
Hough Transform CS 4495 Computer Vision – A. Bobick

Aaron Bobick
School of Interactive
Computing

CS 4495 Computer Vision

Finding 2D Shapes and the
 Hough Transform

Hough Transform CS 4495 Computer Vision – A. Bobick

Administrivia

• Today: Modeling Lines and Finding them

• Problem set 1 is posted.
• You can use Matlab edge operators
• You cannot use Matlab Hough methods.
• Due Sunday, Sept 8th 11:55pm.

Hough Transform CS 4495 Computer Vision – A. Bobick

Now some “real” vision…
• So far, we applied operators/masks/kernels to
images to produce new image

Image processing:

• Now real vision:

: (,) '(,)F I x y I x y→

: (,) good stuffF I x y →

Hough Transform CS 4495 Computer Vision – A. Bobick

Fitting a model
• Want to associate a model with observed features

[Fig from Marszalek & Schmid, 2007]

For example, the model could be a line, a circle, or an arbitrary shape.

Hough Transform CS 4495 Computer Vision – A. Bobick

Fitting
• Choose a parametric model to represent a set of

features
• Membership criterion is not local

• Can’t tell whether a point in the image belongs to a given model
just by looking at that point

• Three main questions:
1. What model represents this set of features best?
2. Which of several model instances gets which feature?
3. How many model instances are there?

• Computational complexity is important
• It is infeasible to examine every possible set of parameters and

every possible combination of features

Source: L. Lazebnik

Hough Transform CS 4495 Computer Vision – A. Bobick

Example: Line fitting
• Why fit lines?
Many objects characterized by presence of straight lines

• Wait, why aren’t we done just by running edge detection?

Hough Transform CS 4495 Computer Vision – A. Bobick

• Extra edge points (clutter),
multiple models:

– which points go with which
line, if any?

• Only some parts of each line
detected, and some parts
are missing:

– how to find a line that bridges
missing evidence?

• Noise in measured edge
points, orientations:

– how to detect true underlying
parameters?

Difficulty of line fitting

Hough Transform CS 4495 Computer Vision – A. Bobick

Voting
• It’s not feasible to check all combinations of features by

fitting a model to each possible subset.
• Voting is a general technique where we let the features

vote for all models that are compatible with it.
• Cycle through features, cast votes for model parameters.
• Look for model parameters that receive a lot of votes.

• Noise & clutter features will cast votes too, but typically
their votes should be inconsistent with the majority of
“good” features.

• Ok if some features not observed, as model can span
multiple fragments.

Hough Transform CS 4495 Computer Vision – A. Bobick

Fitting lines
• Given points that belong to a line, what is

the line?
• How many lines are there?
• Which points belong to which lines?

• Hough Transform is a voting

technique that can be used to answer all
of these
• Main idea:
• 1. Record all possible lines on which each

edge point lies.
• 2. Look for lines that get many votes.

Hough Transform CS 4495 Computer Vision – A. Bobick

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

• given a set of points (x,y), find all (m,b) such that y = mx + b

x

y

m

b

m0

b0

image space Hough (parameter) space

Slide credit: Steve Seitz

Hough Transform CS 4495 Computer Vision – A. Bobick

Finding lines in an image: Hough space

Connection between image (x,y) and Hough (m,b) spaces
• A line in the image corresponds to a point in Hough space
• To go from image space to Hough space:

• given a set of points (x,y), find all (m,b) such that y = mx + b
• What does a point (x0, y0) in the image space map to?

x

y

m

b

image space Hough (parameter) space

– Answer: the solutions of b = -x0m + y0

– this is a line in Hough space

x0

y0

Slide credit: Steve Seitz

Hough Transform CS 4495 Computer Vision – A. Bobick

Finding lines in an image: Hough transform

What are the line parameters for the line that contains both
(x0, y0) and (x1, y1)?
• It is the intersection of the lines b = –x0m + y0 and

b = –x1m + y1

x

y

m

b

image space Hough (parameter) space
x0

y0

b = –x1m + y1

(x0, y0)
(x1, y1)

Hough Transform CS 4495 Computer Vision – A. Bobick

Finding lines: Hough algorithm

• How can we use this to find the most likely parameters
(m,b) for the most prominent line in the image space?

• Let each edge point in image space vote for a set of
possible parameters in Hough space

• Accumulate votes in discrete set of bins; parameters with
the most votes indicate line in image space.

x

y

m

b

image space Hough (parameter) space

Hough Transform CS 4495 Computer Vision – A. Bobick

Polar representation for lines

 : perpendicular distance
from line to origin

 : angle the perpendicular
makes with the x-axis

Point in image space sinusoid segment in Hough space

dyx =− θθ sincos

d

θ

[0,0]

d
θ

x

y

Issues with usual (m,b) parameter space: can take on
infinite values, undefined for vertical lines.

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough transform algorithm
Using the polar parameterization:

Basic Hough transform algorithm

1. Initialize H[d, θ]=0
2. for each edge point I[x,y] in the image

 for θ = 0 to 180 // some quantization; not 2pi?
 // maybe negative

 H[d, θ] += 1
3. Find the value(s) of (d, θ) where H[d, θ] is maximum
4. The detected line in the image is given by

H: accumulator array (votes)

d

θ

Time complexity (in terms of number of voting elements)?

dyx =− θθ sincos

θθ sincos yxd −=

θθ sincos yxd −=

Space complexity? kn (n dimensions, k bins each)

Hough Transform CS 4495 Computer Vision – A. Bobick

Image space
edge coordinates

Votes
θ

d

x

y

Example: Hough transform for straight
lines

Bright value = high vote count
Black = no votes

Hough Transform CS 4495 Computer Vision – A. Bobick

Example: Hough transform for straight lines
Circle : Square :

Hough Transform CS 4495 Computer Vision – A. Bobick

Example: Hough transform for straight lines

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough demo..

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough Transform CS 4495 Computer Vision – A. Bobick

Showing longest segments
found

Hough Transform CS 4495 Computer Vision – A. Bobick

Impact of noise on Hough

Image space
edge coordinates

Votes
θ x

y d

What difficulty does this present for an implementation?

Hough Transform CS 4495 Computer Vision – A. Bobick

Image space
edge coordinates

Votes

Impact of noise on Hough

Here, everything appears to be “noise”, or random
edge points, but we still see peaks in the vote space.

Hough Transform CS 4495 Computer Vision – A. Bobick

Extensions
• Extension 1: Use the image gradient

• same
• for each edge point I[x,y] in the image

• θ = gradient at (x,y)

• H[d, θ] += 1

• same
• same

• (Reduces degrees of freedom)

• Extension 2
• give more votes for stronger edges

• Extension 3
• change the sampling of (d, θ) to give more/less resolution

• Extension 4
• The same procedure can be used with circles, squares, or any other shape

θθ sincos yxd −=

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough transform for circles
• Circle: center (a,b) and radius r

• For a fixed radius r, unknown gradient direction

222)()(rbyax ii =−+−

Image space Hough space a

b

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough transform for circles

• For a fixed radius r, unknown gradient direction

• Circle: center (a,b) and radius r
 222)()(rbyax ii =−+−

Image space Hough space

Intersection:
most votes
for center
occur here.

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
 222)()(rbyax ii =−+−

Hough space Image space

b

a

r

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough transform for circles

• For an unknown radius r, unknown gradient direction

• Circle: center (a,b) and radius r
 222)()(rbyax ii =−+−

Hough space Image space

b

a

r

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough transform for circles

• For an unknown radius r, known gradient direction

• Circle: center (a,b) and radius r
 222)()(rbyax ii =−+−

Hough space Image space

θ

x

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough transform for circles

For every edge pixel (x,y) :
 For each possible radius value r:
 For each possible gradient direction θ:
 %% or use estimated gradient

 a = x – r cos(θ)
 b = y + r sin(θ)
 H[a,b,r] += 1
 end
end

Hough Transform CS 4495 Computer Vision – A. Bobick

Example: detecting circles with Hough

Crosshair indicates results of Hough transform,
bounding box found via motion differencing.

Hough Transform CS 4495 Computer Vision – A. Bobick

Original Edges

Example: detecting circles with Hough
Votes: Penny

Note: a different Hough transform (with separate accumulators)
was used for each circle radius (quarters vs. penny).

Hough Transform CS 4495 Computer Vision – A. Bobick

Original Edges Votes: Quarter Combined detections

Coin finding sample images from: Vivek Kwatra

Example: detecting circles with Hough

Hough Transform CS 4495 Computer Vision – A. Bobick

Voting: practical tips
• Minimize irrelevant tokens first (take edge points with

significant gradient magnitude)
• Choose a good grid / discretization

• Too coarse: large votes obtained when too many different lines
correspond to a single bucket

• Too fine: miss lines because some points that are not exactly
collinear cast votes for different buckets

• Vote for neighbors, also (smoothing in accumulator array)
• Utilize direction of edge to reduce free parameters by 1
• To read back which points voted for “winning” peaks, keep

tags on the votes.

Hough Transform CS 4495 Computer Vision – A. Bobick

Hough transform: pros and cons
• Pros

• All points are processed independently, so can cope with occlusion
• Some robustness to noise: noise points unlikely to contribute

consistently to any single bin
• Can detect multiple instances of a model in a single pass

• Cons

• Complexity of search time increases exponentially with the number
of model parameters

• Non-target shapes can produce spurious peaks in parameter space
• Quantization: hard to pick a good grid size

Hough Transform CS 4495 Computer Vision – A. Bobick

Generalized Hough transform
• What if want to detect arbitrary shapes defined by

boundary points and a reference point?

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Image space

x

a

p1

θ1
p2
θ2

At each boundary point,
compute displacement
vector: r = a – pi.

For a given model shape:
store these vectors in a
table indexed by gradient
orientation θ.

Hough Transform CS 4495 Computer Vision – A. Bobick

Generalized Hough transform
• To detect the model shape in a new image:
• For each edge point

• For each possible θ* master orientation
• Index into table with its gradient orientation θ- θ*
• Use retrieved r vectors to vote for position of reference point

• Peak in this Hough space is reference point with
most supporting edges

(In next slides we’ll assume only translation is unknown, i.e.,
orientation and scale are fixed)

Hough Transform CS 4495 Computer Vision – A. Bobick

Example

model shape Source: L. Lazebnik

Say we’ve already
stored a table of
displacement vectors
as a function of edge
orientation for this
model shape.

Hough Transform CS 4495 Computer Vision – A. Bobick

Example

displacement vectors for model points

Now we want to look at
some edge points
detected in a new
image, and vote on the
position of that shape.

Hough Transform CS 4495 Computer Vision – A. Bobick

Example

range of voting locations for test point

Hough Transform CS 4495 Computer Vision – A. Bobick

Example

range of voting locations for test point

Hough Transform CS 4495 Computer Vision – A. Bobick

Example

votes for points with θ =

Hough Transform CS 4495 Computer Vision – A. Bobick

Example

displacement vectors for model points

Hough Transform CS 4495 Computer Vision – A. Bobick

Example

range of voting locations for test point

Hough Transform CS 4495 Computer Vision – A. Bobick

votes for points with θ =

Example

Hough Transform CS 4495 Computer Vision – A. Bobick

Application in recognition
• Instead of indexing displacements by gradient orientation,

index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object
Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004

training image

visual codeword with
displacement vectors

Source: L. Lazebnik

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Hough Transform CS 4495 Computer Vision – A. Bobick

Application in recognition
• Instead of indexing displacements by gradient orientation,

index by “visual codeword”

B. Leibe, A. Leonardis, and B. Schiele, Combined Object
Categorization and Segmentation with an Implicit Shape Model,
ECCV Workshop on Statistical Learning in Computer Vision 2004

test image

Source: L. Lazebnik

http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf
http://www.pascal-network.org/challenges/VOC/pubs/leibe04.pdf

Hough Transform CS 4495 Computer Vision – A. Bobick

Summary
• Fitting problems require finding any supporting evidence

for a model, even within clutter and missing features.
• associate features with an explicit model

• Voting approaches, such as the Hough transform, make it
possible to find likely model parameters without searching
all combinations of features.
• Hough transform approach for lines, circles, …, arbitrary shapes

defined by a set of boundary points, recognition from patches.

• It’s Labor Day Weekend – enjoy!

	CS 4495 Computer Vision��Finding 2D Shapes and the�	Hough Transform
	Administrivia
	Now some “real” vision…
	Fitting a model
	Fitting
	Example: Line fitting
	Difficulty of line fitting
	Voting
	Fitting lines
	Finding lines in an image: Hough space
	Finding lines in an image: Hough space
	Finding lines in an image: Hough transform
	Finding lines: Hough algorithm
	Polar representation for lines
	Hough transform algorithm
	Slide Number 17
	Example: Hough transform for straight lines
	Example: Hough transform for straight lines
	Hough demo..
	Slide Number 21
	Slide Number 22
	Impact of noise on Hough
	Slide Number 24
	Extensions
	Hough transform for circles
	Hough transform for circles
	Hough transform for circles
	Hough transform for circles
	Hough transform for circles
	Hough transform for circles
	Example: detecting circles with Hough
	Slide Number 33
	Example: detecting circles with Hough
	Voting: practical tips
	Hough transform: pros and cons
	Generalized Hough transform
	Generalized Hough transform
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Example
	Application in recognition
	Application in recognition
	Summary

