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Outline  
• Last time: dense motion: optic flow 

• Brightness constancy constraint equation 
• Lucas-Kanade  

 
• 2D Motion models 

• Bergen, ’92 
• Pyramids  
• Layers 

 

• Motion fields from 3D motions 
 

• Parametric motion 
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Visual motion 

Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others… 
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Motion estimation: Optical flow 

Will start by estimating motion of each pixel separately 
Then will consider motion of entire image  
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Problem definition:  optical flow 

How to estimate pixel motion from image I(x,y,t)  to I(x,y,t) ? 
• Solve pixel correspondence problem 

– given a pixel in I(x,y,t), look for nearby pixels of the same color in I(x,y,t+1) 

Key assumptions 
• color constancy:  a point in I(x,y, looks the same in I(x,y,t+1) 

– For grayscale images, this is brightness constancy 
• small motion:  points do not move very far 

This is called the optical flow problem 

( , , )I x y t ( , , 1)I x y t +
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Optical flow equation 
• Combining these two equations 

In the limit as u and v go to zero, this becomes exact 
 

Brightness constancy constraint equation 
0x y tI u I v I+ + =

0 ,tI I u v= +∇ ⋅ < >
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Optical flow equation 

• Q:  how many unknowns and equations per pixel? 

Intuitively, what does this constraint mean? 
 • The component of the flow in the gradient direction is determined 

• The component of the flow parallel to an edge is unknown 

2 unknowns, one equation 

edge 

(u,v) 

(u’,v’) 

gradient 

(u+u’,v+v’) 

0x y tI u I v I+ + =0 ,tI I u v= +∇ ⋅ < > or 
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Aperture problem 
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Solving the aperture problem 
• How to get more equations for a pixel? 

• Basic idea:  impose additional constraints 
• most common is to assume that the flow field is smooth locally 
• one method:  pretend the pixel’s neighbors have the same (u,v) 

• If we use a 5x5 window, that gives us 25 equations per pixel! 
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Lukas-Kanade flow 
• Prob:  we have more equations than unknowns 

• The summations are over all pixels in the K x K window 
• This technique was first proposed by Lukas & Kanade (1981) 

• minimum least squares solution given by solution (in d) of: 
Solution:  solve least squares problem 
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Eigenvectors of ATA 

• Recall the Harris corner detector: M = ATA is the 
second moment matrix 

• The eigenvectors and eigenvalues of M relate to 
edge direction and magnitude  
• The eigenvector associated with the larger eigenvalue points in the 

direction of fastest intensity change 
• The other eigenvector is orthogonal to it 
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Violating assumptions in Lucas-Kanade 
• The motion is large (larger than a pixel) 

• Not-linear: Iterative refinement 
• Local minima: coarse-to-fine estimation 

• A point does not move like its neighbors 
• Motion segmentation 

• Brightness constancy does not hold 
• Do exhaustive neighborhood search with normalized correlation - 

tracking features – maybe SIFT – more later…. 
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Not tangent: Iterative Refinement 
Iterative Lukas-Kanade Algorithm 

1. Estimate velocity at each pixel by solving Lucas-Kanade equations 
2. Warp It towards It+1 using the estimated flow field 

• - use image warping techniques 
3. Repeat until convergence 
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Optical Flow: Iterative Estimation 

x x0 

Initial guess:  
Estimate: 

estimate 
update 

(using d for displacement here instead of u) 
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Optical Flow: Iterative Estimation 

x x0 
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Revisiting the small motion assumption 

• Is this motion small enough? 
• Probably not—it’s much larger than one pixel (2nd order terms dominate) 
• How might we solve this problem? 
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Optical Flow: Aliasing 

Temporal aliasing causes ambiguities in optical flow because 
images can have many pixels with the same intensity. 
I.e., how do we know which ‘correspondence’ is correct?  

nearest match is correct 
(no aliasing) 

nearest match is incorrect 
(aliasing) 

To overcome aliasing: coarse-to-fine estimation. 

actual shift 

estimated shift 
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Reduce the resolution! 
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image 2 image 1 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

image 2 image 1 u=10 pixels 

u=5 pixels 

u=2.5 pixels 

u=1.25 pixels 

Coarse-to-fine optical flow estimation 
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image I image J 

Gaussian pyramid of image 1 Gaussian pyramid of image 2 

image 2 image 1 

Coarse-to-fine optical flow estimation 

run iterative L-K 

run iterative L-K warp 

warp & upsample 

Upsample flow 

. 

. 

. 
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Multi-scale 
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Remember: Image sub-sampling 

Throw away every other row and 
column to create a 1/2 size image 

- called image sub-sampling 

1/4 

1/8 

S. Seitz 
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Bad image sub-sampling 

1/4  (2x zoom) 1/8  (4x zoom) 

Aliasing!  What do we do? 

1/2 

S. Seitz 
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Gaussian (lowpass) pre-filtering 

G 1/4 

G 1/8 

Gaussian 1/2 

Solution:  filter the image, then subsample 
S. Seitz 
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Subsampling with Gaussian pre-filtering 

G 1/4  G 1/8 Gaussian 1/2 

S. Seitz 
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Band-pass filtering 
Gaussian Pyramid (low-pass images) 

These are “bandpass” images (almost). 
Laplacian Pyramid (subband images) 
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Laplacian Pyramid 

• How can we reconstruct (collapse) this 
pyramid into the original image? 

Need this! 

Original 
image 
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Image Pyramids 

Known as a Gaussian Pyramid [Burt and Adelson, 1983] 

S. Seitz 
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Computing the Laplacian Pyramid 

Need Gk to 
reconstruct  

Reduce 
Expand 
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Reduce and Expand 

Reduce 

Apply “5-tap” separable 
filter to make reduced 

image.  
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Reduce and Expand 

Reduce Expand 

Apply “5-tap” separable 
filter to make reduced 

image.  

Apply different “3-tap” 
separable filters for even 
and odd pixels to make 

expanded image...  
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Just Expand 
Apply different “3-tap” separable filters for even and 

odd pixels to make expanded image.  

Even Odd 

Coarser 

Finer 



Motion models CS 4495 Computer Vision – A. Bobick 

What can you do with band limited imaged? 
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Apples and Oranges in bandpass 

L0 

L2 

L4 

Reconstructed 
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Applying pyramids to LK 
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Coarse-to-fine global motion estimation 

Reduce 

Reduce 

Reduce 

Reduce 

LK 

LK 

LK 

Warp 

Warp 

Warp 
x2 Expand 

x2 Expand 

Final <u(x,y), v(x,y)> 

x2 Expand 
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Multi-resolution Lucas Kanade Algorithm 

Compute Iterative LK at highest level  
 
Initialize 𝑢𝐾+1,𝑣𝐾+1 = 0 at size of level K+1 
 
For Each Level i from K  to 0 

•Upsample 𝑢𝑖+1, 𝑣𝑖+1  to create 𝑢𝑖
𝑝, 𝑣𝑖

𝑝flow fields of now twice 
resolution as level i+1. 
•Multiply 𝑢𝑖

𝑝, 𝑣𝑖
𝑝 by 2 to get predicted flow 

•Warp 𝐼2  according to predicted flow  
•Compute It –temporal derivative  
•Apply LK to get 𝑢𝑖𝛿 , 𝑣𝑖𝛿  (the correction in flow) 
•Add corrections to obtain the flow u(i), v(i) at ith level, i.e.,  

𝑢𝑖 = 𝑢𝑖
𝑝 + 𝑢𝑖𝛿; 𝑣𝑖 = 𝑣𝑖

𝑝 + 𝑣𝑖𝛿 
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Optical Flow Results 

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 
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Optical Flow Results 

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003 
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Moving to models 
• Previous method(s) give dense flow with little or no 

constraint between locations (smoothness is either explicit 
or implicit). 
 

• Suppose you “know” that motion is constrained, e.g.  
• Small rotation about horizontal or vertical axis (or both) that is very 

close to a translation. 
• Distant independent moving objects 

 

• In this case you might “model” the flow…  
Ready for another old slide?  
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Motion models 

Translation 

2 unknowns 

Similarity 

4 unknowns 

Perspective 

8 unknowns 

Affine 

6 unknowns 
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Focus of Expansion (FOE) - Example 
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Full motion model 
• From physics or elsewhere: 

[ ]
















−
−

−
=

0
0

0

12

13

23

aa
aa

aa
axV R T= Ω× +

















+
































−
−

−
≈

















Z

Y

x

T

T

T

XY

XZ

YZ

Z

Y

X

V
V
V

Z
Y
X

V
V
V

0
0

0

ωω
ωω
ωω

=
















Z

Y

X

V
V
V

=
















Z

Y

X

T

T

T

V
V
V

=
















Z

Y

X

ω
ω
ω

Velocity Vector 

Translational  
Component of Velocity 

Angular Velocity 



Motion models CS 4495 Computer Vision – A. Bobick 

General motion  
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Where T is translation vector, Ω is rotation  

Why is Z only 
here? 
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If a plane and perspective… 

0aX bY cZ d+ + + =

2
1 2 3 7 8

2
4 5 6 7 8

( , )

( , )

u x y a a x a y a x a xy

v x y a a x a y a xy a y

= + + + +

= + + + +
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If a plane and orthographic… 

1 2 3

4 5 6

( , )
( , )

u x y a a x a y
v x y a a x a y

= + +
= + +

Affine! 
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0)()( 654321 ≈++++++ tyx IyaxaaIyaxaaI

• Substituting into the brightness constancy 
equation: 

yaxaayxv
yaxaayxu

654

321

),(
),(

++=
++=

•  Each pixel provides 1 linear constraint in  
    6 unknowns 

[ ] 2∑ ++++++= tyx IyaxaaIyaxaaIaErr )()()( 654321


• Least squares minimization: 

Affine motion 

0≈+⋅+⋅ tyx IvIuI
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Affine motion 
•Can sum gradients over window or entire image: 
 
 

•Minimize squared error (robustly) 
 
 
 
 
 
 

•This is an example of parametric flow – can substitute 
any linear model easily.  Others with some work.  
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Hierarchical model-based flow 

James R. Bergen, P. Anandan, Keith J. Hanna, Rajesh Hingorani: 
“Hierarchical Model-Based Motion Estimation," ECCV 1992: 237-252 
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Now, if different motion regions… 
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Layered motion 
• Basic idea: break image sequence into “layers” each of 

which has a coherent motion 

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. 

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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What are layers? 
• Each layer is defined by an alpha mask and an affine 

motion model 

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. 

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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yaxaayxv
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Local flow 
estimates 

Motion segmentation with an affine model 

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. 

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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Motion segmentation with an affine model 

yaxaayxv
yaxaayxu

654

321

),(
),(

++=
++= Equation of a plane 

(parameters a1, a2, a3 can be 
found by least squares) 

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. 

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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Motion segmentation with an affine model 

yaxaayxv
yaxaayxu

654

321

),(
),(

++=
++=

1D example 

u(x,y) 

Local flow estimate 

Segmented estimate Line fitting 

Equation of a plane 
(parameters a1, a2, a3 can be 

found by least squares) 

True flow 

“Foreground” 

“Background” 

Occlusion 

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. 

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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How do we estimate the layers? 
• Compute local flow in a coarse-to-fine fashion 
• Obtain a set of initial affine motion hypotheses 

• Divide the image into blocks and estimate affine motion 
parameters in each block by least squares 
• Eliminate hypotheses with high residual error 

• Perform k-means clustering on affine motion parameters 
• Merge clusters that are close and retain the largest clusters to 

obtain a smaller set of hypotheses to describe all the motions in 
the scene 

• Iterate until convergence: 
• Assign each pixel to best hypothesis 

• Pixels with high residual error remain unassigned 
• Perform region filtering to enforce spatial constraints 
• Re-estimate affine motions in each region 

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. 

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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Example result 
 

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993. 

http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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Recovering image motion 
• Feature-based methods (e.g. SIFT, Ransac, regression) 

• Extract visual features (corners, textured areas) and track them  - 
sometimes over  multiple frames 

• Sparse motion fields, but possibly robust tracking 
• Good for global motion 

• Suitable especially when image motion is large (10-s of pixels) 
• PS4! 

 

• Direct-methods (e.g. optical flow) 
• Directly recover image motion from spatio-temporal image 

brightness variations 
• Dense, local  motion fields, but more sensitive to appearance 

variations 
• Suitable for video and when image motion is small (< 10 pixels) 
• PS5!!! 
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