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Administrivia 
• PS 2: 

• Get SDD and Normalized Correlation working for a given windows 
size – say 5x5.  Then try on a few window sizes.   

• If too slow, resize the images (imresize) and get your code working.  
Then try on full images (which are reduced already!). 

• Results not perfect on even test images?  Should they be? 
• Yes you can use normxcorr2  (it did say this!) 
• Some loops are OK.  For SSD you might have 3 nested loops (row, 

col, disp) but shouldn’t be looping over pixels.  
 

• Now: Multiple-views 
• FP 7.1, 8 (all) 

 
• Today:  First half of 2-Views …  
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Two views…and two lectures 
• Projective transforms from image to image 

 
 

• Some more projective geometry 
• Points and lines and planes 

 

• Two arbitrary views of the same scene 
• Calibrated – “Essential Matrix” 
• Two uncalibrated cameras “Fundamental Matrix” 

• Gives epipolar lines 
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2D Transformations 



Two Views Part 1: 2D transforms and 
Projective Geometry CS 4495 Computer Vision – A. Bobick 

2D Transformations 

tx 

ty = + 

Example: translation 
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2D Transformations 

tx 

ty = + 
1 

= 
1 0 tx 

0 1 ty 
. 

Example: translation 
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2D Transformations 

tx 

ty = + 
1 

= 
1 0 tx 

0 1 ty 
. 

= 
1 0 tx 

0 1 ty 

0 0 1 

. 

Example: translation 

[ BTW: Now we can chain transformations ] 

Homogenous vector 
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Projective Transformations 
• Projective transformations: for 2D images it’s a 3x3 matrix 

applied to homogenous  coordinates 
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Special Projective Transformations  
• Translation 

 
 
 
 
 
 

• Preserves: 
• Lengths/Areas 
• Angles 
• Orientation 
• Lines 
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Special Projective Transformations 
• Euclidean (Rigid body) 

 
 
 
 
 
 

• Preserves: 
• Lengths/Areas 
• Angles 
• Lines 
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Special Projective Transformations 
• Similarity (trans, rot, scale) transform 

 
 
 
 
 
 

• Preserves: 
• Ratios of Areas 
• Angles 
• Lines 
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Special Projective Transformations 
• Affine transform 

 
 
 
 
 
 

• Preserves: 
• Parallel lines 
• Ratio of Areas 
• Lines 
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Projective Transformations 
• Remember, these are homogeneous coordinates 
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Projective Transformations 
• General projective transform (or Homography)   

 
 
 
 
 
 

• Preserves: 
• Lines 

 
• Also cross ratios 

(maybe later) 
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The projective plane 
• What is the geometric intuition of using homogenous 

coordinates ? 
• a point in the image is a ray in projective space 

• Each point (x,y) on the plane (at z=1)  is 
represented by a ray (sx,sy,s) 

– all points on the ray are equivalent:  (x, y, 1) ≅ (sx, sy, s) 

 

(0,0,0) 

(sx,sy,s) 

image plane 

(x,y,1) 

-y 

x -z 
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Image reprojection 
• Basic question 

• How to relate two images from the same camera center? 
• how to map a pixel from projective plane PP1 to PP2 

PP2 

PP1 

Answer 
• Cast a ray through each pixel in PP1 
• Draw the pixel where that ray 

 intersects PP2 
 
Observation: 
Rather than thinking of this as a 3D 
reprojection, think of it as a 2D image 
warp from one image to another. 

Source: Alyosha Efros 

The irrelevant 
world! 
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Image from http://graphics.cs.cmu.edu/courses/15-463/2010_fall/ 

Application: Simple mosaics 
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How to stitch together a panorama (a.k.a. 
mosaic)? 

• Basic Procedure 
• Take a sequence of images from the same position 

• Rotate the camera about its optical center 
• Compute transformation between second image and first 
• Transform the second image to overlap with the first 
• Blend the two together to create a mosaic 
• (If there are more images, repeat) 

 

• …but wait, why should this work at all? 
• What about the 3D geometry of the scene? 
• Why aren’t we using it? 

Source: Steve Seitz 
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mosaic PP 

Image reprojection 

• The mosaic has a natural interpretation in 3D 
• The images are reprojected onto a common plane 
• The mosaic is formed on this plane 

Warning: This model 
only holds for 

angular views up to 
180°.  Beyond that 

need to use sequence 
that “bends the 

rays” or map onto a 
different surface, say, 

a cylinder. 
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Mosaics 

Obtain a wider angle view by combining multiple images all of 
which are taken from the same camera center. 

. . . 
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Image reprojection: Homography 
• A projective transform is a mapping between any two PPs 

with the same center of projection 
• rectangle should map to arbitrary quadrilateral  
• parallel lines aren’t 
• but must preserve straight lines 

• called Homography 
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Source: Alyosha Efros 
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Homography 

( )11, yx ( )11, yx ′′

To compute the homography given pairs of corresponding points in 
the images, we need to set up an equation where the parameters 
of H are the unknowns… 

( )22 , yx ′′( )22 , yx

…
 

…
 

( )nn yx , ( )nn yx ′′ ,
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• Can set scale factor i=1. So, there are 8 unknowns. 
• Set up a system of linear equations  Ah = b 
• where vector of unknowns h = [a,b,c,d,e,f,g,h]T 
• Need at least 4 points for 8 eqs, but the more the better… 
• Solve for h. If overconstrained, solve using least-squares:  

 
 

• Look familiar?    (If don’t set i to 1 can use SVD) 
• >> help mldivide 

Solving for homographies 

2min -Ah b
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Homography 
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To apply a given homography H 
• Compute p’ = Hp   (regular matrix multiply) 
• Convert p’ from homogeneous to  image 

coordinates 



Two Views Part 1: 2D transforms and 
Projective Geometry CS 4495 Computer Vision – A. Bobick 

Mosaics 

Combine images with the computed homographies… 

im
age from

 S. Seitz 

. . . 
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Mosaics for Video Coding 

• Convert masked images into a background sprite for 
content-based coding 
 

•    +    +      + 
 

•  
= 
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Homographies and 3D planes 
• Remember this: 

 
 
 
 
 
 

• Suppose the 3D points are on a plane: 
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Homographies and 3D planes 
• On the plane [a b c d] can replace Z: 

 
 
 
 
 

• So, can put the Z coefficients into the others:   
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3x3 Homography! 
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Image reprojection 

• Mapping between planes is a homography. Whether a 
plane in the world to the image or between image 
planes.  
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What else: Rectifying Slanted Views of 
Planes 
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Rectifying slanted views 

Corrected image (front-to-parallel) 
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Measuring distances 
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1 2 3 4 

1 

2 

3 

4 

Measurements on planes 
 
 

Approach:  unwarp then measure 
What kind of warp is this? 
Homography… 
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Image rectification 
 
 

p 
p’ 

A planar rectangular grid in the scene.  Map it into a 
rectangular grid in the image. 
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Some other images of rectangular grids… 
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Who needs a blimp? 
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Same pixels – via a homography 
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Image warping 

Given a coordinate transform and a source image 
f(x,y), how do we compute a transformed image 
g(x’,y’) = f(T(x,y))? 

x x’ 

T(x,y) 

f(x,y) g(x’,y’) 

y y’ 

Slide from Alyosha Efros, CMU 
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f(x,y) g(x’,y’) 

Forward warping 

• Send each pixel f(x,y) to its corresponding location  
•            (x’,y’) = T(x,y) in the second image 

x x’ 

T(x,y) 

Q:  what if pixel lands “between” two pixels? 

y y’ 

Slide from Alyosha Efros, CMU 
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f(x,y) g(x’,y’) 

Forward warping 

• Send each pixel f(x,y) to its corresponding location  
•            (x’,y’) = T(x,y) in the second image 

x x’ 

T(x,y) 

Q:  what if pixel lands “between” two pixels? 

y y’ 

A:  distribute color among neighboring pixels (x’,y’) 
– Known as “splatting” 

Slide from Alyosha Efros, CMU 
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f(x,y) g(x’,y’) x 
y 

Inverse warping 

Get each pixel g(x’,y’) from its corresponding location  
           (x,y) = T-1(x’,y’) in the first image 

x x’ 

Q:  what if pixel comes from “between” two pixels? 

y’ 
T-1(x,y) 

Slide from Alyosha Efros, CMU 
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f(x,y) g(x’,y’) x 
y 

Inverse warping 

Get each pixel g(x’,y’) from its corresponding location  
           (x,y) = T-1(x’,y’) in the first image 

x x’ 

T-1(x,y) 

Q:  what if pixel comes from “between” two pixels? 

y’ 

A:  Interpolate color value from neighbors 
– nearest neighbor, bilinear… 

Slide from Alyosha Efros, CMU >> help interp2 
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Bilinear interpolation 
Sampling at f(x,y): 

Slide from Alyosha Efros, CMU 
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Recap: How to stitch together a 
panorama (a.k.a. mosaic)? 
• Basic Procedure 

• Take a sequence of images from the same position 
• Rotate the camera about its optical center 

• Compute transformation (homography) between second 
image and first using corresponding points. 

• Transform the second image to overlap with the first. 
• Blend the two together to create a mosaic. 
• (If there are more images, repeat) 

Source: Steve Seitz 
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Why projective geometry?  
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The projective plane 
• What is the geometric intuition of using homogenous 

coordinates ? 
• a point in the image is a ray in projective space 

• Each point (x,y) on the plane is represented by a  
ray (sx,sy,s) 

– all points on the ray are equivalent:  (x, y, 1) ≅ (sx, sy, s) 

 

(0,0,0) 

(sx,sy,s) 

image plane 

(x,y,1) 

-y 

x -z 



Two Views Part 1: 2D transforms and 
Projective Geometry CS 4495 Computer Vision – A. Bobick 

Homogeneous coordinates 
2D Points: 
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Projective lines 
• What does a line in the image correspond to in 

projective space? 

• A line is a plane of rays through origin 
– all rays (x,y,z) satisfying:  ax + by + cz = 0 
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• A line is also represented as a homogeneous 3-vector l 
l p 

l 
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l 

Point and line duality 
• A line l is a homogeneous 3-vector 
• It is ⊥ to every point (ray) p on the line:  lTp=0 

 

p1 
p2 

What is the intersection of two lines l1 and l2 ? 
• p is ⊥ to l1 and l2   ⇒   p = l1 × l2 

Points and lines are dual in projective space 
• given any formula, can switch the meanings of points and 

lines to get another formula 

l1 

l2 

p 

What is the line l spanned by rays p1 and p2 ? 
• l is ⊥ to p1 and p2   ⇒   l = p1 × p2  
• l is the plane normal 
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Homogeneous coordinates  
Line joining two points: 

 

ax + by + c = 0

 

p1

 

p1 = x1 y1 1[ ]

 

p2 = x2 y2 1[ ]

 

l = p1 × p2

 

p2
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Homogeneous coordinates  
Intersection between two lines: 

 

a1x + b1y + c1 = 0

 

a2x + b2y + c2 = 0

 

x12

 

l1 = a1 b1 c1[ ]

 

l2 = a2 b2 c2[ ]

 

x12 = l1 × l2
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Ideal points and lines 

• Ideal point (“point at infinity”) 
• p ≅ (x, y, 0) – parallel to image plane 
• It has infinite image coordinates 

(sx,sy,0) -y 

x -z image plane 

Ideal line 
• l ≅ (a, b, 0) – normal is parallel to (is in!) image plane 

(a,b,0) 
-y 

x 
-z image plane 

• Corresponds to a line in the image (finite coordinates) 
– goes through image origin (principle point) 
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3D projective geometry 
• These concepts generalize naturally to 3D 
• Recall the equation of a plane: 

 
 

• Homogeneous coordinates 
• Projective 3D points have four coords:  p = (wX,wY,wZ,w) 

• Duality 
• A plane N is also represented by a 4-vector N =(a,b,c,d) 
• Points and planes are dual in 3D: NTp = 0 

• Projective transformations 
• Represented by 4x4 matrices T:  P’ = TP 

0aX bY cZ d+ + + =
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3D to 2D:  “perspective” projection 

• Matrix Projection: ΠPp =

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You’ve already seen this. 
 
What is not preserved under perspective projection? 

 
 

What IS preserved? 
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What’s next… 
• Today – more projective geometry, the duality between 

points and lines in projective space 
 

• Tuesday– using  the projective geometry revisit 2-views: 
• Essential and Fundamental matrices 
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