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Administrivia 
• Problem set 2: 

• What is the issue with finding the PDF???? 
http://www.cc.gatech.edu/~afb/classes/CS4495-Fall2013/ 

 or 
http://www.cc.gatech.edu/~afb/classes/CS4495-Fall2013/ProblemSets/PS2/ps2-
descr.pdf  

 
• Today: Really using homogeneous systems to 
represent projection.  And how to do calibration. 
 

• Forsyth and Ponce, 1.2 and 1.3  
 
 
 

 

http://www.cc.gatech.edu/~afb/classes/CS4495-Fall2013/
http://www.cc.gatech.edu/~afb/classes/CS4495-Fall2013/ProblemSets/PS2/ps2-descr.pdf
http://www.cc.gatech.edu/~afb/classes/CS4495-Fall2013/ProblemSets/PS2/ps2-descr.pdf
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Last time… 
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What is an image? 

Figure from US Navy Manual of Basic Optics and Optical 
Instruments, prepared by Bureau of Naval Personnel. Reprinted 
by Dover Publications, Inc., 1969. 

 Last time: a function – a 2D pattern of intensity values 

 This time: a 2D projection of 3D points 
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Modeling projection 

• The coordinate system 
• We will use the pin-hole model as an approximation 
• Put the optical center (Center Of Projection) at the origin 
• Put the image plane (Projection Plane) in front of the COP 

• Why? 
• The camera looks down the negative z axis 

• we need this if we want right-handed-coordinates 
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Modeling projection 
• Projection equations 

• Compute intersection with PP of 
ray from (x,y,z) to COP 

• Derived using similar triangles 

• We get the projection by 
throwing out the last 
coordinate: 

Distant objects 
are smaller 
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Or… 
• Assuming a positive focal length, and keeping z the 

distance: 
 

xx u f
z
yy v f
z

′ = =

′ = =
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Homogeneous coordinates 
• Is this a linear transformation? 

• No – division by Z is non-linear  

Trick:  add one more coordinate: 

homogeneous image (2D)  
coordinates 

homogeneous scene (3D)  
coordinates 

Converting from homogeneous coordinates 

Homogenous coordinates invariant under scale 
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Perspective Projection 
• Projection is a matrix multiply using homogeneous 

coordinates: 

This is known as perspective projection 
• The matrix is the projection matrix 
• The matrix is only defined up to a scale 

S. Seitz 
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Geometric Camera calibration 
Use the camera to tell you things about the world: 

• Relationship between coordinates in the world and coordinates in 
the image:  geometric camera calibration, see Forsyth and Ponce, 
1.2 and 1.3.  Also, Szeliski section 5.2, 5.3 for references 
 

• Made up of 2 transformations: 
• From some  (arbitrary) world coordinate system to the camera’s 3D 

coordinate system.  Extrinisic parameters (camera pose) 
 

• From the 3D coordinates in the camera frame to the 2D image 
plane via projection. Intrinisic paramters 
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Camera Pose 

In order to apply the camera model, objects in the scene 
must be expressed in camera coordinates. 

World 
Coordinates 

Camera 
Coordinates 

Calibration target looks tilted from camera 
viewpoint. This can be explained as a 
difference in coordinate systems. 

This image cannot currently be displayed.
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Rigid Body Transformations 

• Need a way to specify the six degrees-of-freedom of a 
rigid body. 

• Why are their 6 DOF? 

A rigid body is a 
collection of points 
whose positions 
relative to each 
other can’t change 

Fix one point, 
three DOF 

3 

Fix second point, 
two more DOF 
(must maintain 
distance constraint) 

+2 

Third point adds 
one more DOF, 
for rotation 
around line 

+1 
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Notations (from F&P) 

•  Superscript references coordinate frame 
•  AP is coordinates of P in frame A 
•   BP is coordinates of P in frame B 

 

 

A P =

A x
A y
A z
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 
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⇔ OP = A x • iA( )+ A y • jA( )+ A z • kA( )
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Translation Only 
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Translation 
•  Using homogeneous coordinates, translation can be 

expressed as a matrix multiplication. 
 
 
 
 

  
 

• Translation is commutative 

B A B
AP P O= +

1 0 1 1

B B A
AP I O P     

=     
     
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Rotation 

( ) ( )

A B

A B
A A A B B B

A B

x x
OP i j k y i j k y

z z

   
   

= =   
   
   



B B A
AP R P=

B
A R

means describing frame A in 
The coordinate system of  
frame B 
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Rotation 

. . .

. . .
. . .

A B A B A B
B
A A B A B A B

A B A B A B

R
 
 =  
  

i i j i k i
i j j j k j
i k j k k k

B B B
A A A =  i j k

Orthogonal matrix! 

A T
B

A T
B

A T
B

 
 =  
  

i
j
k

The columns of the 
rotation matrix are the 

axes of frame A 
expressed in frame B.  

Why? 
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Example: Rotation about z axis 

What is the 
rotation matrix? 


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 −
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100
0)cos()sin(
0)sin()cos(

)( θθ
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θZR
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Combine 3 to get arbitrary rotation  

•Euler angles:  Z, X’, Z’’ 
•Heading, pitch roll: world Z, new X, new Y 
•Three basic matrices:  order matters, but we’ll not focus on 
that 
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Rotation in homogeneous coordinates 
•  Using homogeneous coordinates, rotation can be 

expressed as a matrix multiplication. 
 
 
 
 
 
 

•  Rotation is not commutative 
 
 

B B A
AP R P=

0
1 0 1 1

B B A
AP R P     

=     
     
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Rigid transformations 

B B A B
A AP R P O= +
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Rigid transformations (con’t) 

•  Unified treatment using homogeneous coordinates. 

1 0
1 0 1 0 1 1

1 1

B B B A
A A

B B A
A A

T

P O R P

R O P

       
=       

       
   

=    
   0

1 1

B A
B
A

P P
T

   
=   

   

Invertible! 
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Translation and rotation 
From frame A to B: 
Non-homogeneous (“regular) coordinates 

 B B A B
A Ap R p t= +



 

|

|
10 0 0 1

B B
A AB

x
R t y

p
z

    
    
    =             





This image cannot currently be displayed.Homogeneous coordinates 

3x3 
rotation 
matrix 

Homogenous 
coordinates allows us 

to write coordinate 
transforms as a 
single matrix! 
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From World to Camera 

 C C W C
W Wp R p t= +



  Non-
homogeneous 
coordinates 

Homogeneous 
coordinates 

|

|
0 0 0 1

C C C W
W Wp R t p

− − −    
    − −    =
    − − −
    
    



 

From world to camera is the  
extrinsic parameter matrix (4x4)  

(sometimes 3x4 if  using for next step in projection – not worrying about inversion) 

Translation from 
world to camera frame 

Rotation from world 
to camera frame 

Point in  
world frame 

Point in  
camera frame 
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Now from Camera 3D to Image… 
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Camera 3D (x,y,z) to 2D (u,v) or (x’,y’): 
Ideal intrinsic parameters 

z
yfv
z
xfu

=

=
Ideal Perspective projection 
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Real intrinsic parameters (1) 

 

 

xu
z
yv
z

α

α

=

=

But “pixels” are in 
some arbitrary 
spatial units 
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Real intrinsic parameters (2) 

z
yv
z
xu

 

 

β

α

=

=Maybe pixels are 
not square 
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Real intrinsic parameters (3) 

0

0

 

 

v
z
yv

u
z
xu

+=

+=

β

αWe don’t know the 
origin of our 
camera pixel 
coordinates 
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Really ugly intrinsic parameters (4) 

0
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between camera 
pixel axes 
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p'                        K   C p=
 

Intrinsic parameters, homogeneous coordinates 

0
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  −
    
    =         

  

Using homogenous coordinates we can write this as: 

In camera-based 
  3D coords In homog 

pixels 

Notice division  
by z 
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Kinder, gentler intrinsics 
• Can use simpler notation for intrinsics – last column is 

zero: 
 
 
 
 

• If square pixels, no skew, and optical center is in the 
center (assume origin in the middle): 
 

0
0 0 1

x

y

f s c
K af c

 
 =  
  

s – skew 
a – aspect ratio 
(5 DOF) 

0 0
0 0
0 0 1

f
K f

 
 =  
  

In this case only one 
DOF, focal length f 
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Combining extrinsic and intrinsic calibration 
parameters, in homogeneous coordinates 

( )'     C C W
W Wp K R t p=



 

'     K  Cp p=
 

'      Wp M p=
 

Intrinsic 

Extrinsic 

|

|
0 0 0 1

C C C W
W Wp R t p

− − −    
    − −    =
    − − −
    
    



 

World 3D 
coordinates Camera 3D 

coordinates 

pixels 

 

0 0 0      1

(If K is 3x4) 
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Other ways to write the same equation 

1

2

3

* . . .
* . . .

1 . . .
1

W
T x

W
T y

W
T z

p
u s u m

p
v s v m

p
s m

 
      
      =                   

 



'   Wp M p=
 

pixel coordinates 
world coordinates 

Conversion back from 
homogeneous 
coordinates leads to: 
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Pmv

Pm
Pmu









⋅
⋅

=

⋅
⋅

=

3

2

3

1

projectively similar 
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Projection equation 
 
 
 

• The projection matrix models the cumulative effect of all parameters 
• Useful to decompose into a series of operations 

* * * *
* * * *
* * * *

1

X
sx

Y
sy

Z
s

 
     
     = =     
        

 

x MX

3 1 3 13 3 3 3

1 3 1 3

' 1 0 0 0
0 ' 0 1 0 0

1 10 0 1 0 0 1 0

c
x xx x

c
x x

f s x
af y

          =                    

0
0 0
R I TM

projection intrinsics rotation translation 

identity matrix 

Finally: Camera parameters 
A camera (and its matrix) 𝐌 (or 𝚷) is described by several parameters 

• Translation T of the optical center from the origin of world coords 
• Rotation R of the image plane 
• focal length f, principle point (x’c, y’c), pixel size (sx, sy) 
• blue parameters are called “extrinsics,”  red are “intrinsics” 

• The definitions of these parameters are not completely standardized 
– especially intrinsics—varies from one book to another 

DoFs: 
 5+0+3+3 = 

11 
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Calibration 
• How to determine M (or 𝚷)?   
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Calibration using a reference object 
• Place a known object in the scene 

• identify correspondence between image and scene 
• compute mapping from scene to image 

 
 
 
 
 
 
 
 
 

Issues 
• must know geometry very accurately 
• must know 3D->2D correspondence 
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Estimating the projection matrix 
• Place a known object in the scene 

• identify correspondence between image and scene 
• compute mapping from scene to image 
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Resectioning – estimating the camera 
matrix from known 3D points 
• Projective Camera 
Matrix: 
 
 
 
 
 

• Only up to a scale, so 
11 DOFs. 
 

[ ]

11 12 13 14

21 22 23 24

31 32 33 34 1

p K R t P MP

X
u m m m m

Y
v m m m m

Z
w m m m m

= =

 
     
     =     
        

 
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Direct linear calibration - homogeneous 

One pair of 
equations for 
each point  
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Direct linear calibration - homogeneous 

This is a homogenous set of equations. 
When over constrained, defines a least squares problem 

– minimize 

A m 0 
2n × 12 12 2n 

• Since m is only defined up to scale, solve for unit vector  m* 
• Solution: m* = eigenvector of ATA with smallest eigenvalue 
• Works with 6 or more points 

Am

00

10

02
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10

11

12

13

20

21

22

23

m
m
m
m
m
m
m
m
m
m
m
m

 
 
 
 
 
 
 
 
 
 
 
 
 
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The SVD (singular value decomposition) trick… 
Find  the x that minimizes ||Ax|| subject to ||x|| = 1. 
 
Let A = UDVT  (singular value decomposition, D diagonal, 
   U and V orthogonal) 
Therefor minimizing ||UDVTx||   
But, ||UDVTx|| = ||DVTx|| and ||x|| = ||VTx||  
Thus minimize ||DVTx|| subject to ||VTx|| = 1 
Let y = VTx:  Minimize ||Dy|| subject to ||y||=1. 
But D is diagonal, with decreasing values.  So ||Dy|| min is when   
 y = (0,0,0…,0,1)T   

Thus x = Vy is the last column in V.    [ ortho: VT = V-1  ] 
And, the singular values of A are square roots of the eigenvalues 
of ATA  and the columns of V are the eigenvectors. (Show this?) 
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Direct linear calibration - inhomogeneous 
• Another approach: 1 in lower r.h. corner for 11 d.o.f 

 
 
 
 

 
• Now “regular” least squares since there is a non-variable 

term in the equations: 
 
 

00 01 02 03

10 11 12 13

20 21 221 1
1

X
u m m m m

Y
v m m m m

Z
m m m

 
     
     
     
        

 



Dangerous if  
m23  is really  

zero! 
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Direct linear calibration (transformation) 
• Advantage: 

• Very simple to formulate and solve.  Can be done, say, on a 
problem set 

• These methods are referred to as “algebraic error” minimization.  

• Disadvantages: 
• Doesn’t directly tell you the camera parameters (more in a bit) 
• Doesn’t model radial distortion 
• Hard to impose constraints (e.g., known focal length) 
• Doesn’t minimize the right error function 

 For these reasons, nonlinear methods are preferred 
• Define error function E between projected 3D points and image positions 

– E is nonlinear function of intrinsics, extrinsics, radial distortion 

• Minimize E using nonlinear optimization techniques 
– e.g., variants of Newton’s method (e.g., Levenberg Marquart) 
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Geometric Error 

ˆminimize ( , )i
i

iE d x x′ ′= ∑
min  ( , )i

i
ixd ′∑M

MX

Predicted 
Image  
locations 

Xi 

xi 
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“Gold Standard” algorithm (Hartley and Zisserman) 

Objective 
 Given n≥6 3D to 2D point correspondences {Xi↔xi’}, 

determine the “Maximum Likelihood Estimation” of  M 
Algorithm 
(i) Linear solution:  

(a) (Optional) Normalization:  
(b) Direct Linear Transformation Minimization of  geometric 

error: using the linear estimate as a starting point minimize 
the geometric error: 

 
 

(ii) Denormalization: 

i i=X UX

i ix = Tx

-1M = T MU

~ ~ ~ 

min  ( , )i
i

ixd ′∑M
MX
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Finding the 3D Camera Center from P-matrix 
• Slight change in notation.  Let M = [Q | b]  (3x4) – b is last 

column of M  
• Null-space camera of projection matrix.  Find C such that: 

 
• Proof: Let X be somewhere between any point P  and C 

 
 

 
• For all P, all points on PC projects on image of P,  
• Therefore C the camera center has to be in null space 

• Can also be found by:  
 
 

MC = 0

λ (1 λ)= + −X P C
λ (1 λ)= = + −x MX MP MC

1

1

− −
=  

 

Q b
C
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Alternative:  multi-plane calibration    
 

 
 

Images courtesy Jean-Yves Bouguet, Intel Corp. 

Advantage 
• Only requires a plane 
• Don’t have to know positions/orientations 
• Good code available online! 

– Intel’s OpenCV library:  http://www.intel.com/research/mrl/research/opencv/  

– Matlab version by Jean-Yves Bouget:  
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html 

– Zhengyou Zhang’s web site:  http://research.microsoft.com/~zhang/Calib/  

http://www.vision.caltech.edu/bouguetj/calib_doc/htmls/example.html
http://www.intel.com/research/mrl/research/opencv/
http://www.vision.caltech.edu/bouguetj/calib_doc/index.html
http://research.microsoft.com/~zhang/Calib/
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