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Administrivia 

• Today: Modeling Lines and Finding them 
 

• Problem set 1 is posted. 
• You can use Matlab edge operators 
• You cannot use Matlab Hough methods. 
• Due Sunday, Sept 8th   11:55pm. 
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Now some “real” vision… 
• So far, we applied operators/masks/kernels to 
images to produce new image 
 
Image processing:  
 

• Now real vision: 

: ( , ) '( , )F I x y I x y→

: ( , ) good stuffF I x y →
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Fitting a model 
• Want to associate a model with observed features 

[Fig from Marszalek & Schmid, 2007] 

 
 

For example, the model could be a line, a circle, or an arbitrary shape. 
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Fitting 
• Choose a parametric model to represent a set of 

features 
• Membership criterion is not local 

• Can’t tell whether a point in the image belongs to a given model 
just by looking at that point 

• Three main questions: 
1. What model represents this set of features best? 
2. Which of several model instances gets which feature? 
3. How many model instances are there? 

• Computational complexity is important 
• It is infeasible to examine every possible set of parameters and 

every possible combination of features 

Source: L. Lazebnik 
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Example: Line fitting 
• Why fit lines?   
Many objects characterized by presence of straight lines 

• Wait, why aren’t we done just by running edge detection? 
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• Extra edge points (clutter), 
multiple models: 

– which points go with which 
line, if any? 

• Only some parts of each line 
detected, and some parts 
are missing: 

– how to find a line that bridges 
missing evidence? 

• Noise in measured edge 
points, orientations: 

– how to detect true underlying 
parameters? 

 

Difficulty of line fitting 
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Voting 
• It’s not feasible to check all combinations of features by 

fitting a model to each possible subset. 
• Voting is a general technique where we let the features 

vote for all models that are compatible with it. 
• Cycle through features, cast votes for model parameters. 
• Look for model parameters that receive a lot of votes. 

• Noise & clutter features will cast votes too, but typically 
their votes should be inconsistent with the majority of 
“good” features. 

• Ok if some features not observed, as model can span 
multiple fragments. 
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Fitting lines 
• Given points that belong to a line, what is 

the line? 
• How many lines are there? 
• Which points belong to which lines? 

 
• Hough Transform is a voting 

technique that can be used to answer all 
of these 
• Main idea:  
• 1.  Record all possible lines on which each 

edge point lies. 
• 2.  Look for lines that get many votes. 
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Finding lines in an image: Hough space 

Connection between image (x,y) and Hough (m,b) spaces 
• A line in the image corresponds to a point in Hough space 
• To go from image space to Hough space: 

• given a set of points (x,y), find all (m,b) such that y = mx + b 

x 

y 

m 

b 

m0 

b0 

image space Hough (parameter) space 

Slide credit: Steve Seitz 
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Finding lines in an image: Hough space 

Connection between image (x,y) and Hough (m,b) spaces 
• A line in the image corresponds to a point in Hough space 
• To go from image space to Hough space: 

• given a set of points (x,y), find all (m,b) such that y = mx + b 
• What does a point (x0, y0) in the image space map to? 

x 

y 

m 

b 

image space Hough (parameter) space 

– Answer:  the solutions of b = -x0m + y0 

– this is a line in Hough space 

x0 

y0 

Slide credit: Steve Seitz 
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Finding lines in an image: Hough transform 

What are the line parameters for the line that contains both 
(x0, y0) and (x1, y1)? 
• It is the intersection of the lines b = –x0m + y0 and  

b = –x1m + y1  

 

x 

y 

m 

b 

image space Hough (parameter) space 
x0 

y0 

b = –x1m + y1 

(x0, y0) 
(x1, y1) 
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Finding lines: Hough algorithm 
 
 
 
 
 
 

• How can we use this to find the most likely parameters 
(m,b) for the most prominent line in the image space? 

• Let each edge point in image space vote for a set of 
possible parameters in Hough space 

• Accumulate votes in discrete set of bins; parameters with 
the most votes indicate line in image space. 
 

x 

y 

m 

b 

image space Hough (parameter) space 
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Polar representation for lines 

    : perpendicular distance 
from line to origin 

   : angle the perpendicular 
makes with the x-axis 

 

 
Point in image space  sinusoid segment in Hough space 

dyx =− θθ sincos

d

θ

[0,0] 

d
θ

x

y

Issues with usual (m,b) parameter space: can take on 
infinite values, undefined for vertical lines. 
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Hough transform algorithm 
Using the polar parameterization: 
 
 
Basic Hough transform algorithm 

1. Initialize H[d, θ]=0 
2. for each edge point I[x,y] in the image 

    for θ = 0 to 180  // some quantization; not 2pi? 
            // maybe negative 

    H[d, θ] += 1 
3. Find the value(s) of (d, θ) where H[d, θ] is maximum 
4. The detected line in the image is given by 

H: accumulator array (votes) 

d 

θ 

Time complexity (in terms of number of voting elements)? 

dyx =− θθ sincos

   

θθ sincos yxd −=

θθ sincos yxd −=

Space complexity?  kn  (n dimensions, k bins each) 
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Image space 
edge coordinates 

Votes 
θ 

d 

x 

y 

Example: Hough transform for straight 
lines 

Bright value = high vote count 
Black = no  votes  
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Example: Hough transform for straight lines 
Circle :  Square :  
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Example: Hough transform for straight lines 
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Hough demo.. 
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Showing longest segments 
found 
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Impact of noise on Hough 

Image space 
edge coordinates 

Votes 
θ x 

y d 

What difficulty does this present for an implementation? 
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Image space 
edge coordinates 

Votes 

Impact of noise on Hough 

Here, everything appears to be “noise”, or random 
edge points, but we still see peaks in the vote space. 
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Extensions 
• Extension 1:  Use the image gradient 

• same 
• for each edge point I[x,y] in the image 

•  θ = gradient at (x,y) 
 

    
•  H[d, θ] += 1 

• same 
• same 

• (Reduces degrees of freedom) 
 

• Extension 2 
• give more votes for stronger edges 

• Extension 3 
• change the sampling of (d, θ) to give more/less resolution 

• Extension 4 
• The same procedure can be used with circles, squares, or any other shape 

θθ sincos yxd −=
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Hough transform for circles 
• Circle: center (a,b) and radius r 

 
• For a fixed radius r, unknown gradient direction 

222 )()( rbyax ii =−+−

Image space Hough space a

b
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Hough transform for circles 

• For a fixed radius r, unknown gradient direction 

• Circle: center (a,b) and radius r 
 222 )()( rbyax ii =−+−

Image space Hough space 

Intersection: 
most votes 
for center 
occur here. 
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Hough transform for circles 

• For an unknown radius r, unknown gradient direction 

• Circle: center (a,b) and radius r 
 222 )()( rbyax ii =−+−

Hough space Image space 

b 

a 

r 
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Hough transform for circles 

• For an unknown radius r, unknown gradient direction 

• Circle: center (a,b) and radius r 
 222 )()( rbyax ii =−+−

Hough space Image space 

b 

a 

r 
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Hough transform for circles 

• For an unknown radius r, known gradient direction 

• Circle: center (a,b) and radius r 
 222 )()( rbyax ii =−+−

Hough space Image space 

θ 

x 
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Hough transform for circles 

For every edge pixel (x,y) :  
 For each possible radius value r: 
     For each possible gradient direction θ:  
          %% or use estimated gradient 

     a = x – r cos(θ) 
     b = y + r sin(θ) 
     H[a,b,r] += 1 
 end 
end 
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Example: detecting circles with Hough 

Crosshair indicates results of Hough transform, 
bounding box found via motion differencing. 
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Original Edges 

Example: detecting circles with Hough 
Votes: Penny 

Note: a different Hough transform (with separate accumulators) 
was used for each circle radius (quarters vs. penny). 
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Original Edges Votes: Quarter Combined detections 

Coin finding sample images from: Vivek Kwatra 

Example: detecting circles with Hough 
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Voting: practical tips 
• Minimize irrelevant tokens first (take edge points with 

significant gradient magnitude) 
• Choose a good grid / discretization 

• Too coarse: large votes obtained when too many different lines 
correspond to a single bucket 

• Too fine: miss lines because some points that are not exactly 
collinear cast votes for different buckets 

• Vote for neighbors, also (smoothing in accumulator array) 
• Utilize direction of edge to reduce free parameters by 1 
• To read back which points voted for “winning” peaks, keep 

tags on the votes. 



Hough Transform CS 4495 Computer Vision – A. Bobick 

Hough transform: pros and cons 
• Pros 

• All points are processed independently, so can cope with occlusion 
• Some robustness to noise: noise points unlikely to contribute 

consistently to any single bin 
• Can detect multiple instances of a model in a single pass 

 
• Cons 

• Complexity of search time increases exponentially with the number 
of model parameters  

• Non-target shapes can produce spurious peaks in parameter space 
• Quantization: hard to pick a good grid size 
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Generalized Hough transform 
• What if want to detect arbitrary shapes defined by 

boundary points and a reference point? 

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980] 

Image space 

x 

  
 

a 

p1 

θ1 
p2 
θ2 

At each boundary point, 
compute displacement 
vector: r = a – pi. 
 
For a given model shape: 
store these vectors in a 
table indexed by gradient 
orientation θ. 
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Generalized Hough transform 
• To detect the model shape in a new image: 
• For each edge point 

• For each possible  θ* master orientation  
• Index into table with its gradient orientation θ- θ* 
• Use retrieved r vectors to vote for position of reference point 

• Peak in this Hough space is reference point with 
most supporting edges 

(In next slides we’ll assume only translation is unknown, i.e., 
orientation and scale are fixed) 
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Example 

model shape Source: L. Lazebnik 

Say we’ve already 
stored a table of 
displacement vectors 
as a function of edge 
orientation for this 
model shape. 
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Example 

displacement vectors for model points 

Now we want to look at 
some edge points 
detected in a new 
image, and vote on the 
position of that shape. 
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Example 

range of voting locations for test point 
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Example 

range of voting locations for test point 
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Example 

votes for points with θ = 
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Example 

displacement vectors for model points 
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Example 

range of voting locations for test point 
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votes for points with θ = 

Example 
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Application in recognition 
• Instead of indexing displacements by gradient orientation, 

index by “visual codeword” 

B. Leibe, A. Leonardis, and B. Schiele, Combined Object 
Categorization and Segmentation with an Implicit Shape Model, 
ECCV Workshop on Statistical Learning in Computer Vision 2004 

training image 

visual codeword with 
displacement vectors 

Source: L. Lazebnik 

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
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Application in recognition 
• Instead of indexing displacements by gradient orientation, 

index by “visual codeword” 

B. Leibe, A. Leonardis, and B. Schiele, Combined Object 
Categorization and Segmentation with an Implicit Shape Model, 
ECCV Workshop on Statistical Learning in Computer Vision 2004 

test image 

Source: L. Lazebnik 

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
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Summary 
• Fitting problems require finding any supporting evidence 

for a model, even within clutter and missing features. 
• associate features with an explicit model 

 

• Voting approaches, such as the Hough transform, make it 
possible to find likely model parameters without searching 
all combinations of features. 
• Hough transform approach for lines, circles, …, arbitrary shapes 

defined by a set of boundary points, recognition from patches. 

 
• It’s Labor Day Weekend – enjoy! 
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