeling, our technique lets users generate, explore, and flexibly steer hierarchical topics to discover
more informed topics and their document memberships.

Index Terms—Text analytics, topic modeling, nonnegative matrix factorization, hierarchical topics, visual analytics

1 INTRODUCTION

Analysis of large-scale text collections has been a widely studied re-
search topic in the data analytics community. In particular, it is chal-
lenging to obtain an effective overview of text data and discover use-
ful insights without going through each data item. This is untenable
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due to the sheer volume and the noisy, unstructured nature of text
data. To solve this, various computational topic modeling techniques
such as Probabilistic Latent Semantic Analysis (PLSA) [21], Latent
Dirichlet Allocation (LDA) [2] and Nonnegative Matrix Factorization
(NMF) [31] have been developed in recent decades. These methods pro-
vide content overviews by computing semantically meaningful topics
as keyword distributions, and organize documents within the topics.

Recent advances in topic modeling have resulted in many new for-
mulations and algorithms. However, even with the advances in topic
modeling methods, results generated by these completely automated
computational approaches depend largely on the problem formulation
involving some objective functions and the corresponding algorithms.
As a consequence, the computed results do not always match human
expectations or context, and can be of poor quality, or difficult to make
sense of [25, 33]. Human-in-the-loop approaches can be highly benefi-
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cial for generating higher quality topics that align with users’ needs and
domain expertise. Furthermore, interactive exploration can be critical
to foster understanding through discovery [42].

Many visual analytics systems for text data have been developed
for human-in-the-loop topic modeling. These systems present a high-
level overview of the text data by visualizing the topics generated by
automated topic modeling algorithms and allow users to explore items
of interest and, if possible, steer the underlying model. However, there
are two major challenges in existing interactive topic modeling systems:
scalability and limited steerability. First, most existing interactive topic
modeling approaches can handle hundreds or thousands of documents,
but they are not suited for large-scale datasets in real world scenarios.
One reason is that in many systems, the underlying topic model is
treated as a black box, which is recomputed from scratch after each
interaction. In order to utilize human-in-the-loop topic modeling in real
world applications, we need an efficient and scalable way to interact
with a massive set of documents. Next, many visual analytics systems
are often not well-suited for interactive analysis since they are built
on top of existing automated topic modeling methods. In other words,
interaction capabilities offered in these systems are limited by the
convenience of the adopted methods [33]. An example is LDA [2],
one of the most celebrated methods in topic modeling. Despite its
popularity, LDA has several issues which hinder its integration with
visual analytics systems. For instance, its parameters are not easy to
understand and tune for non-experts. Sometimes even a small parameter
change results in unpredictable side effects [33]. Also, LDA results are
less consistent over different runs [8], which makes it difficult for users
to trust the model and to see if interactions are properly reflected.

In this paper, we propose hierarchical topic modeling in contrast to
flat (non-hierarchical) topic modeling in the context of visual analytics.
Flat topic modeling is limited for visualizing large-scale text data. As
the text data and vocabulary grow larger, the need for interacting and
visualizing a larger number of documents and topics also grows, and it
becomes more challenging to better represent the underlying data. How-
ever, since the computation of a very large number of topics at once is
limited by computation capacity, display size, and visual understanding,
the number of topics generated by flat models tends to be limited, and
accordingly the topics are rather general and coarse-grained. On the
other hand, hierarchical topic modeling offers better understanding of
the data corpus by representing information at multiple levels of de-
tail, and allowing people to interactively provide feedback at different
aggregation levels. Using a hierarchy, users can explore high-level
coarse topics and zoom in on fine-grained topics. Users can drill down
into a subset of data to increase understanding (sense-making) and
organize computed topics into a hierarchy that matches users’ mental
model. By focusing on steering unclear parts and leaving the rest to the
computational methods, more efficient and comprehensive discovery
is possible. In addition, flat topic modeling methods assume that all
topics are at the same level, regardless of semantic granularity or size.
For example, flat topics generated from sports articles during world
cup season may contain many topics related to soccer but few topics on
other sports. On the other hand, users may want to organize topics into
various levels according to their mental models, e.g., by sports.

Despite the aforementioned advantages of hierarchical topic models
over flat models, limited work has been done on interactive hierarchical
topic modeling. A few visual analytics systems that support hierar-
chical topic modeling offer interactions to explore multiple levels of
the underlying hierarchy, but their capability to modify or steer the
underlying model is limited. For flexible steerability, we propose that
the visualization systems, underlying computational algorithms, and
users’ interactions should be tightly integrated. Tight integration refers
to the algorithm, visualization, and user interaction being jointly devel-
oped, where all three components are considered throughout the design
process. Visualizations should not only show the outputs of models, but
serve as the medium for interaction. Interaction should not be limited
to controlling some parameters of algorithms, but allow higher-level
operations that support the discovery process. Finally, algorithm de-
velopment should take into account not only automated performance
metrics, but consider interactivity and transparency for visualization

in their formulation. This process of co-development goes beyond the
adaptation of existing methods to meet the needs of users or interactive
tasks, but instead co-designs algorithms, interactions, and visualiza-
tions simultaneously to ensure proper synchronization, compatibility,
and performance. The proposed work explores the paradigm of tight
integration and proposes a new way to implement tight integration for
interactive hierarchical topic modeling.

In this paper, we present ArchiText, a visual analytic system using
hierArchical Interactive topic modeling for large-scale Text data. Ar-
chiText visualizes hierarchical topics and offers various interactions
to steer the topics and their hierarchical structure. ArchiText closely
integrates the computational formulation of the model with the inter-
actions provided to support flexible and rapid updates. The primary
contributions of this work include:

• Development of an interactive and hierarchical topic modeling
algorithms that achieve tight integration among visualization,
computational model, and visual representation.

• Implementation of a visualization prototype system for large-
scale document analysis utilizing our interactive hierarchical topic
modeling framework.

2 RELATED WORK

2.1 Visualization of Text Corpora
Organizing large, unstructured document collections into semantically
meaningful topics and visualizing them has been a widely studied prob-
lem in the visualization community [5]. The earliest works including
Topic Island [36] and IN-SPIRE [20] visualize document items and
extracted themes. With the introduction of modern topic modeling meth-
ods such as Probabilistic Latent Semantic Analysis (PLSA) [21], Latent
Dirichlet Allocation (LDA) [2], and Nonnegative Matrix Factorization
(NMF) [31], research on text visualization has been substantially ac-
celerated. Specifically, many results have focused on visualizing topic
analysis results and allowing interactive exploration of topics and data
items without the ability to steer the topic modeling results.

Once computed, topics are generally represented as a set of the most
representative keywords. In many cases, the similarities between topics
or documents are taken into account. Documents are represented as
two-dimensional or three-dimensional points by applying dimension
reduction techniques to the topic analysis results. In this way, similar
documents and similar topics are placed closer to each other. For
instance, UTOPIAN [8] maps documents into a 2D scatterplot, in which
clusters are labeled with keywords, and users can interact with the topic
modeling results. Other examples include iVisClustering [32] and
TopicLens [28]. Several works such as ContexTour [34], FacetAtlas [7],
SolarMap [6], and Concept Visualizer [19] adopt contours to represent
static topics and relationships among them.

2.2 Interactions in Topic Modeling
Fully leveraging interactivity provided by visual analytics, several sys-
tems have incorporated a ‘human-in-the-loop’ approach to interactively
modify the underlying topic model. Automatically generated topics
often can be of low quality and noisy; or may not align well with
user’s mental model. In these cases, human-in-the-loop topic modeling
techniques allow users to steer underlying topic models to obtain better
results [25]. For example, if automatically generated topics contain
two similar topics, users may want to merge them into a single topic. To
this end, various interactions are introduced including add, modify, split,
combine, and remove topics, documents representing the topics, and
keywords [8,9,11,13,14,22,23,32,37,44]. We have surveyed interactive
topic modeling systems with model steerability and organized the user
interactions into word-level, document-level, and topic-level based on
the unit of interactions. Specifically, the word-level interactions include
user’s activities of refining topics by adding words to a topic, moving
words between topics, removing words from a topic, re-weighting word
importance for a topic, and creating a new topic using selected words.
Similarly, the document-level interactions involve user’s editing of top-
ics (which can be viewed as document clusters) by moving documents
from one topic to another topic, removing documents from its parent
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Unit Interaction Tasks Reasons/Goals Prior Work

Word Create a topic by seed word(s) Need a new topic around the word(s). [8, 14]
Add word(s) to a topic The word(s) is relevant to the topic. [14, 44] ( [33])
Move word(s) from a topic to another. The word(s) is more relevant to another topic.
Remove word(s) from a topic The word(s) is not relevant to the topic. [14, 44] ( [33])
Confirm or reject a word from a topic The word(s) is definately relevant/irrelevant for the topic. [9, 37]
Change word distribution of a topic The topic is better represented with new word distribution. [8, 32, 44] ( [33])
Add word(s) to stopword list The word(s) is not good representative of the data. [37, 44]

Doc Create a topic by seed document(s) Need a new topic around the topic of the document(s). [8]
Move document(s) from a topic to another The document(s) belongs to another topic. [14, 32] ( [33])
Remove document(s) from a topic The document(s) is irrelevant or of low quality. [32, 44] ( [33])
Confirm or reject a document from a topic The document(s) is relevant/irrelevant for the topic. [13]

Topic Merge two topics into a topic Two topics are very similar. [8, 11, 14, 22, 32, 44]
Split a topic into sub-topics The topic is too broad or not coherent. [8,14,22,32,44] ( [33])
Move a topic The topic belongs to another branch. [11, 23, 32]
Remove a topic The topic is irrelevant, uninteresting, or of bad quality. [14, 23, 32] ( [33])
Restore a topic Need to undo ‘remove topic’
Fix/freeze a topic The topic is final and no more refinement is needed.
Collapse topics (show fine-grained) Topics are too general; there are not enough topics. [23]
Aggregate topics (show coarse-grained) Topics are too specific; there are too many topics. [23]

Table 1: User interaction tasks for model steering supported (or suggested) in previous works. Parenthesis indicates suggested interaction tasks.

topic, re-weighting document importance for a topic, and creating a new
topic using selected words. The topic-level interactions occur when
users perform group-wise interactions such as merging, splitting and
removing topics. A complete list of user interactions that are available
in some of the existing interactive topic model systems is summarized
in Table 1. However, user interactions in many prior works have been
designed for algorithmic convenience rather than user tasks [33], and
thus are not tightly coupled with the underlying algorithms.

2.3 Visual Analytics for Hierarchical Topic Modeling

In a number of recent papers, the topics are organized with a hierar-
chy. Hierarchical topic modeling and hierarchical document clustering
techniques organize documents into various granularity of topics. In
this way, large text corpora can be analyzed and understood through
multi-scale analysis. In hierarchical visual analytics systems, users
interactively navigate through topic hierarchy visualizations to find
coarser grained (higher nodes) or finer grained (lower nodes) topics.
For instance, HiPP [41] uses a hierarchical circle packing algorithm, in
which a topic or a document is represented as a circle. Topic circles can
be expanded into sub-topic circles down to individual documents. Other
systems directly visualize a topic tree using node-link style visualiza-
tions. For example, Brehmer et al. [3] introduces Overview, a visual
document mining tool for investigative journalists. Overview allows
users to explore the topic hierarchy and annotate relevant documents
for later use. Similarly, Dou et al. [11] visualize topics and their tem-
poral patterns as tree and themeriver charts, respectively. Other works
focus on the evolution of topic hierarchies [10, 35] and matching topic
hierarchies from multiple sources [48]. A work more closely related to
what we propose here is by Hoque and Carenini [23] which utilizes a
simple collapsible tree in an online conversation analytics system and
allows users to explore and revise a topic hierarchy by moving topic
nodes. Sunburst visualizations [46] are also used to visualize topic hi-
erarchies [43, 49], where concentric circles represent different levels of
the topic hierarchy starting from the the center (source node) to the out-
ermost (leaf nodes). This technique relies strongly on user interaction
to allow users to expand sub-components of the tree if requested.

Among these hierarchical topic modeling systems, only a few
support an interactive modification of the underlying hierarchical
model [11, 23]. These systems only offer group-wise or topic-level
organizational operations such as merging topics, splitting a topic, and
moving a topic under a new parent. Therefore, users are unable to steer
the underlying topic model to a finer degree (e.g., by words and/or
documents). More recently, IHTM [14] proposes a mixed-initiative
approach where a human can intervene during the incremental model

building process. Users are asked to choose from several interaction
strategies with the help of a preview of the expected outcome of each
strategy. While this work has many advantages that work well for
very small datasets, it is not scalable to large-scale datasets because
the underlying topic hierarchy is optimized every time a data item is
entered. Also, the interaction strategies available in the IHTM system
are limited and its word-level interactions are offered only before the
algorithm starts.

2.4 Interactive Model Steering in Visual Analytics
Mixed-Initiative systems [24], which combine human knowledge and
human intelligence to create a collaborative system between users
and machines, are closely related to what we propose in this paper.
Adopting this principle, in mixed-initiative visual analytics systems,
users interact with the machine via visual interfaces to steer the model
by controlling different model parameters. Some systems offer direct
manipulation of model parameters through control panels. However,
direct manipulation of model parameters requires a deep understanding
of the underlying model mechanism and its parameters. Endert et
al. [16] introduce ‘semantic interaction’ to steer the models using
native user interactions on visual objects rather than model parameters.
For instance, Disfunction [4] and Observation-Level Interaction [17]
allow users to move points in a 2D scatterplot to update the underlying
distance function. Podium [47] updates an SVM model as users change
the order of data items. Other examples include [15, 26, 30, 38].

3 INTERACTIVE TOPIC MODELING WITH TIGHT INTEGRATION

In this section, we propose our novel approaches for interactive hi-
erarchical topic modeling. We first identify design goals for tight
integration in interactive hierarchical topic modeling. Then we propose
our modular interaction design to support flexible user feedback. Fi-
nally, we describe the underlying algorithms for base operations and
interaction tasks.

3.1 Design Goals for Tight Integration
Tight integration advocates for the visualization accurately representing
the computational result with reasonable responsiveness, user interac-
tion being accurately interpreted taking advantage of more detailed
information that the underlying algorithm offers, and flexibility in the
model to accommodate a wide range of user tasks and goals. Here, we
list the design goals of tight integration and how ArchiText achieves
them.

Fast, Adaptive, and Interaction-conductive Model and Algo-
rithm. The foundational algorithm should be designed and developed
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with user interaction considered from the start. Tight integration syn-
chronizes updates in the underlying computation with the interpretation
of the user interaction. This update cycle is iterative, where the un-
derlying computational methods guide the changes in the intermediate
results taking the user interaction into account. To achieve fast and
accurate visualization updates, the underlying updates of the computa-
tional result should not involve recomputing the solution from scratch.
Rather, underlying computations should be tailored to allow incremen-
tal, timely, and responsive updates. In our proposed system, results are
adaptively updated based on intermediate solutions and user refinement.

Visualization of Various Degrees of Information and User Feed-
back. The computational results, the internal factors, and charac-
teristics of the algorithms should be exposed in various degrees of
information level, likely through multiscale visual representations. In-
teractively, users may perform operations on specific information, yet
the algorithmic interpretation of the action will need to consider addi-
tional information. For instance, removing a topic is likely based on
a subset of keywords for a topic shown in the visualization. However,
the underlying algorithm contains many additional details about the
topic, such as the complete keyword distribution (what a topic is) and
the topic distribution for each document (how close a document is to
a topic). Without careful interpretation of user intention incorporated
into algorithms, the results can quickly be distorted after multiple in-
teractions because of the limited information users are shown in the
visualization. In addition, with a hierarchical topic modeling, visualiza-
tions can show multiple levels of detail, aggregating or de-aggregating
sub-hierarchies depending on the level of detail requested by users.

Capability to Support a Variety of User Feedback Types. The
computational models and algorithms should be flexible enough to
incorporate various user intentions and tasks. Various model steering
interactions have been identified as important (Table 1), but not all inter-
actions were supported in a single system previously. One reason is that
most topic modeling methods have many parameters and settings that
are difficult to properly tune to produce the results that meet user expec-
tations. We chose Nonnegative Matrix Factorization (NMF) [31] as our
underlying foundational topic modeling method due to its flexibility
and efficiency. Multiple advantages of NMF that we have observed and
analyzed in our previous work [8,12,27] include fast algorithms, higher
quality and more consistent solutions, flexibility to changes in tasks,
adaptive updating methods [1, 40, 50], and interpretability of results.
In addition, since interactions can be formulated as constrained NMF
problems, we can identify a set of primitives that are common over
various interaction tasks and build core computational modules that
can be utilized across them as will be described in the next section.
These important features of our algorithm combine to facilitate our
tight integration methodology.

3.2 Interaction Primitives for Hierarchy Steering
To achieve the goal of the tight integration, we propose to break down
a large suite of interaction tasks into basic operations called primi-
tives. These primitive operations can be optimized individually and
then combined to implement specic subtasks. Surveying interaction
tasks supported or suggested in existing works, we observed that all
interaction tasks can be further divided into tree operations and/or super-
vised topic computation. For instance, Move a topic into a new parent
(MoveT) can be achieved by ‘cut out a topic’ followed by ‘insert the
topic under a new parent’ with re-computations. Based on interaction
tasks supported in existing systems and our design goals, we come up
with five base operations, whose combination can form the interaction
tasks in Table 1. This modular implementation makes it possible to
optimize the tightly coupled system performance by fine tuning the five
base operations. The five base operations are as follows:

1. makechildren(T): Create two child topics for a leaf node topic T
2. merge(T1, T2): Merge sibling topic nodes T1 and T2
3. insert(T1, T2): Insert a topic node T1 under a new parent node

T2
4. cut(T1): Cut out a topic node T1
5. recompute(T): Recompute child topics of T using a constrained

NMF topic model

Notation Description

Ti The i-th topic node
D(Ti) Indices of documents that belong to Ti
p(Ti) The parent topic node of Ti
C Trash can, i.e., the set of removed topics
m The number of keywords
n The number of documents
ni The number of documents in Ti
ki The number of child topics under Ti
X (i) The m×ni word-document matrix of Ti
W (i) The m× ki word-topic matrix of child topics of Ti

w(i)
p The p-th column of W (i)

H(i) The ki×ni topic-document matrix of child topics of Ti

h(i)q The q-th column of H(i)

R+ The set of nonnegative real numbers
|| · ||F The Frobenius norm
Ar· The r-th row of matrix A
A·r The r-th column of matrix A
argmax(a) The index of the largest element in vector a

Table 2: Key notations used in the paper.

Utilizing the base operations, we simultaneously design user interac-
tions and corresponding algorithms. The complete list of supported
interaction tasks is described in Table 3 and Section 3.4.3.

3.3 NMF for Topic Modeling
We define our notation and topic modeling formulations as follows.
Conceptually, a topic T is identified as a keyword distribution and has
a set of documents that belong to the topic (i.e., the documents whose
topic distribution has the strongest weight in the topic). A topic node
in the topic hierarchy is denoted as (T,D, p(T )) where T denotes the
topic, D the set of documents in the topic, and p(T ) a reference to
the parent topic of the topic T . We denote the i-th topic as Ti and the
indices of documents that belong to Ti as D(Ti) = {di1 , · · · ,dini

}, where
ni is the number of documents in the topic. We reference the parent
topic node of a child topic Ti as p(Ti). Note that the documents in a
topic are the union of documents that belong to its child topics, i.e.,
D(Ti) = ∪p(Tj)=Ti

D(Tj).
Let X ∈Rm×n

+ be the data matrix of topic T , where m is the number of
words in the corpus and n is the number of documents that belong to the
topic. The p-th column of X represents the bag-of-words representation
of document dp with respect to m keywords. A standard Nonnegative
Matrix Factorization (NMF) approach solves a low-rank approximation
as follows:

min
{W,H}≥0

||X−WH||2F , (1)

where W ∈Rm×k
+ and H ∈Rk×n

+ are factor matrices and k is the number
of child topics under T . W describes topics and H describes document-
topic memberships. The p-th child topic under T is calculated as wp,
the p-th column of W . High values in wp indicate that the corresponding
words are strongly associated with the p-th child topic. Next, the q-th
column of H, hq, represents document dq as a weighted combination of
k topics. We say document dq belongs to the p-th child topic if the p-th
element of hq is its largest element, i.e., p = argmax(hq). Notations
are summarized in Table 2.

In order to steer topics, we modify the NMF formulation as follows:
min

{W,H,U}≥0
||X−WH||2F +α||MW ◦(W−W ′)||2F +β ||MH ◦(E−HU)||2F

(2)
The second term influences topics’ keyword descriptions by forcing W
to be similar to W ′, which represents topic keywords selected by the
users. The third term affects topic-document memberships by forcing
H to be similar to E, which represents topic-document memberships
assigned by the users, with the help of a scaling matrix U . Parameters
α and β determines the amount of user control for word-level and
document-level interactions, respectively. When α = 0 (or β = 0),
the word- (or document-) level interaction is not reflected into the
model. Larger α,β leads to stronger incorporation of user steering, but
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it may result in less truthful representation of the underlying data. α,β
are set to be proportional to the number of interacted topics by word-
level and document-level tasks, respectively. MW , MH are masking
matrices where (MW )·r = 0 and (MH)r· = 0 for r /∈ {steered indexes}
and (MW )·r = 1 and (MH)r· = 1 for r ∈ {steered indexes}. More detail
will be described in Section 3.4.3.

3.4 Algorithm
3.4.1 Base Operations
In this section, we describe the algorithms for our base operations based
on which our interaction tasks can be composed.

[T1,T2] = makechildren(T0)

# makechildren applies a rank-2 NMF algorithm to the documents
in a topic node T0 to create two of its children nodes T1,T2.

Solve min{W (0),H(0)}≥0 ||X (0) − W (0)H(0)||2F where W (0) ∈
Rm×2
+ , H(0) ∈ R2×n0

+

D(Tk) = {dq ∈ D(T0)|argmax(H(0)
·q ) = k}, p(Tk) = T0 for k = 1,2

T0 = merge(T1,T2)

# merge creates a new parent T0, which is the union of selected
sibling topic nodes T1,T2, under their original parent p(T1).

p(T0) = p(T1) and D(T0) = D(T1)∪D(T2)
p(Tk) = p(T0) for k = 1,2

insert(T1,T2)

# insert adds a topic T1 under the selected node T2 and updates its
ancestors.

p(T1) = T2 and D(T2) = D(T1)∪D(T2)
parent = p(T2)
while parent is not the top node do

D(parent) = D(parent)∪D(T1)
parent = p(parent)

end while

cut(T1)

# cut removes a topic T1 from its ancestors.

parent = p(T1)
p(T1) = null and D(p(T1)) = D(p(T1))\D(T1)
while parent is not the top node do

parent = p(parent)
D(parent) = D(parent)\D(T1)

end while

[T ′01, · · · ,T ′0k0
] = recompute(T0,(W ′),(H ′))

# recompute applies a flat NMF algorithm with constraints on a
topic T0 to re-partition its children T ′01, · · · ,T ′0k0

. The second and
third terms incorporate word-level and document-level supervision,
respectively.

Solve min{W (0),H(0),U (0)}≥0 ||X (0) − W (0)H(0)||2F + α||M(0)
W ◦

(W (0) − W ′(0))||2F + β ||M(0)
H ◦ (E(0) − H(0)U (0))||2F where

W (0) ∈ Rm×k0
+ , H(0) ∈ Rk0×n0

+ , U (0) ∈ Rk0×k0
+

D(Tk) = {dq ∈ D(T0)|argmax(H(0)
·q ) = k} for k = 1, · · · ,k0

When performing recompute on a parent topic before cut on a child
topic, we redistribute documents that are not strongly relevant to the
child topic (i.e., max(Hkq) < threshold) into their sibling topics. As
a result, when moving or removing topics, keywords, or documents,
only the documents that are strongly relevant to the moved or removed
topics, keywords, or documents are cut out.

3.4.2 Hierarchical Topic Initialization
The proposed system generates the initial hierarchical topics where the
upper level topics are more general and larger, and the lower level topics
are more specific, finer-grained, and more tightly related. We adopted
a hierarchical topic modeling algorithm called HierNMF2 [18, 29],
which uses a fast rank-2 NMF [12] and a binary tree splitting rule. In
other words, we recursively split a topic by solving Eqn. 1 with k = 2
topics. By utilizing the simple computation to obtain a rank-2 NMF,
some very substantial speedups have been achieved for computing topic
modeling results, which can be highly beneficial for achieving real-time
interaction.

3.4.3 Hierarchical Topic Revision
After the initial hierarchical topics are computed, users can steer the
model by performing various tasks described in Table 3. We grouped
user tasks by interaction unit types: topics, words, and documents.
Note that previous hierarchical topic modeling systems allow topic
reorganization through some topic-level interactions, but they offer
none to highly limited word-level or document-level topic steering.

Topic-level Tasks
Topic-level tasks in existing hierarchical topic modeling systems affect
all documents in the interacted topic. For example, moving a topic
would relocate all the associated documents into a new parent topic.
However, the decisions to do so are based on limited information
shown on the screen to the users. Thus, our approach does not move all
documents of a topic when moving/removing topics, but rather moves
only a strongly relevant subset using constrained NMF. Now we define
topic-level tasks as follows:

T0 = MergeT(T1,T2)

# MergeT combines selected topics T1 and T2 to create a new parent
topic T0. If T1 and T2 are not siblings, T1 is moved under T2’s parent
before merging.

if p(T1) 6= p(T2) then
MoveT(T1, p(T2))

end if
T0 = merge(T1,T2)

[T1,T2] = SplitT(T0)

# SplitT partitions topic T0 into two child topics T1 and T2 using
rank-2 NMF.

[T1,T2] = makechildren(T0)

MoveT(T1,T2)

# MoveT detaches a topic T1 and attaches it under a new parent T2.
Before detaching T1, we redistribute less relevant documents in T1
into its sibling topics to move only a strongly relevant subset. After
attaching, we solve another NMF for the new parent T2 to find more
suitable child topics with the incoming topic T1.

recompute(p(T1),w1) with min{W,H}≥0 ||X −WH||2F + α||MW ◦
(W −W ′)||2F where W ′·1 = w1.
cut(T1)
insert(T1,T2)
recompute(p(T2)) with min{W,H}≥0 ||X−WH||2F

RemoveT(T1)

# RemoveT discards the most relevant documents of the selected
topic T1 into the trash C rather than all documents in T1. The remain-
ing less-relevant documents are redistributed to its sibling topics.

recompute(p(T1),w1) with min{W,H}≥0 ||X −WH||2F + α||MW ◦
(W −W ′)||2F where W ′·1 = w1.
cut(T1)
insert(T1,C)
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Diagram ChangedOperated Affected

Topic-level

Merge two topics T1 and T2
MergeT(T1,T2) = MoveT(T1,T2)+merge(T1,T2)

pT1=T0 T2

T01 T02 T1

T3
=T1’∪T2

T0’
=T0\T1’

T1’ T2’T01’ T02’

Merge

Split a topic T0 into child topics
SplitT(T0) = makechildren(T0)

Split

T0 T0

T2T1

Move a topic T1 into a new parent T2
MoveT(T1,T2) = recompute(p(T1),w1) + cut(T1) + insert(T1,T2) +
recompute(T2)

pT1=T0 T2

T01 T02 T1 T21 T22

T2’
=T2∪T1’

T0’
=T0\T1’

T21’ T22’ T1’’T01’ T02’

Move

Remove a topic T1
RemoveT(T1) = recompute(p(T1),w1)+ cut(T1)+ insert(T1,C)

T4

pT1=T0

T1

Remove T4’
=T4\T1’

T0’
=T0\T1’

T3’T2’

T1’

T2
T3

Restore a topic T1 under T2 from trash
RestoreT(T1,T2) = cut(T1)+ insert(T1,T2)+ recompute(T2)

T0’
=T0∪T1

T2’
=T1∪T2

T21’ T1’
T22’

Restore
T0

T2

T22T21

T1

Fix a topic T1
FixT(T1): makes T1 unaffected by recompute(p(T1))

Other
interactions

Word-level

Create a topic Tw by seed words w under a parent T1
CreateTW(w,T1) = recompute(T1,w)

w1,…,wn
T0

T2T1

T11’ T13
T12’

Create
T0

T1 T2

T12T11
w1,…,wn

Table 3: User Interactions Supported by ArchiText.

Word-level (Cont’d)

Add words w to a topic T1
AddW(w,T1) = recompute(p(T1),w)

T0

T1

T0

T2 T2’T1’

w1,…,wr

Change word distribution of a topic T1
ChangeW(w,T1) = recompute(p(T1),w)

T0

T1

T0

T2 T2’T1’

w1↓,…,wr↑

Move words w from a topic T1 to another T2
MoveW(w ∈ T1,T2) = makechildren(T1) + recompute(T1,w) +
cut(Tw)+ insert(Tw,T2)+ recompute(T2)

T0

T1 T2

T21 T22

T0

T2’
=T2∪T11

T12
=T1\T11

T21’ T22’ T11=Tw

Move

w1,…,wr
w1,…,wr

Remove words w from a topic T11
RemoveW(w,T11) = makechildren(T11) + recompute(T11,w) +
cut(Tw)+ insert(Tw,C)

T0

T2T1

T11 T12

Remove T0’
=T0-T111

T1’
=T1-T111 T2

T12T112

T111
=Tww1,…,wr

w1,…,wr

Document-level

Create a topic Td by seed docs d under a parent T1
CreateTD(d ∈ T1) = recompute(T1,d)

d1,…,dn

T0

T2T1

T11’ T13
T12’

Create
T0

T1 T2

T12T11
d1,…,dn

Move documents d from a topic T1 to another T2
MoveD(d ∈ D(T1),T2) = makechildren(T1) + recompute(T1,d) +
cut(Td)+ insert(Td ,T2)+ recompute(T2)

T0

T1 T2

T21 T22

T0

T2’
=T2∪T11

T12
=T1\T11

T21’ T22’ T11=Td

Move

d1,…,dr
d1,…,dr

Remove documents d from a topic T11
RemoveD(d,T11) = makechildren(T11) + recompute(T11,d) +
cut(Td)+ insert(Td ,C)

T0

T2T1

T11 T12

Remove T0’
=T0-T111

T1’
=T1-T111 T2

T12T112

T111
=Tdd1,…,dr

d1,…,dr

Like a document d for a topic T1
LikeD(d ∈ T1) = recompute(p(T1),d)

T0

T1

T0

T2 T2’T1’

d1,…,dr↑
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RestoreT(T1,T2)

# RestoreT moves a previously deleted topic T1 from the trash C
into a selected parent topic T2.

cut(T1)
insert(T1,T2)
recompute(p(T2)) with min{W,H}≥0 ||X−WH||2F

Fix(T1)

# Fix freezes a topic T1 so that it will not be changed in later stages.
It can be used when the quality of a current topic is determined good
and the user wants to consider the topic as final. The Fix task does
not involve any computation but marks the topic as fixed so that the
topic is not modified in any subsequent computation or interaction.

Word-level Tasks
Word-level interactions influence keyword descriptions of topics so
that a specific topic becomes more (or less) about certain words. As
a result, some documents are redistributed according to the new topic
descriptions. Previously, word-level interactions were only supported
in some flat topic model systems but not in hierarchical systems. To
our knowledge, ArchiText is the first to allow word-level refinement of
hierarchical topics. For simplicity and efficiency, we limit the scope of
affected topics to one level. We define word-level tasks as follows:

CreateTW(w,T1)

# CreateTW creates a new topic with seed words w under a parent
topic T1.

k1 = k1 +1
recompute(p(T1),w) with min{W,H}≥0 ||X −WH||2F + α||MW ◦
(W −W ′)||2F where W ′·1 = w.

AddW(w,T1)

# AddW adds new terms w to a topic T1 to steer it toward the selected
words.

recompute(p(T1),w) with min{W,H}≥0 ||X −WH||2F + α||MW ◦
(W −W ′)||2F where W ′·1 = w.

ChangeW(w,T1)

# ChangeW changes the word distribution w of a topic T1 to steer
the topic based on the re-weighted words..

recompute(p(T1),w) with min{W,H}≥0 ||X −WH||2F + α||MW ◦
(W −W ′)||2F where W ′·1 = w.

MoveW(w ∈ T1,T2)

# MoveW aims to subtract the selected terms w from a topic T1
and add them into another topic T2 by moving the most relevant
documents in the topic.

[Tw,Tw̄] = makechildren(T1) with min{W,H}≥0 ||X − WH||2F +

α||MW ◦ (W −W ′)||2F where W ′·1 = w.
MoveT(Tw,T2)

RemoveW(w,T1)

# RemoveW discards the documents in a topic T1 that are most rele-
vant to the selected words w. The remaining less relevant documents
are redistributed to sibling topics.

[Tw,Tw̄] = makechildren(T1) with min{W,H}≥0 ||X − WH||2F +

α||MW ◦ (W −W ′)||2F where W ′·1 = w.
RemoveT(Tw)

Document-level Tasks
Document-level interactions influence document-topic memberships to
steer a topic to be similar (or dissimilar) to the selected documents. As a
result, keyword descriptions of affected topics can change accordingly.
Following the tight integration principles, our document-level tasks not
only involve the selected documents, but also affect documents that are
similar or relevant to the selected documents. We define document-level
tasks as follows:

CreateTD(d,T1)

# CreateTD creates a new topic with seed document d under a parent
topic T1.

k1 = k1 +1
recompute(p(T1),d) with min{W,H}≥0 ||X−WH||2F +β ||MH ◦(E−
HU)||2F where E1d = 1.

MoveD(d ∈ T1,T2)

# MoveD aims to subtract the selected documents d (and similar
ones) from a topic T1 and add them into another topic T2.

[Td ,Td̄ ] = makechildren(T1) with min{W,H}≥0 ||X − WH||2F +

β ||MH ◦ (E−HU)||2F where E1d = 1.
MoveT(Td ,T2)

RemoveD(d,T1)

# RemoveD discards the selected documents d and the similar ones
from a topic T1. The remaining less-relevant documents are redis-
tributed to sibling topics.

[Td ,Td̄ ] = makechildren(T1) with min{W,H}≥0 ||X − WH||2F +

β ||MH ◦ (E−HU)||2F where E1d = 1.
RemoveT(Td)

LikeD(d ∈ T1)

# LikeD steers a topic T1 to be more like the liked document d.

recompute(p(T1)) with min{W,H}≥0 ||X −WH||2F + β ||MH ◦ (E −
HU)||2F where E1d = 1.

4 SYSTEM

In this section, we describe ArchiText, our prototype visual analytics
system for interactive hierarchical topic modeling with tight integration.
The proposed system is built using the D3.js visualization library, Flask
framework, sqlite database, and a fast rank-2 nonnegative matrix factor-
ization algorithm and the proposed constrained low rank approximation
shown in Eqn. 2 written in MatlabTM.

4.1 System Design
Our system has two modes: a topic workspace mode (Fig. 1) and
a hierarchy view mode (Figs. 2-3). The topic workspace mode
is designed to facilitate flexible user interactions for tuning and
interacting with the hierarchical topic representation. The hierarchy
view mode is primarily for inspecting the overall structure of the
computed topic tree. Users can alternate between the two modes by
clicking the blue button on the top right corner shown in Fig. 1a.

Topic Workspace Mode contains the main topic card view, a control
bar, a breadcrumb view, and a mini overview.

The main topic card view (Fig. 1c) visualizes topics up to selected
depths in the computed hierarchical topic tree. Each topic is visualized
as an indented equal-width card where the height of each card is pro-
portional to the number of documents that belong to the topic. Each
topic’s most representative keywords and their importance weights are
visualized as a sorted list with bars. This design allows users to quickly
understand topics well [45] and easily compare keyword weights across
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Fig. 2: The hierarchy view mode presents a high-level overview of the
topic tree with a control panel. A topic can be expanded (or collapsed)
to show (or hide) its child topics. Expandable topics are represented as
filled circles.

Fig. 3: An alternate Sankey tree visualization in the hierarchy view
mode. Placing the mouse over a keyword highlights the keyword in
other topics.

different topics. Note that all keywords are in stemmed forms as we
use the porter stemmer during the data preprocessing step. On the top
right corner of a topic card are the menu button and the flip button. A
topic card can be flipped to show its documents (Fig. 1d) with their
‘Thumbs up’ buttons to like the corresponding documents. Hovering
the mouse over a document shows its detailed information such as
document id, title, authors, etc (Fig. 1e). Topic coherence scores are
visualized as bars on top of the topic cards. As a topic coherence metric,
we use pointwise mutual information (PMI), which is highly correlated
with human judgement [39]. This can guide users to focus on refining
and improving low-quality topics and observe how their interactions
affect topic quality by monitoring the bars. Topic cards, keywords, and
documents can be interacted with to steer the underlying topics and
their hierarchy, which will be described in Section 4.2 in detail.

The control bar contains buttons to update the main topic card view.
A sliding trash panel is toggled by clicking a trash button in the control
bar (Fig. 1a). The plus and minus buttons in the control bar (Fig. 1a)
change the visualized depth of the topic tree to support multi-level
exploration. Users can ‘drill down/zoom in’ on a topic for more de-
tails and ‘zoom out’ to see higher-level topics as indented topic cards,
respectively. For example, Fig. 4a shows the first level topics. By zoom-
ing in, Fig. 4b shows the first level and the second level topics where
the deepest visible topic card is shown and the rest are collapsed. By
zooming in again, Fig. 4c shows topics up to the third level. Note that
parent and children topics have the same color hue, but with different
saturation; lighter colors and longer indentations represent deeper node
depths.

Zoom in Zoom in (c)(b)(a)

Fig. 4: Zooming-in from (a) to (c) by clicking the + button reveals
deeper levels of hierarchical topics interactively.

!

Topic-level Word-level Document-level

word1
word2
word3

doc1
doc2
doc3

Select
& Drag

AddW, 
MoveW MoveTDMergeTMergeT

! !

Drop

MoveT CreateW CreateTD

or or or

Fig. 5: User interaction design for supported tasks.

The mini overview displays the overall topic hierarchy as either a
weighted tree (Fig. 1f) or an icicle visualization. Topics visualized
as topic cards are colored accordingly and the remaining topics with
deeper depths are colored gray. When hovering over a topic, the
breadcrumb view (Fig. 1b) shows the trail from the top node to the
current node (orange-colored topic in Fig. 1c), and the corresponding
node in the mini overview is highlighted with black solid line
(orange-colored circle in Fig. 1f).

Hierarchy View Mode offers two types of tree visualizations, an in-
dented tree (Fig. 2) and a Sankey tree (Fig. 3), which can be selected in
the control panel (Fig. 2a). In both views, topic colors correspond to
those in the workspace mode. Using the control panel (Fig. 2a), users
can collapse topics by their depths or sizes. The indented tree view
(Fig. 2) visualizes the topics and the hierarchy as an indented tree where
indentation reflects tree depth. For each topic, its ID, topic size, and top
ten keywords are shown. Clicking a topic’s circle collapses/expands the
topic to hide/show its children topics. Filled circles represent collapsed
(and thus expandable) topics. The Sankey tree view (Fig. 3) visualizes
the topic tree from left (top node) to right (deeper level node) where
node height reflects topic size (number of documents in a topic). Each
topic node displays up to ten keywords depending on its size. Hovering
over a topic node pops up a detail view showing all ten keywords and
the size of a topic. When hovering over a keyword in a topic node, the
same keywords in other topics are highlighted to show term patterns
(red keywords in Fig. 3).

4.2 User Interaction Design
Fig. 5 demonstrates supported interaction tasks to steer the underlying
hierarchical topics. All interactions are designed to be executed by
clicking buttons (SplitT, FixT, LikeD) or simply dragging and drop-
ping visual components such as words, documents, and topic cards as
follows. When modifying existing topics (MergeT, AddW, MoveW,
MoveD), drop recipients are the topic cards being modified. When cre-
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ating a new topic (CreateTW, CreateTD) or moving a topic (MoveT,
RestoreT), the drop recipient is a dotted space which represents a
temporary topic card. When deleting words (RemoveW), documents
(RemoveD), or a topic (RemoveT), the drop recipient is the trash but-
ton.

4.2.1 Interaction Assistant

In the proposed tight integration framework, users incrementally update
models through a wide variety of interactions. During the process,
our system guides users by predicting and recommending interaction
tasks. Many of the interactions in our system start with selecting and
dragging and end with dropping. Our interaction assistant is triggered
when the user selects or drags something and then it predicts the next
step to complete the interaction. This can be beneficial for users who
are exploring potential alternatives for how to organize and construct
their topics.

Multi-selection: When steering a topic using word-level (CreateTW,
AddW, MoveW, RemoveW) or document-level (CreateTD, MoveD,
RemoveD) interaction tasks, selecting multiple words or documents
can convey clearer meaning than selecting a single word or a document.
However, going over many words or documents can be time-consuming.
To foster efficient multi-selection, our interaction assistant visually
recommends selection candidates. When a word (or a document) is
first selected, the system highlights frequently co-occurring words (or
similar documents) in the same topic to be selected along with the first
selected word (or document).

Drop: After selecting the words, documents, or a topic, the next step
is to drag and drop them into another topic or into the trash. Our inter-
action assistant predicts and recommends the locations to drop them
during an interaction. When the user starts dragging a topic, the system
highlights similar topics as drop recipients to foster MergeT or MoveT
tasks. Similarly, when the user starts dragging words or documents,
the system highlights topics that are similar to the dragged words or
documents as drop recipients to foster AddW, MoveW, MoveD or
CreateTW, CreateTD tasks. If the selected words or documents are
not coherent (not similar to each other), the system highlights the trash
to foster RemoveW, RemoveD tasks. In addition, users can preview
the expected hierarchy in the mini overview while placing the mouse
over the drop recipients.

5 EXPERIMENTS

In this section, we present a quantitative evaluation to show the scalabil-
ity of our approach. For our experiments, we use a patent dataset1. This
dataset contains about 7 million granted patents and their information,
e.g., ID, type, title, abstract, year, etc. After filtering out non-utility
patents, we are left with 6,248,456 utility patents.

We report computation time using different sizes of patent subsets.
We select 10,000, 50,000, 100,000, 500,000, and 1,000,000 data items
from the patent dataset to create multiple subsets of different sizes. For
each subset, we report the running time of building the initial hierar-
chical topics as well as performing an interaction task on a topic that
contains about 10% of the documents. Experiments were performed on
a MacBook Pro with Intel Core i7 3GHz, 4 cores, 8GB memory. Table 4
shows that building an initial topic model with ten leaf nodes from a
million documents takes about 5 minutes. Also, most tasks are finished
within several seconds, supporting accurate and timely visualization in
our tight integration methodology as discussed in Section 3.1.

In general, interactions with recomputations such as moving take
longer computation time than interactions without recomputation such
as merging (siblings) or splitting. This is because recomputation on a
topic runs a flat NMF algorithm with constraints (Eqn. 2) on its parent
topic, and the changes are propagated to its descendants. To reduce
interaction latency caused by recomputation time, we suggest the fol-
lowing strategies. First, we could reduce the number of recomputation.
Instead of performing full recomputation every time, the system can

1http://www.patentsview.org/download/, March 12, 2019 Version

Datasets p10K p50K p100K p500K p1M

# Documents 10,000 49,995 99,989 499,968 999,941
# Words 6,585 15,414 22,702 60,131 92,966

Initialization 3.64 13.73 27.35 142.19 300.01

Merge 0.005 0.014 0.025 0.097 0.191
Split 0.066 0.138 0.308 1.164 7.009
Move 0.598 1.515 2.927 22.133 49.735
Move (w/o re) 0.023 0.036 0.050 0.186 0.356

Table 4: Computation times (in seconds) for hierarchy initialization
with ten leaf nodes and several interaction tasks (merging siblings,
splitting a topic, moving a topic–with and without recomputation). All
results are averaged over 10 runs.

decide when to skip or perform recomputation. For instance, in the
case of recompute before cut or after insert, recomputation can be
skipped unless a large portion of the interacted topic is changed or a
certain number of interaction tasks have been applied to the interacted
topic without recomputation. Second, we could limit the number of
iterations when solving Eqn. 2. Since our algorithm utilizes previous
topics to initialize factor matrices W,H, we could reduce the number
of total iterations per one recomputation and still reach a near optimal
solution. Next, we can recommend users to keep the size of interaction
small since recomputation time depends on the size of its parent topic.
That is, focus on splitting topics into smaller ones rather than directly
steering bigger topics. Because our recomputation is local, it only
affects siblings. Regardless of the size of the entire dataset, users can
use this strategy to achieve fast interaction.

In this section, we do not report topic quality measures as those
depend on user decisions of which topics to interact with. For instance,
merging any two random topics would degrade the overall quality of
the topic hierarchy. Instead, we show two use cases that showcase the
effectiveness of our tight integration approach in Section 6.

6 USE CASES

6.1 TED Transcript Dataset

TED is a nonprofit organization that hosts influencial talks and shares
the videos online. Various topics including technology, education,
and self-help are covered in TED talks. Although the official TED
website provides keyword search functionality and over 400 category
tags, navigating about 3,000 talks and discovering talks of interest is
not easy. In this section, we use ArchiText to understand main themes
of the talks and organize them into hierarchical categories for easier
navigation. We used the TED dataset containing 2,969 talk transcripts.2

A user starts by inspecting six top-level topics shown in the initial
topic hierarchy (Fig. 2). In Fig. 2, there are clear and coherent topics
like ‘ocean, planet, water, earth, sea’ (T6: limegreen) and ‘patient,
disease, cancer, cell, drug’ (T7: turquoise). On the other hand, the
red topic (T3) with ‘girl, love, kid, woman, mother’ keywords is more
general and ambiguous. The user zooms in to see child topics (Fig. 4).
There is a strange topic with keyword ‘galleri websit, wix.com, wix’
(T19). Upon inspecting its documents, she notices that their contents
are actually the same transcript of an advertisement. It turns out that
the used web scrapper transcribed youtube commercials instead of
the main talk video. She deletes the topic (RemoveT). The user con-
tinues exploring the unclear red topic by examining its child topics
(Fig. 6(left)). She thinks that a red child topic with ‘music, song, sing’
keywords should be one of the top level topics, so she moves it under
the top node (MoveT). As a result, there is a top-level topic on ‘music,
art, artist’ in Fig. 6 (middle). The user further splits the blue art topic
(SplitT). One of its child topics contains both art-related keywords
and architecture-related keywords. She moves ‘architecture, city, de-
sign’ keywords to create a sibling topic (CreateTW). As a result, the
art topic has three sub-topics on art, architecture, and music (Fig. 6
(middle)). Satisfied with the blue topic, she moves on to the brown

2Source: https://github.com/saranyan/TED-Talks
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CreateTDSplitT

Fig. 6: The topic hierarchy after removing T19 (left). Split a topic into three sub-topics (middle). Create sibling topic with documents (right).

Fig. 7: Merging two topics. Interaction assistant recommends which topic to merge into (left). The topic hierarchy after merging (middle). The
final topic hierarchy (right).

topic, which is the second largest. The brown topics are mostly about
computer technologies, but she notices that a few keywords ‘mathemat,
physic, simul, theori’ are about natural sciences. She flips the topic and
starts to drag several documents about physics and simulation with the
goal of separating those out. While dragging, the interaction assistant
recommends candidate drop zones with line patterns (Fig. 6 (right)).
She decides to move the documents under the top brown topic to create
a sibling topic (CreateTD). As a result, a new sub-topic about ‘math-
emat, theori, particl, quantum, galaxi’ is created (Fig. 7 (left)). She
merges the new topic with another natural science topic on ‘solar, mar,
earth’ (lime green topic in Fig. 7 (left)). She is interested in sports, but
she has not seen sports-related topics so far. She types in sports-related
keywords such as sports, athletes, basketball, tennis, etc. to create a
new topic (CreateTW). The new topic has a very small number of
documents (30 talks in Fig. 7 (right)). She goes over each document
and finds out that some talks are science/tech related (e.g., math behind
basketball) or inspirational talks from athletes (e.g. Billie Jean King).
She concludes that there are not many TED talks on the topic of sports
and finishes the analysis.

6.2 Patent Dataset
The Patent office manages historical patents; and granted or rejected
patent applications. Due to technology advances in various fields, there
is a need to update the patent classification system. Using ArchiText,
we will use interactive topic modeling to make sense of existing utility
patents and build a new taxonomy based on their content. The dataset
description can be found in Section 5.

A patent officer explores the initial topic hierarchy in Fig. 8. He
notices that a brown topic about semiconductor process (red box in
Fig. 8 (left)) is grouped with a brown chemistry topic. He moves the
semiconductor topic under the top node (MoveT). As a result, two
topics are separated (red boxes in Fig. 8 (middle)). He inspects one of
the chemistry sub-topics and decides to move words (MoveW) about
pharmaceutical patents (green arrow in Fig. 8 (middle)), which results
in a new topic about ‘pharmaceut, diseas, treat, treatment’ compounds
under the chemistry parent topic. Moving on to the rest of the topics,
he splits a ‘light, image’ topic (blue box in Fig. 8 (right)) into an optics
topic and an image-related topic (SplitT). He delves into sub-topics
of all topics, and finds a media related topic under the green ‘data,
inform’ topic (second from the left). Wanting to gather all media
related patents under a single top-level topic, he adds keywords ‘audio,

multimedia, video’ into the purple image-related topic (AddW) while
fixing other topics (FixT). As a result, the purple topic becomes larger
and contains more media-related patents, some of which are moved
from the yellowgreen topic (T13 in Fig. 10). He is now satisfied with
the hierarchy and creates the new taxonomy based on the result.

7 DISCUSSION

Interactive topic modeling systems, in order to steer the underlying
models, users provide supervision in terms of user interaction. For
the same user interaction, there are numerous ways to interpret inter-
mediate results to understand the algorithmic updates depending on
the visualization systems and their underlying algorithms. Two basic
common factors that can be applied to all interactive topic modeling
techniques are the scope and the amount of user control. First, scope de-
termines how wide the impact of the interaction would be. For instance,
when a user adds a document to a topic, we can safely assume that
the user wants to update the interacted topic. Should this interaction
affect only the interacted topic? Or should it also affect the neighboring
topics? Or all the topics? Updating in local scope can be faster with
less precise results. On the other hand, updating in global scope can
provide more accurate results, but may cause unexpected changes in
other parts of the model. Next, the amount of user control determines
to what degree to apply the supervision. For example, when a user adds
a keyword to a topic, the user expects the interacted topic to be (more)
about the added keyword. In this case, should the updated topic have
that keyword as its top keyword at any cost (hard supervision)? Or is
increasing the importance weight of that keyword for the topic enough
(soft supervision)? What if the topic and its corresponding documents
are not related to that keyword, e.g., adding an irrelevant keyword?
Some may prefer applying the hard supervision while others may argue
for a more truthful representation of the data. In order to balance these
trade-offs, we take a simple approach. Our system uses recompute
operations to supervise the underlying model. recompute solves a
constrained Nonegative Matrix Factorization (NMF) for the sibling
topic nodes (local scope) of the interacted topic with two parameters
α and β (Eqn. 2). We considered an option to let the users decide the
amount of user control during each interaction, but decided against it.
It can be burdensome to the users and it may slow down the analytic
process.
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Fig. 8: Initial topic hierarchy of patents (left). After moving a topic (middle). After moving keywords (right).

Fig. 9: After splitting a topic into two topics (blue box). Add keywords
into the purple topic.

Fig. 10: The final topic hierarchy.

8 CONCLUSION

In this paper, we proposed interactive hierarchical topic modeling with
tight integration among algorithm, visualization, and users interaction.
Unlike some previous interactive systems which offer rather limited
interaction functionality that may result in unexpected outcomes, our
tightly integrated system incorporates user intentions flexibly without
strange side effects. In addition, compared to existing interactive topic
modeling systems that are not scalable, our system can handle large
datasets. As a proof of concept, we developed ArchiText, a prototype
system for interactive hierarchical topic modeling and showcased usage
scenarios using real-world datasets.

For future work, we plan to take a more proactive approach for
smart, convenient human-in-the-loop topic modeling. With tightly
integrated topic modeling, users’ knowledge and intentions can be
flexibly incorporated step by step. In addition to this, we would like

our system to remember and learn from previous interactions in order
to predict and guide the users’ next steps to expedite the model steering
process.
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