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Abstract
TexTonic is a visual analytic system for interactive exploration of very large unstructured text collections.
TexTonic visualizes hierarchical clusters of representative terms, snippets, and documents in a single, multi-
scale spatial layout. Exploration is supported by interacting with the visualization and directly manipulating
the terms in the visualization using semantic interactions. These semantic interactions steer the underlying
analytic model by translating user interactions within the visualization to contextual updates to the supporting
data model. The combination of semantic interactions and information visualization at multiple levels of the
data hierarchy helps users manage information overload so that they can more effectively explore very large
text collections. In this article, we describe TexTonic’s data processing and analytic pipeline, user interface
and interaction design principles, and results of a user study conducted mid-development with experienced
data analysts. We also discuss the implications TexTonic could have on visual exploration and discovery
tasks.
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Introduction

Over the past few decades, the amount of stored data

has increased tremendously, yet the ability to glean

meaningful information from this data continues to

pose a challenge. Visualization is often used to lever-

age the human ability to visually identify patterns and

make sense of abstract concepts. This approach is

especially helpful for exploration and discovery-

oriented tasks for large text collections, where the data

set is often large and unfamiliar and in which it is diffi-

cult to articulate what exactly to look for a priori such

as through query-based searching. Visual analytics is a

type of visualization application that utilizes user inter-

action with the visualized data to support sensemaking

and analysis.1 This approach is particularly useful for

problems involving large amounts of data that cannot

be easily or quickly understood using conventional

analysis methods and tools.

In this article, we present TexTonic (Figure 1), a

visual analytic system that supports the exploration of

very large unstructured text collections through

user-driven analytics. TexTonic extracts, clusters, and
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visualizes terms from documents to reveal topics

within the overall collection. Users can interact with

the data via semantic interaction,2 a method to support

user-driven analytics through interaction with the

visualization. This direct interaction with the data

helps users to automatically tune the visualization in

support of their current analytic mental model. This

system is meant to help the user manage information

overload by providing progressive visualization (clus-

ters of terms, snippets of documents, full documents)

guided by user-driven analytics that adjusts the form

of the data based on the user’s analytic needs. The

result of semantic interactions combined with the

other user interactions such as zoom and pan is a

dynamic system that helps reduce the burden that big

data pose on users and now makes exploring large col-

lections more intuitive and manageable. TexTonic

supports analysis by helping the user begin their initial

exploration of data that are too large to explore using

existing text analysis tools.

The users we aim to support often work with very

large text collections that they know little about in

terms of content and structure. There are many ways

that ‘‘very large’’ can be defined, and in the context of

this article, we are concerned with the number of unique

documents in the collection, rather than the number of

unique terms in the collection, or the at-rest footprint

of the collection. As a point of reference, we demon-

strate our visual analytic on Wikipedia which contains

over 4 million documents. The combination of over-

view visualization techniques combined with controlla-

ble levels of detail is often used to address scale.

TexTonic further manages scale through user-driven

analytics. The domain expertise of users does not usu-

ally include the skills needed to tailor the analytics

used to process the data for their specific analytic

need. TexTonic’s unique contribution is the ability to

interact with an intuitive visual representation to steer

a generic analytic model toward something more

aligned to the user’s intent without the need to be an

expert in text processing.

Related work

Spatial text visualization

Visualization is a powerful mechanism to present tex-

tual data set to users. One popular approach for visua-

lizing text is through the use of a geospatial metaphor,

where relative distance between points (e.g. docu-

ments) is used to represent relative similarity.3 For

example, IN-SPIRE’s Galaxy View leverages such a

geospatial metaphor.4 Their work demonstrates how

unstructured documents can be translated into a

weighted vector of keywords, and by using dimension

reduction methods, relationships are visualized in a

spatial layout of documents. Similarly, STREAMIT5

and ForceSPIRE2 display documents in a spatial visua-

lization using a force-directed layout, where edges (or

springs) between the nodes (or documents) are a sum-

mation of the shared weighted keywords. Felix et al.6

presented TextTile, a visualization technique that com-

bines structured and unstructured text corpora into a

single data model for interactive exploration. It uses a

combination of multiple natural language processing

(NLP) methods to do so. In addition, Kim et al.7 pre-

sented TopicLens which lets users explore the main

keywords in a spatially represented visualization of

topics (generated from topic modeling) to get a better

understanding of the relationship between documents,

the topics they belong to, and the keywords that define

the topics.

A more literal geospatial example is used by GMap8

that visualizes a graph of keywords as a geographical

map, where clusters of the graph are colored as land

masses. Additional work has used a computed spatial

layout based on the data characteristics to show docu-

ments in spatial visualizations (e.g. Skupin,3 Davidson

et al.9 and Olsen et al.10). Perhaps most similar to our

approach is GMap,8 which presents users with land

masses of keywords. While effective, we go beyond this

visualization technique to include interactive methods

that enable (1) changing the level of detail shown for

specific topics of the data and (2) changing the relative

relationships between keywords and adjusting their

importance.

Visually presenting overviews of large amounts of

text has been approached by showing visualizations of

terms or keywords in a data set, as opposed to the

document-centric visualizations as described previ-

ously. This approach for scaling the visual representa-

tions has resulted in visualizations that are commonly

referred to as ‘‘tag clouds,’’ ‘‘word clouds,’’ or ‘‘wor-

dles.’’ These approaches focus on showing terms used

in a data set based on their frequency and optimizing

the reduction of whitespace within a bounded area.11–13

Font sizes and weight, and color are popular visual

encodings for showing these quick, quantitative over-

views of data. The term-centric metaphor has been

extended by adding meaning to the relative spatial

positioning of the terms. For example, techniques exist

for generating a context-preserving word cloud based

on similarity metrics between the terms including fre-

quency of use14 and parts-of-speech relationships.15

These approaches apply mathematically generated

locations to terms, such as force-directed layout algo-

rithms14 or multidimensional scaling (MDS).16

Additional work applies these spatial techniques to

visualize the data contained in Wikipedia. For exam-

ple, Holloway et al.17 have created a spatial
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visualization of English Wikipedia through the use of

the semantic content in the markup metadata gener-

ated by the users of Wikipedia (e.g. the topics, cate-

gories, and additional metadata used in the wiki).

Pang and Biuk-Aghai18 present a Wikipedia ‘‘world

map’’ that adheres to the geographic metaphor even

more closely. Their work represents Wikipedia content

as a geographic terrain, where peaks and valleys are

created based on the amount of information about a

topic (similar to the SPIRE ThemeView visual meta-

phor,19 VxInsight,9 etc.). Another geographic

approach is a multi-scale word cloud approach

enabling users to zoom into areas of the visualization

to retrieve additional details.20 This approach com-

putes static locations of terms, phrases, and docu-

ments, allowing users to zoom into areas to reveal

more information.

Semantic interaction

Semantic interaction is a technique that tightly couples

the visual encoding and metaphor of a visualization

with user interaction.2 The approach enables users to

influence the system’s underlying data model by

directly manipulating the information within the visual

metaphor, such as enlarging or shrinking the terms or

changing the position of elements in the visualization.

Interactions with the visualization are inferred analyti-

cal reasoning that are translated to steer the underlying

analytic data models.21 The interactivity supported by

the visual analytic tool can help reconcile the disparity

between the mental model and system model.1 Users

implicitly tune the visualization based on their under-

lying mental model as opposed to making manual

adjustments out of context of the original interaction

and analysis. The model proposed by Endert et al.2

emphasizes the differences between implicit model

steering versus explicit, direct control of model

parameters.

Much of the work on semantic interaction has

focused on steering data models22 by manipulating

and interacting with data objects (e.g. documents).

For example, by directly interacting with the spatial

layouts produced by analytic models, people can

directly reposition data points to organize documents

based on their preferences and expertise. Methods

have been produced that take this input to steer

dimension reduction techniques.2,23,24 The common

strategy among these approaches is to solve for a

weighting schema across the feature space that corre-

sponds with the user-determined placement of the data

points in the spatial visualization. Similarly, G1owacka

et al.25 leverage reinforcement learning techniques to

update their data model given user feedback on

keywords. Arnold and Gajos26 utilize multidimen-

sional scaling to explore semi-automatic placement

interactions to help guide spatial layout decisions in a

visualization. StarSPIRE27 extends the semantic inter-

action workflow by also performing document retrieval

from the inferred models produced.

The primary contribution of this work when com-

pared to existing semantic interaction research is two-

fold. First, the visualization displays and allows

interaction with multiple levels of hierarchical content,

displaying terms, phrases, snippets, and documents,

while previous work has been limited to only docu-

ments or terms. This supports TexTonic’s ability to

represent and visualize document collections at very

large data scales. Second, TexTonic incorporates infor-

mation aggregation techniques for model steering to

determine at what level of detail (e.g. terms, snippets,

full documents) to show the information in the

visualization.

TexTonic’s user interface is a spatial visualization

that displays information at multiple levels of detail.

User interactions with the data through the visualiza-

tion interface are interpreted and translated into

real-time personalized analytics. These user-driven

analytics close the gap between the users’ mental

model of the data and TexTonic’s initial data model

generated from the supporting analytics, making it

easier for the user to understand and explore the data.

The system steers the underlying analytic models in

real-time based on the exploratory user interactions.

The TexTonic visual analytic (Figure 1) is com-

posed of three primary components: the underlying

analytics and data processing, the visualization inter-

face, and the user-driven semantic interactions. First,

data are processed and analyzed using text processing

and key term extraction to produce a data model of

the text collection. The important key terms are dis-

played in the visualization by dimension reduction and

force-directed layout algorithms. Finally, the interac-

tive visual interface updates the data model in real-

time based on the user interactions in the visualization.

Combined, these components support exploration of

very large unstructured text collections. Compared to

existing work, TexTonic offers a number of unique

contributions including a dynamic spatial text visuali-

zation, consideration of term relationships rather than

document relationships, and the application of seman-

tic interactions in support of user-driven analytics.

TexTonic

TexTonic is a visual analytic system that supports the

exploration of very large unstructured text collections

through user-driven analytics (see Figure 1: Voice of
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America, Figure 2: Enron, and Figure 3: Wikipedia).

It is meant to help the user manage information over-

load by providing progressive visualization guided by

user-driven analytics that adjusts the form of the data

based on the user’s analytic needs. This approach helps

users deal with larger data sets by tailoring the data

model and subsequent visual to what they are inter-

ested in by interpreting their interactions. TexTonic

supports analysis by helping the user begin their initial

exploration of data that are too large to explore using

existing text analysis tools.

Data processing and analytics

TexTonic’s data processing and analytics pipeline is a

multi-stage process that includes the processing of

raw files into analytic artifacts used for visualization

in the user interface. This first step processes the raw

text data and generates an index of the top terms

mapped to the source document data, individual term

weights, and term association scores. We used Rapid

Automatic Keyword Extraction (RAKE)28 with a

common stop-word list to extract the top 10,000

terms (individual words and phrases) from the source

data. A term is a string of one or more consecutive

words, present in a document, and identified as a

candidate keyword. A keyword is the distinction made

by RAKE that identifies a term as being important

for a document.28

The optimal number of terms to extract depends

on the diversity of terms used in the document collec-

tion. Homogeneous collections, such as Enron

emails, may have smaller dictionaries than heteroge-

neous collections, such as Wikipedia. In the case of

Wikipedia, the top 10,000 terms (excluding stop-

words) provide 98% coverage of all Wikipedia arti-

cles. RAKE operates on a per-document basis and is

more affected by the size of the document vocabulary

rather than the number of documents in a collec-

tions. RAKE’s contribution to TexTonic is important

because of its ability to identify and extract phrases.

The extraction of short phrases is critical to the

usability and comprehension of the visualization

because of the additional context that is lost in indi-

vidual keywords.

A similarity matrix is generated that contains docu-

ment frequency, term weight, and a term association

score. Document frequency is the number of docu-

ments containing a term and is calculated as

df = jfd 2 C : t 2 dgj

where d is a document in collection C and t is a term

contained within a document.

Figure 1. TexTonic visualization of Voice of America (5043 documents).
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Term weight is a measure of how often that term is

important for a document, where df is the number of

documents containing a term and edf is the number of

documents containing a term that RAKE identified as

a keyword. Let A be a term in fd 2 Cg, A’s term

weight is calculated as

W = 2 � edfA

dfA

Figure 2. TexTonic visualization of Enron (510,596 documents).

Figure 3. TexTonic visualization of Wikipedia (4,825,201 documents).
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where 2 is used as an added scale factor. The possible

range of term weights is [0.0, 2.0].

Term association is the a measure of how well two

terms predict each other. We use an F-measure to eval-

uate A predicting term B and B predicting A. The

term association score is calculated as the harmonic

mean H of the F-measures for A and B

E = 1�H 1� FAB, 1� FBAð Þ

A Lucene29 index is used to map the extracted

terms to the source data, but any indexer may be used.

For a given term, Lucene selects sample text snippets

for each term from related documents based on term

density. A separate index of associated terms is main-

tained that often includes common synonyms and

alternate spellings of the indexed terms. This index

supports term search and document retrieval in the

user interface.

K-means clustering is applied to the similarity

matrix to produce a set of clusters and cluster cen-

troids that represent topics contained in the document

collection. K-means is a convergence on a set of mean

points and does not assume uniformity of the distribu-

tion. As a result, clusters may contain different num-

bers of terms based on how the terms converge on the

mean points. The data processor interface also calcu-

lates g-means which can be used to inform k. The user

may disagree with the g-means recommendation and

choose a different k based on experience and prefer-

ence. Through experimentation, we find that a k

between 8 and 15 produces clusters that work well for

Wikipedia. Terms within each cluster are then assigned

a hierarchical level based on their relative term weight

within the cluster, for example, terms with a higher

weight are higher in the hierarchy. This hierarchy is

used to support TexTonic’s ability to show different

levels of detail.

Finally, principal component analysis (PCA)30 on

the centroids reduces the dimensionality of their vec-

tors from 10,000 to 2. These two dimensions (2D) are

used to calculate the (x, y) coordinates for the centroid

term placement in the visualization. The centroids act

as anchors for force-directed positioning of cluster

terms in the visualization.

Visualization and user interface

TexTonic uses a spatial visual metaphor to represent

information, as shown in Figure 1. The visualization

represents a hierarchy of terms, snippets, and docu-

ments positioned spatially using color, size, and loca-

tion to imply relationship. TexTonic utilizes a

visualization method similar to GMap,8 with several

key differences. Both TexTonic and GMap use a

force-directed layout to organize and position terms in

2D space; however, our approach differs from GMAP

in that we cluster our terms in high dimensional space

and use dimension reduction on cluster centroids to

anchor clusters to a certain position in 2D space and

then use a force-directed layout to show the remaining

terms in each cluster. The resulting layout is a more

precise measure of the relationship between groups

(although the placement of the nodes is still only as

precise as FDL) without the noise from position opti-

mization. It is possible that two very similar groups

have star terms positioned on or near each other,

resulting in a visual mash-up between the two group

terms (see Switzerland and Village clusters in

Figure 3).

Terms are animated when they first appear on the

space and continue to move into their positions to

reflect changes to the underlying analytic model via

semantic interactions. These changes to the spatial lay-

out may be subtle (such as only moving a few pixels in

space) or significant (such as moving to associate with

another term). This movement is critical to reduce

change blindness and help users track these changes as

many terms may move in response to a user’s interac-

tion. Term movement is also an indicator of the effects

of user interaction on the model (via semantic interac-

tions), and large changes (such as many terms moving

in space) indicate a major change to model.

The term animation is a physics-based model that

takes into account the weighting of terms in the graph

and the distances the terms must move in space based

on the new model weights. Positioning is not determi-

nistic because the dynamic layout is always responding

to user interactions as they work with the data.

Therefore, optimal term placement algorithms (such

as Been et al.31) are computationally expensive for

TexTonic because of constantly moving terms. To bal-

ance utility and usability, we compromised computa-

tional cost of optimal label placement with occasional

term overlapping by allowing users to adjust term pad-

ding and spacing to their preference. Anecdotally, we

have found that our users prefer closer spaced terms at

the expense of some term overlapping versus perfectly

visible labels. Terms can be clicked and temporarily

dragged to reduce occlusion without affecting the

underlying model.

Clusters are identifiable by the shared background

generated from a Voronoi diagram, font color of asso-

ciated terms, and of term position. Each cluster con-

tains a star term that is the term closest to the

centroid. The star term is positioned using the (x, y)
coordinates calculated by PCA dimension reduction.

The star term is always visible, but is not always the

highest weighted term. Although the position of the

star term is anchored, the terms in the related cluster
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are positioned using a force-directed layout based on

intra-cluster term relationship in the similarity matrix.

That is, terms that are more related are positioned

closer together and terms that are less related are posi-

tioned farther away using a graph-based force-directed

layout. Users can reveal the hierarchical term relation-

ship within a cluster by hovering over any term,

phrase, or snippet (Figure 4).

Term size is determined by term weight and posi-

tion in the hierarchical cluster. Top-level terms are

larger, mid-level terms are smaller, and the lowest level

terms are the smallest and hidden from view until the

area of interest is in view.

Terms can also be ‘‘pinned’’ to a specific location

and are no longer affected by dynamic layout effects.

Pinned terms serve as landmarks in the visualization

and can mark terms of interest. They can have seman-

tic interactions applied to them, such as move and

resize. These interactions are described in more detail

in the next section.

TexTonic uses progressive disclosure through three

levels of zoom to control the amount of information a

user has to manage at any one time. For example, the

initial overview (zoom level 1) generated by TexTonic

only shows the highest weighted terms in all of the

clusters and provides a high-level view of the entire

data set. The user can use zoom to dive deeper into

the data, revealing mid-level (zoom level 2) terms, and

pan to move the view across the spatialization. These

interactions combined help the user focus on a specific

area of interest. At the lowest levels of the data (zoom

level 3), additional terms and snippets of source text

are shown to provide the most detailed context of the

data. These snippets are also available by request for

any term the user selects.

The general visualization principle is similar to a

word cloud, however with several differences. Word

clouds are a useful visualization technique that many

users are familiar with. Our application of semantic

interactions, which connects the underlying analytic to

the visualization, sets TexTonic apart from word

clouds. The additional visual structure and visual

encodings (term position, cluster position, term size,

cluster color) also work to enhance the visualization

technique, going beyond an information graphic

approach to supporting interactive visual analysis.

Because of the variable size in font size and phrase

length, optimizing the position of terms while manag-

ing computational cost remains a challenge. Too little

spacing causes term overlap and reduces readability,

while too much spacing reduces the saliency of the

clusters and is an inefficient use of space. TexTonic

provides several configurable scaling factors to allow

users to adjust term spacing to their preference.

User-driven analytics through semantic
interaction

TexTonic automatically interprets certain user interac-

tions and updates the data model using semantic inter-

action.2 When a user interacts with the visualization,

their actions are implicitly interpreted by the system.

This is used to update the term weights in the similar-

ity matrix, resulting in a real-time, user-driven analy-

tic. This in turn changes the data model which is then

reflected in the visualization.

Figure 4. Hierarchical highlighting of ‘‘defense secretary robert gates’’ as a child of ‘‘president barack obama’’ as a child
of the centroid cluster term ‘‘government’’ (Voice of America).
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The user interactions are based on recommended

semantic interaction heuristics described in Endert

et al.2 and leverage the bi-directionality of the visual

encodings and metaphor. That is, the techniques used

to encode specific attributes of the data also serve as

the methods for interacting with the underlying mod-

els. Below, we describe how each interaction updates

the visualization and the underlying models. Users can

resize star terms or pinned terms directly in the visua-

lization which updates the term weight and term pair

relationships in the similarity matrix. Let A be the

resized term and B a term related to A. Increasing A’s

size by factor N affects B’s new term weight W as

W =WB � (N � 1) � EAB + 1ð Þ

where EAB is the original association score between A

and B, and WB is B’s former weight.

As one particular effect, the change in the similarity

matrix drives information retrieval methods to find

additional information in the data set that may not

have been immediately visible. Then, the graph used

to drive the visualization is updated and adjacent ver-

tices in the graph that contain affected features are

updated. For example, Figure 5 shows how changing

the term size of ‘‘investor relations’’ increases the

weights of related terms. In addition, if the weights of

lower weighted terms are also increased, they are

raised in the hierarchy and may become visible in the

visualization.

Term movement in the visualization is a way for

users to express their assertions and hypotheses about

the clustering and relative association between terms.

Let P be the pinned term and A be a term related to

P. Decreasing the distance D between P and A affects

the association score E as

E =EPA + 1�D2

D1

� �
� 1� EPAð Þ

or in the case of increasing distance between P and A

E =EPA � 1�D1

D2

� �
� EPA

where EPA is the original association score between P

and A, D1 is the original distance between P and A,

and D2 is the new distance between P and A.

For example, Figure 6 shows how moving two

terms (‘‘ireland’’ and ‘‘played’’) closer together updates

the association scores of all related terms and results

in more contextually relevant information displayed in

the visualization. Individual term weights are also

updated in this process, and the sizes of the terms are

adjusted in the visualization according to the new

weights. Searching for a term will temporarily increase

the weight of matched and related terms. Let S be a

term that matches the search string and A a term

related to S. Searching for term S affects s’s term

weight W as

W =WS +WS �N

as well as affects related term A’s term weight W as

W =WA +WA �N � ESA

where WS is s’s former weight, WA is A’s former

weight, N is a fixed factor of 5%, and ESA is the origi-

nal association score between S and A. For related

terms, W is proportionally affected by E and related

terms with a stronger relationship to the search term

will be more affected.

In addition to upweighting, TexTonic temporarily

reveals relevant clusters in the visualization for terms

that may not be currently visible. While the search box

is open, terms can be pinned and upweighted to iden-

tify discoveries worth saving and influencing the data

model, as shown in Figure 7. This helps the user feel

free to look for terms or clusters that may be of analy-

tic interest that was not previously visible in the

Figure 5. Pinning and resizing the centroid term ‘‘investor relations’’ increase the weight of related terms in the cluster,
elevating them to the visible hierarchical layer (Enron).
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visualization. Terms can also be deleted in the visuali-

zation, resulting in the term weight and associated

term relationships set to zero in the similarity matrix.

This has the effect of removing the term’s influence in

the analytic data model.

While any one particular user action may change

term weights somewhat, individual actions taken in

isolation from other actions have limited influence on

the overall model. An experimental term movement

may leave a small residual effect if corrected but will

have minimal impact on the model as a whole.

Recognizable influence on the model comes from the

accumulation of adjustments from the user performing

many interactions over the course of the analysis.

By interacting with terms, users can express their

assertions and hypotheses about the clustering and

relative term association. These semantic interactions

offer two benefits to TexTonic. First, they allow users

to explore the data through a set of interactions that

occur directly on the visualization. Second, semantic

interactions reduce the gap between users’ mental

models of the specific analytic contexts they are work-

ing in and the system’s data model. These interactions

are the foundation for how TexTonic supports explo-

ration and discovery of large textual data sets.

Use case: football (United States) vs
football (world)

As a way to better describe how TexTonic can be used

in interactive text analysis, we present a use case

exploring the differences between American football

and football in the rest of the world using Wikipedia as

our corpus. To begin, we start with TexTonic’s over-

view of the Wikipedia data set (Figure 3). By reviewing

the major groups, you can see that there might be

some groups near the bottom of the visualization that

are relevant to our investigation: Club, Games, and

Match.

If we were more familiar with the world-view of

football, we might pick up on star terms near the bot-

tom of the visualization that are common terminology:

‘‘club’’ and ‘‘match.’’ Zooming into this area reveals

additional terms to confirm this might be a good area

for additional investigation (Figure 8).

However, if we were more familiar with American

football, we might not key in on the terms ‘‘club’’ or

‘‘match’’ as something relevant to football and instead

choose to search for the term ‘‘football.’’ Doing so

not only reveals terms that contain the term ‘‘foot-

ball’’ across the groups but also temporarily increases

Figure 6. Moving the pinned term ‘‘ireland’’ closer to ‘‘played’’ updates the nearby association scores, causing sports-
related terms in the ‘‘Ireland cluster’’ to move closer to the ‘‘played’’ cluster (Wikipedia).

Figure 7. Searching for the term ‘‘canadian’’ increases related term weights and makes them visible in the ‘‘played’’
cluster (Wikipedia).
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the term weight of lower weighted terms so that

they are now visible in our current zoom level (Figure

9). Notice that terms that were not previously visible

are now temporarily visible in search mode. Our

assumption about these three groups being relevant

to our search is confirmed and we can dive a little

deeper.

Next, since we know these three groups seem to be

the most relevant, we can drag and isolate them from

the other groups to conduct a targeted exploration rel-

evant to our task. The terms and their positions in

these three groups have changed slightly from what

was shown in their original positions. Isolating the

groups has changed the associated relationships

between these groups and the other groups in the

visualization (Figure 10).

At this point, we know that all three groups contain

the term ‘‘football,’’ but it is unclear how these three

groups may differ. Knowing a little bit about American

football, we search for the term ‘‘National Football

League’’ and see it appears in the Games group. We

decide to dig a little deeper and pin the ‘‘national foot-

ball league’’ term and increase its weight. Immediately

new terms appear that we had not seen before, includ-

ing ‘‘college football hall’’ and ‘‘assistant football

coach.’’ These terms now appear because their term

association score increased when the term weight for

‘‘national football league’’ increased, making them

Figure 8. Zooming into the area around Club, Games, and Match (left) reveals the next level of terms (right).

Figure 9. Searching for the term ‘‘football’’ reveals hidden terms in the groups Club, Games, and Match.
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more important in the model and now visible at this

level of zoom (Figure 11).

In another search-pin-upweight example, we

explore FIFA. In a search for ‘‘FIFA,’’ the term ‘‘FIFA

World Cup’’ was temporarily upweighted and visible

during the search and so we pinned this term. Wanting

to explore FIFA more, we upweighted ‘‘FIFA World

Cup,’’ and more FIFA-related terms are now visible in

the group (Figure 12).

In a final example, we take a different approach to

exploring the Match group. We pin and upweight the

star term ‘‘match’’ which also increases the weight of

its associated terms. A term we are unfamiliar with,

‘‘challenge cup’’ appears and we double click on it to

see snippets of documents for additional context. The

snippets include terms such as ‘‘Scottish,’’ ‘‘goal,’’ and

‘‘club,’’ and we conclude that the Challenge Cup is a

Scottish football (American soccer) championship. A

particular snippet catches our interest, and we can pull

up the source document to read further (Figure 13).

User study

We conducted a user study of TexTonic part-way

through development. The aim of the study was to

evaluate TexTonic visualization and interaction

approaches for usability and system improvements.

We recruited 10 experienced data analysts (female =

5; mean age = 42 years) who participated in the study.

All of the participants had at least 2 years of experi-

ence working with structured and unstructured text

data as a professional analyst. Study sessions were

audio and video recorded and notes were recorded by

an in-room observer.

Figure 10. Isolating Club, Games, and Match for further investigation.

Figure 11. Searching for the term ‘‘National Football League’’ (not visible at the highest level) shows that it has been
clustered into the Games group (left). Pinning and increasing the weight also increase the weight of related terms and
make them visible (right).
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TexTonic was set up at a workstation with a large,

high-resolution display. English Wikipedia was used as

the test data set with around 4 million articles pro-

cessed using the data processing and analytic pipeline

described in the earlier section. We chose Wikipedia as

the evaluation data set because of its diversity in con-

tent and size and generalizability. We believe that how

TexTonic is used will be highly dependent on the data

set and experience of the analyst. Our analysts had

expertise in different topic areas and so it was impor-

tant to choose a data set all participants would be

familiar with and to design study tasks that relied on

universal analytic techniques. Although Wikipedia and

other encyclopedic data sets have ontologies to help

organize information, our use of Wikipedia was moti-

vated by size and availability of the data set.

Procedure

Participants were asked to complete three tasks repre-

sentative of TexTonic use. While completing the tasks,

participants were encouraged to ‘‘think aloud’’ to pro-

vide insight to their thought processes. Training before

the tasks was a self-exploration that also served as an

introduction to TexTonic. Participants were first asked

to spend 10 min using TexTonic in undirected explora-

tion of Wikipedia and report anything interesting that

they found. If a participant did not discover a feature

on their own, the moderator would demonstrate it to

them and then ask them to describe the effects on the

visualization. This was done to evaluate whether parti-

cipants understood how features such as semantic inter-

actions work and affect what the user sees in TexTonic.

The study tasks were designed so that participants

completed exploration and discovery activities through

the use of TexTonic using standard analytic tech-

niques. The following tasks were given to participants:

� Explore the term ‘‘French navy’’;
� Explain the significance of ‘‘oak leaves’’ in history;

� Compare the American National Football League

(NFL) and the Canadian Football League (CFL).

These tasks were each prompted as explicit ques-

tions that could be queried for directly; however, the

importance of providing provenance of the answers

was stressed. Moderation style was based on the Think

Aloud Protocol (TAP)32 and participants were encour-

aged to talk out loud about their thought processes. Ad

hoc discussion with the moderator driven by a partici-

pant could and did occur during task completion. For

this reason, time on task was not a formalized metric.

The order that the study tasks were provided to parti-

cipants was randomized.

After each participant completed the study tasks,

they were asked to complete the Summative Usability

Scale (SUS)33 to assess usability and the NASA Task

Load Index (TLX)34 to assess mental demand. We

modified the TLX to measure the overall mental

demand of the entire TexTonic experience rather than

evaluate individual tasks, and participants completed

the TLX after they completed all of their tasks, rather

than after each task. After participants completed the

SUS and TLX, a post-study interview was conducted.

Participants were asked to identify five things that they

liked and disliked about their TexTonic experiences.

Participants were also provided an opportunity to

share any other feedback about TexTonic with the

researchers.

Results

Overall, TexTonic performed well in the usability

study. Participants were able to learn how to use the

visualization features, were able to complete the tasks,

and provided positive comments about the experience.

The study also identified some usability problems that

we fixed, improving the overall TexTonic user

experience.

Figure 12. Searching for the term ‘‘fifa’’ (not visible at the highest level) shows multiple terms that contain the string
‘‘fifa’’ and they have all been clustered into the Club group (left). Pinning and increasing the weight of ‘‘fifa world cup’’
also increase the weight of related terms and make them visible (right).
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Exploration and feature discoverability

Most of the participants (n = 8) discovered the seman-

tic interactions on their own and understood how

these interactions affected the underlying data model.

For the two participants who did not understand the

semantic interactions, the moderator demonstrated

and explained them before moving on to the study

tasks.

Task completion strategy

Task completion was examined for the French Navy,

German Oak Leaves, and American and Canadian

Football tasks. Because of the open-endedness of dis-

covery tasks, task completion was evaluated on a scale

rather than pass/fail:

� Attempted the task, but did not find any relevant

topics or terms;
� Found relevant topics and terms, but did not find

any interesting details;
� Found relevant topics, terms, and interesting

details.

All participants were able to find topics and terms

relevant to all three tasks. Participants were able to

easily find details to complete the French Navy (n = 9)

and German Oak Leaves (n = 10) tasks. Participants

had more difficulty finding details about the difference

between American and Canadian Football (n = 6);

however, four of six of these participants were able to

find the relevant topic and terms.

Task completion strategy was also examined.

Observed strategies included the following:

� Starting with keyword search;
� Starting with the visualization;
� Starting with the visualization and then switching to

keyword search before much progress was made.

Half of the participants used the keyword search

strategy to complete all three tasks (note that they were

not the same participants across all tasks): French

Navy (n = 6), German Oak Leaves (n = 5), American

and Canadian Football (n = 5). Several participants

started with the visualization and then switched to a

search strategy: French Navy (n = 3), German Oak

Leaves (n = 4), and American and Canadian Football

(n = 3). One participant completed the French Navy

and American and Canadian Football tasks only using

the visualization strategy. Two participants used only

the keyword search strategy to complete all three tasks.

No participants used the visualization exclusively to

complete all three tasks.F
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Participants exhibited an ability to maintain a bal-

ance between the visualization-driven exploration and

search-directed query to perform their tasks. Several

of the participants who began tasks using the visualiza-

tion before switching to a search strategy did so in

order to focus on an area of interest (visualization) and

to dig deeper into the details (search). Several of these

participants expected search to be limited to the area

of the visualization proximal to their cursor (rather

than a global search).

Usability

SUS scores closer to 1 indicate low usability and closer

to 5 indicate high usability (see Figure 14). In general,

participants found that TexTonic was Not Complex,

Easy to Use, and Easy to Learn. The lowest scores

were related to Consistency and lack of Integration.

We believe this sentiment was due to two factors. First,

some participants had difficulty interpreting the topic

of some of the term clusters. While the clusters were

statistically accurate for the analytic, they did not

match the participants’ mental models of what they

expected to be clustered. This is a key usability finding

that we will revisit in the ‘‘Discussion’’ section. Second,

there were several small usability problems and bugs

found by participants throughout the study that may

have contributed to their low impression of integration.

This was to be expected because this study was con-

ducted early in the engineering process.

Mental demand

TLX scores closer to 0 indicate less mental demand

and closer to 20 indicate more mental demand (see

Figure 15). In general, the TLX scores for TexTonic

were low and represented overall low mental demand

of study tasks. Overall, participants felt that TexTonic

use required low Mental Demand and that completing

tasks also took little Effort to use and low Frustration.

These scores echo the SUS scores that indicated

TexTonic was Easy to Use, Easy to Learn, and Not

Complex. However, participants’ self-assessment of

Performance was moderate, possibly because of the

open-endedness of discovery tasks and not knowing

when it has been completed.

General impressions

After participants completed the study tasks and the

summative evaluations, they were asked to describe

the top five things they liked and disliked about their

TexTonic experience. Most of the participants offered

positive comments about the visualization (n = 7).

Participants liked the way TexTonic clustered terms

together to create topics. As one participant stated,

‘‘What I like about TexTonic is that the visualization allows

you to get a better sense of what the clusters are because

there is more content than just a few keywords’’ (P2).

Participants valued the ability to zoom into areas of

visualization to focus their exploration on a given

region of the data. Participants also liked the ability to

move terms to organize the space and adjust the weight

in the text model: ‘‘I liked being able to tell my tools what

to do, and TexTonic did that well’’ (P7).

Many participants had trouble understanding the

cluster labels (n = 6). As one participant described, ‘‘I

don’t understand why those terms were picked’’ (P8), while

another participant felt, ‘‘The relationship between terms

was not obvious’’ (P4). It seemed that the text analytic

was not matching the users’ mental models for what

they expected to see. This raises a number of interest-

ing questions about the context of an analytic, which

we will discuss more in the ‘‘Discussion’’ section.

Many participants expressed interest in an advanced

search (n = 5). Specifically, participants wanted to

search within a specific topic cluster. As one partici-

pant explained, ‘‘I want to do an advanced iterative

search to be able to dig a little deeper’’ (P6). This feature

would support the strategy of many participants who

Figure 14. System Usability Scale (SUS) results from the
user study.

Figure 15. NASA TLX results from the user study.

14 Information Visualization 00(0)



first used the visualization to identify a topic of interest

and then used search to identify the location of details.

This requirement may come from a mismanagement

of expectations. TexTonic is meant to provide a high-

level overview of a large text corpus, not support in-

depth analysis. However, TexTonic was very easy for

participants to learn and use, and perhaps they

expected to be able to do more with it. An advanced

search capability is a feature that more involved analy-

sis would require.

Finally, many participants explicitly said how

TexTonic was easy to use, user-friendly, and intuitive

(n = 4). As one participant put it,

I’ve played with a lot of tools . one thing I have to say is

that in an hour’s time, I felt more confident about this tool

than I’ve felt about any other I’ve touched in the same

time span. (P7)

Discussion

TexTonic is not meant to replace in-depth reading of

documents, but to support high-level exploration of

large data sets as a way of discovering documents to

analyze in more depth. For example, the Google

Scholar query ‘‘physics in culture’’ returns 3.15 million

hits—too many to read in depth, even if just reviewing

the titles. TexTonic’s interactive overview of query

results would help the user find a more targeted subset

of papers to read.

The user study showed that the tight coupling

between the user interaction and the visual metaphor

was an effective method for users to visually explore

the data set. In addition, users relied heavily on prior

experience and knowledge of the data set to aid them

in exploring the data, raising the questions of how

important it is to use real analysts in system develop-

ment and how prior knowledge affects sensemaking

strategies. We reflect on these observations in the fol-

lowing sections.

Benefits and pitfalls of ecological validity

There are sometimes drawbacks to engaging with real

users, especially data analysts. Analysts are notoriously

difficult to recruit for user studies. They are very busy,

overworked people who must prioritize every task to

maximize their efficiency.35 Analysts are trained to

conduct analysis in a specific way and may not be able

to be temporarily flexible to new or alternate processes

during a user study. If an analyst does not understand

how a tool works, she may be less likely to trust the

tool. This is often overcome through training and use

over time, which is not always possible before a user

study. Despite these drawbacks, the benefits of

involving real users with real problems and real experi-

ences outweigh the pitfalls of involving them in

research.

At the same time, there are a number of benefits to

involving professional data analysts in the design and

evaluation of visual analytic tools. Analysts have real-

world experience analyzing data, and supporting them

is the end goal. Analysts represent that experience and

provide realistic, expert opinions during a user study.

Analysts also have the context of real-world problems.

Despite the drawbacks, the wealth of experience and

expert opinion that real users provided in the user

study was invaluable feedback in the design and devel-

opment of TexTonic.

Exploration and discovery

The challenges derived from real users helped increase

our understanding for how analysts complete explora-

tion and discovery tasks. For example, participants in

the user study were unsure if and when they had com-

pleted a task. Based on what we observed and dis-

cussed with participants in the post-study interview,

this could be for two reasons. First, the exploratory

nature of the tasks means that there was no clear end

goal or answer. Participants commented that they

were unsure when all of the information about a term

was being shown or if additional information could be

retrieved, extracted, or shown. Second, all of the parti-

cipants were practicing data analysts. They may have

had professional pride (or training) to be sure that

they found every detail that told the complete story of

the task.21

Supporting intuitive vs accurate mental
models

As mentioned in the preceding section, the SUS scores

in conjunction with the observations made during the

study suggest a discrepancy between the users’ mental

models of Wikipedia and statistically based text extrac-

tion model (such as the one used in TexTonic). One of

the major findings from the usability study was how

the clusters and star terms matched (or rather did not

match) some participants’ mental models of the data.

While participants could eventually understand what a

cluster was about, the star term was not necessarily

what they were expecting.

Star terms were chosen from the k-means centroid

which was the highest weighted and presumably most

representative term of the cluster. Statistically this was

the most accurate term to use to represent a cluster;

however, participants were expecting a more general-

ized topical term to help describe the cluster at a
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higher level. For example, the star term ‘‘played’’ was

the most statistically representative term for the cluster

that could topically be described as ‘‘sports.’’ Which

term is really the best term to represent the cluster?

This begs the question, ‘‘How much should we sup-

port the user and their existing models?’’

Another example of user and system model conflict

rose from participant confusion from the term ‘‘French

navy’’ being part of the ‘‘species’’ cluster. Someone

knowledgeable of French naval history in the 19th cen-

tury might not find the relationship between ‘‘French

navy’’ and ‘‘species’’ counter-intuitive, especially if she

is familiar with the contributions of the French naval

officer and botanist D’Urville. We did not expect most

participants to have this knowledge or consider it

important enough to affect their mental model of the

data. Where does this leave us as analytic system

designers?

Encyclopedic knowledge bases such as Wikipedia

have well-defined ontologies that are used regardless of

whether the data actually fit into that model. Through

their experiences, people learn this model and use it to

influence their own mental model of same or similar

information. It makes sense to take advantage of what

users already know, such as this pre-existing ontology,

to increase the usability of an analytic system. At the

same time, the purpose of exploratory analytics is to

help people discover new things that they did not

already know or think of explicitly searching for. At the

same time, if you utilize an already well-known data

model, then the likelihood of finding something new or

unexpected in the data is much lower.

This raises several interesting research and design

questions. What is the best way to design a statistically

sound model that supports rather than alienates the

user? To address such questions is challenging for a

number of reasons. First, mental models vary from

user to user, and whether an observed relationship

supports one’s mental model depends on context that

the user already has, as well as the user’s ability to

make inferences about what she sees. Also, what does

it mean for a visualization tool to support the user?

Specifically, where the text model and mental model

conflict, who determines which model is correct? In

cases where it is the mental model that is wrong, how

can a tool convince the user rather than alienate her?

In general, the value of any tool is only as strong as the

trust a user has in it. We believe hat the latter degrades

as the user observes relationships that conflict with her

mental model, making it increasingly difficult to place

confidence in the information visualized. These chal-

lenges are important not only to the evaluation of

visual analytic tools but also to better understand how

to couple mental and computational models.

Future work

The conflict between supporting and challenging the

users’ mental model is not easily resolved. However, it

has led us to think about future work in several areas.

The purpose of the star terms is to provide not only an

anchor for visualization positioning but also a refer-

ence from which users can begin to interpret a topic.

However, we saw that literal, statistically accurate

terms were not able to help users with this. Utilizing a

general ontology such as Zymurgy36 may support

intuitive labeling of clusters while limiting model bias

of more specific ontologies, such as the Encyclopedic

example.

Another area of interest is in improving the perfor-

mance of the analytic pipeline. The term similarity

matrix is at the heart of TexTonic’s analytic, providing

the basis for term weights, term associations, and term

clustering. It is also the most computationally expen-

sive component of TexTonic’s analytic pipeline at

O(n2) (although cost can be reduced by paralleliza-

tion). Future research could investigate better meth-

ods for estimating the optimal number of terms to

produce the same insights as a 10,000 term matrix

with less computation.

Different text analytics could also provide different

insights. Currently, TexTonic supports a common ana-

lytic model that leverages document co-occurrence to

generate term relationships. RAKE works well for cal-

culating relationships between documents. However

other text analytics, such as Latent Semantic Indexing

(LSI)37 or Latent Dirichlet allocation (LDA)38 may

also be appropriate. When combined with hierarchical

clustering (similar to the work by Hoque and

Carenini39), topic modeling becomes a powerful ana-

lytic for visualization tools.

This leads us to wonder how to best recommend

analytics for particular contexts. For example, differ-

ent analytics may work better on different data sets or

help users answer different analytic questions.

Understanding how to map analytics to use cases and

then make recommendations to the users is a much

larger analytic research area. Support for multiple ana-

lytics in the data pipeline would also make TexTonic

flexible for a variety of analytic use cases. We intend to

use TexTonic to evaluate multiple analytics to explore

how to appropriately map data, analytics, visualiza-

tion, and use cases for more effective visual analytic

systems.

Conclusion

TexTonic provides a scalable approach to visualizing,

and interacting with, large text collections. Our work
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offers the following contributions to the visualization

and analytic research communities:

� A dynamic spatial text visualization that is intelli-

gently driven by user interactions;
� Visualization of term relationships rather than only

looking at document relationships;
� The application of semantic interaction to term

relationships rather than only document

relationships.

TexTonic offers a visual analytic far text beyond a

visual map. The uses of multiple layers of analytics

that are driven by user interactions with the data pro-

vide a novel and useful way of exploring very large text

collections.
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