CS 4495 Computer Vision — A. Bobick Motion models

CS 4495 Computer Vision
Motion Models

Aaron Bobick

School of Interactive
Computing




CS 4495 Computer Vision — A. Bobick Motion models

Outline

- Last time: dense motion: optic flow
- Brightness constancy constraint equation
- Lucas-Kanade

- 2D Motion models
- Bergen, '92
- Pyramids
- Layers

- Motion fields from 3D motions

- Parametric motion
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Visual motion

Many slides adapted from S. Seitz, R. Szeliski, M. Pollefeys, K. Grauman and others...
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Motion estimation: Optical flow
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Wil start by estimating motion of each pixel separately
Then will consider motion of entire image
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Problem definition: optical flow

./' () *

Y o
o—r i @) .
(X, Yy,t) (X, y,t+1)

How to estimate pixel motion from image I(x,y,t) to I(x,y,t) ?

» Solve pixel correspondence problem
— given a pixel in I(x,y,t), look for hearby pixels of the pame colorfin I(x,y,t+1)

Key assumptions

e color constancy: a pointin I(X,y, looks the same in I(X,y,t+1)
— For grayscale images, this is brightness constancy

« small motion: points do not move very far
This Is called the optical flow problem
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Optical flow equation

- Combining these two equations

0 =I(x+u,y+v,t+1)—1(x,y,t) shorthand: I

=Xy, t+)+Lu+1 v-1(xy,1)
~[1(X, y,t+2) = 1 (%, y)]+ L u+1v
~l +Lu+lyv

~|,+VIl-<u,v>

In the limit as u and v go to zero, this becomes exact
O=I1,+Vl-<u,v>

— JI
— Ox

Brightness constancy constraint equation
Lu+l,v+1,=0
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Optical flow equation
0=1+Vl-<u,v> o L u+l v+I =0

- Q: how many unknowns and equations per pixel?

2 unknowns, one equation
Intuitively, what does this constraint mean?

 The component of the flow in the gradient direction is determined
 The component of the flow parallel to an edge is unknown

gradient
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Aperture problem
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Solving the aperture problem

- How to get more equations for a pixel?

- Basic idea: impose additional constraints
< most common is to assume that the flow field is smooth locally

- one method: pretend the pixel's neighbors have the same (u,v)
« If we use a 5x5 window, that gives us 25 equations per pixel!

0= I;(p;) + VI(p;) - [u v]

- Ix(p1)  Iy(p1) - Ii(p1)
I:(p2) Iy(p2) [ u ] _ | Li(p2)
: : (¥ :
Ix(p25) Iy(p2s) . I (p2s)

A d b

25x2 2x1 25x1



CS 4495 Computer Vision — A. Bobick Motion models

Lukas-Kanade flow

- Prob: we have more equations than unknowns

A d=b ——— minimize ||Ad—b|?
25x2 2x1 25x1

Solution: solve least squares problem
 minimum least squares solution given by solution (in d) of:

(ATA) d= ATb

2%2 2x1 2x1

N hly SELIy|[u]_ [ XL
Sly Sy ||v|~ | S

AT A Alp

 The summations are over all pixels in the K x K window
» This technique was first proposed by Lukas & Kanade (1981)
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Eigenvectors of ATA
wa- (B Bt ] - ]wa-sern
e Recall the Harris corner detector: M = ATA is the
second moment matrix

e The eigenvectors and eigenvalues of M relate to

edge direction and magnitude

» The eigenvector associated with the larger eigenvalue points in the
direction of fastest intensity change

» The other eigenvector is orthogonal to it
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Violating assumptions in Lucas-Kanade

- The motion is large (larger than a pixel)
- Not-linear: Iterative refinement
- Local minima: coarse-to-fine estimation

- A point does not move like its neighbors
- Motion segmentation

- Brightness constancy does not hold

- Do exhaustive neighborhood search with normalized correlation -
tracking features — maybe SIFT — more later....
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Violating assumptions in Lucas-Kanade

- The motion is large (larger than a pixel)
- Not-linear: Iterative refinement
- Local minima: coarse-to-fine estimation

- A point does not move like its neighbors
- Motion segmentation



CS 4495 Computer Vision — A. Bobick Motion models

Not tangent: lterative Refinement

lterative Lukas-Kanade Algorithm

1. Estimate velocity at each pixel by solving Lucas-Kanade equations
2. Warp I, towards I, using the estimated flow field

- use image warping techniques
3. Repeat until convergence
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Optical Flow: Iterative Estimation

estimate
A

Initial guess: dg = 0
Estimate: d; =dg+d

Xo ) G

(using d for displacement here instead of u)
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Optical Flow: Iterative Estimation

A file —d1) o (2)

estimate

Initial quess: d
update J 1

Estimate: do =dy +d

=<V
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Optical Flow: Iterative Estimation

A file —d2) | f5(2)

estimate

Initial guess: d-»
update

Estimate: d3 =d> +d

=<V
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Motion models

Optical Flow: Iterative Estimation

fi(x —d3) = fo(x)

=<V
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Revisiting the small motion assumption

- Is this motion small enough?
- Probably not—it's much larger than one pixel (2" order terms dominate)
- How might we solve this problem?
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Optical Flow: Aliasing

Temporal aliasing causes ambiguities in optical flow because
images can have many pixels with the same intensity.

l.e., how do we know which ‘correspondence’ is correct?

A f1(z) fo(x) A fi(z) fo(x)

actual shift

NS

estimated shift

|

nearest match is correct nearest match is incorrect
(no aliasing) (aliasing)

To overcome aliasing: coarse-to-fine estimation.
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Reduce the resolution!
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Coarse-to-fine optical flow estimation

L
B
NS
1 ‘\

11 A
1

u=1.25 pixels

u=2.5 pixels

u=>5 pixels

Gaussian pyramid of image 1 Gaussian pyramid of image 2
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Coarse-to-fine optical flow estimation
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Multi-scale
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Remember: Image sub-sampling

Throw away every other row and

column to create a 1/2 size image

- called image sub-sampling S 5o
. O€Itz
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Bad image sub-sampling

1/2 1/4 (2x zoom) 1/8 (4x zoom)

Aliasing! What do we do?
S. Seitz
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Gaussian (lowpass) pre-filtering

Gaussian 1/2

Solution: filter the image, then subsample

S. Seitz
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Subsampling with Gaussian pre-filtering

Gaussian 1/2 G 1/4 G 1/8

S. Seitz
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Band-pass filtering
Gaussian Pyramid (low-pass images)

Laplacian Pyramid (subband images)
These are “bandpass’ images (almost).
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Laplacian Pyramid

Original
Image

- How can we reconstruct (collapse) this
pyramid into the original image?
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Image Pyramids

Idea: Represent NxN image as a “pyramid” of
1x1, 2x2, 4x4,..., 2¥x2% images (assuming N=2¥)

level ki=1 pixle\

level k=1 H\L//\
|
A
|

level k-2

level 0 (= onginal image)

Known as a Gaussian Pyramid [Burt and Adelson, 1983]

S. Seitz
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Computing the Laplacian Pyramid

I=Gg ]_-c. G|:|=I

>(—P =

Reduce

Need G, to
reconstruct

-
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Reduce and Expand

Reduce

Apply “5-tap” separable
filter to make reduced
Image.
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(a) (b)

Reduce Expand
Apply “5-tap” separable Apply different “3-tap”
filter to make reduced separable filters for even
Image. and odd pixels to make

expanded image...
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Just Expand

Apply different “3-tap” separable filters for even and
odd pixels to make expanded image.

Even
Coarser
lg
Finer ¢ o o *F
e o e o
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What can you do with band limited imaged?
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Apples and Oranges in bandpass
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Applying pyramids to LK
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Coarse-to-fine global motion estimation

_
Level =2 (W) |
Ay E
Reduce &— Reduce
LK |
Level=1 (W)
Warp | j
Reduce

I@}T EI @—]

Warp

~Ift-1)

1"’{: U

?—E—Expan

— e Final <u(X,y), V(X,y)>

it}
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Multi-resolution Lucas Kanade Algorithm

Compute Iterative LK at highest level
Initialize ug ¢, vk+1 = 0 at size of level K+1

For Each Level i fromK to 0
Upsample u;, 4, v, to create u?, v! flow fields of now twice
resolution as level i+1.
Multiply u}, v} by 2 to get predicted flow
*\Warp I, according to predicted flow
«Compute I, —temporal derivative
Apply LK to get u?, v? (the correction in flow)
«Add corrections to obtain the flow u(i), v(i) at it level, i.e.,
U; =uf +u{s;vi = vlp +vi‘S
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Optical Flow Results

Lucas-Kanade
without pyramids

Fails in areas of large
OO

g e e e

* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Optical Flow Results

[.ucas-kKanade with Pvramids
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* From Khurram Hassan-Shafique CAP5415 Computer Vision 2003
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Moving to models

- Previous method(s) give dense flow with little or no
constraint between locations (smoothness is either explicit
or implicit).

- Suppose you “know” that motion is constrained, e.g.

- Small rotation about horizontal or vertical axis (or both) that is very
close to a translation.

- Distant independent moving objects

- In this case you might “model” the flow...
Ready for another old slide?
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Motion models

}" / 311::11[31'11}’ Proj e::l:ﬁ =
translation
i g
afl aﬂ&m

Euchde

Translation Similarity Affine Perspective

2 unknowns 4 unknowns 6 unknowns 8 unknowns
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Focus of Expansion (FOE) - Example
DEMON

(a) (b)

Fig. 7.3 FOE for rectilinear observer motion. (a) An image. (b) Later image. (c) Flow
shows different FOEs for static floor and moving object.
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Full motion model

- From physics or elsewhere: 0 -a, a,
V=QxR+T )= & 0 -a
-4, 4 0 |
_VX_ ) O _a)z a)Y __X— —VTX_
VY R Wy 0 — Wy Y |+ VTY Vx |
V, | |-, oy 0o lz]| |V, V, |= Velocity Vector
Yz ] L 1LZ]1 |5 v
v,
V. |= Translational
' Component of Velocity
Vi,
x| angular veloci
ngular Velocit
| @7 |
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General motion

Take derivatives:

X
X=f—
z U:Vx_fzvx_zxvz:fv_x—(féjv—zzfv—x—xv—z
Z _
v:vy:fZVY ZYVZ_ V—Y_(fijV_Z:fVY_yVZ
VA Z Z)Z Z Z
u(x,y) 1

= A(X,y) T +B(X,y)Q .
V(X Y) | Z(XY) “ x\e/?g/f)lsZonly

-f 0 _ 2
x} B(X’y){ (xy)2/f (f+x3)/f vy
0 -—f (f+y))/f —(xy)/f —x

A(X,Yy) = {

Where T is translation vector, Q Is rotation
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If a plane and perspective...

aX Y +cZ+d =0

U(x,y)=a, +a,Xx+a,y+a,x° +a,xy

V(X,y)=a, +ax+ay+a,xy+a,y’
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If a plane and orthographic...

u(x,y) =a, +a,x+a,y
V(X,y)=a,+ax+a,y

Affine!
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Affine motion
u(x,y)=a,+a,x+a,y
v(X,y)=a, +a;x+a.y

- Substituting into the brightness constancy
equation:

U+l -v+1, =0

_2/

Ja tax+azy)+1 (8, +asx+agy)+ 1, =0

« Each pixel provides 1 linear constraint in
6 unknowns

e Least sqguares minimization:

Err(@) =Y [1,(a, +a,x+ayy) + 1, (a, +ax +ay) +1,]
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Affine motion
-Can sum gradients over window or entire image:

Err(a) :Z[Ix(a1+azx+a3y)+ l,(a, +a;x+a,y) + It] 2

-Minimize squared error (robustly)

i} Jla] - -
Ix Ixxl Ixyl Iy Iyxl Iyyl a It
2 2
I, Lx, LY, Iy Iyx2 Iyy2 2 |
a, :
LoIx Ly | x| % "
X x'n xyn y yon yyn Lt
L - _a6_

-This Is an example of parametric flow — can substitute
any linear model easily. Others with some work.
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Hierarchical model-based flow

= Parameter Composition
Fig. 1. Diagram of the hlEl'al'Ch]CB.l motion estimation framework.

James R. Bergen, P. Anandan, Keith J. Hanna, Rajesh Hingorani:
“Hierarchical Model-Based Motion Estimation," ECCV 1992: 237-252
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Now, If different motion regions...
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Layered motion

- Basic idea: break image sequence into “layers” each of
which has a coherent motion

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.



http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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Motion models

What are layers?

- Each layer Is defined by an alpha mask and an affine
motion model

Background

(c)

Frame 1

Frame 2 Frame 2

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.



http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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viotion segmentation with an arfine mode
u(x,y)=a, +a,x+a,y

V(X,y)=a, +a.x+a,y

Local flow
estimates

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.



http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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viotion segmentation with an arfine mode

u(x,y)=a, +a,x+a,y Equation of a plane
) ) (parameters a,, a,, a; can be

V(X,y)=a, +a;Xx+asy  found by least squares)

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.



http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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U(X,y)=a, +a,x+a,y
v(X,y)=a, +a.x+a,y

viotion segmentation wi

Motion models

an aifine mode

Equation of a plane

(parameters a,, a,, a; can be

found by least squares)

1D example

velocity —=

u(xy)

position —=

True flow

UL

position —=

velocity —

Segmented estimate

velocity —

position —=

Local flow estimate

velocity —

---- 1 *“Foreground”

- X++{ “Background

position — = \)
Occlusion

Line fitting

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.



http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf

CS 4495 Computer Vision — A. Bobick Motion models

How do we estimate the layers?

- Compute local flow in a coarse-to-fine fashion

- Obtain a set of initial affine motion hypotheses

- Divide the image into blocks and estimate affine motion
parameters in each block by least squares
- Eliminate hypotheses with high residual error

- Perform k-means clustering on affine motion parameters

- Merge clusters that are close and retain the largest clusters to
obtain a smaller set of hypotheses to describe all the motions in
the scene

- Iterate until convergence:

- Assign each pixel to best hypothesis
- Pixels with high residual error remain unassigned

- Perform region filtering to enforce spatial constraints
- Re-estimate affine motions in each region

J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.



http://web.mit.edu/persci/people/adelson/pub_pdfs/wang_tr279.pdf
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J. Wang and E. Adelson. Layered Representation for Motion Analysis. CVPR 1993.
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Recovering image motion

- Feature-based methods (e.g. SIFT, Ransac, regression)

- Extract visual features (corners, textured areas) and track them -
sometimes over multiple frames

- Sparse motion fields, but possibly robust tracking
- Good for global motion

- Suitable especially when image motion is large (10-s of pixels)
- PS4!

- Direct-methods (e.g. optical flow)

- Directly recover image motion from spatio-temporal image
brightness variations

- Dense, local motion fields, but more sensitive to appearance
variations

- Suitable for video and when image motion is small (< 10 pixels)
- PS5!
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