#### CS 4495 Computer Vision

## Frequency and Fourier Transforms

Aaron Bobick School of Interactive Computing

## Administrivia

- Project 1 is (still) on line you should really get started now!
- Readings for this week: FP Chapter 4 (which includes reviewing 4.1 and 4.2)

## Questions about PS1?

- Where should I put the origin?
  - It's up to you you get to define the geometry.
- Should  $\theta$  go from  $-\pi$  to  $\pi$  or  $-\frac{\pi}{2}$  to  $\frac{\pi}{2}$  or what?

• It's up to you – you get to define the geometry.

- How do I draw the line?
  - I'm guessing that any line in your image crosses approximately two edges in the image. So given an equation of the line, you could try x=1 or x=256 or y=1 or y=256 and see what values you get. Just a thought...



#### Salvador Dali

"Gala Contemplating the Mediterranean Sea, which at 30 meters becomes the portrait of Abraham Lincoln", 1976



## Decomposing an image

- A basis set is (edit from to Wikipedia):
  - A basis B of a vector space V is a linearly independent subset of V that spans V.
  - In more detail:suppose that B = { v<sub>1</sub>, ..., v<sub>n</sub> } is a finite subset of a vector space V over a <u>field</u> F (such as the <u>real</u> or <u>complex numbers</u> R or C). Then B is a basis if it satisfies the following conditions:
    - the *linear independence* property:
      - for all  $a_1, \ldots, a_n \in \mathbf{F}$ , if  $a_1v_1 + \ldots + a_nv_n = 0$ , then necessarily  $a_1 = \ldots = a_n = 0$ ;
    - and the spanning property,
      - for every *x* in *V* it is possible to choose  $a_1, ..., a_n \in \mathbf{F}$  such that  $x = a_1v_1 + ... + a_nv_n$ .
  - Not necessarily orthogonal....
- If we have a basis set for images, could perhaps be useful for analysis – especially for linear systems because we could consider each basis component independently. (Why?)

#### Images as points in a vector space

- Consider an image as a point in a NxN size space can rasterize into a single vector  $[x_{00}x_{10}x_{20}...x_{(n-1)0}x_{10}...x_{(n-1)(n-1)}]^T$
- The "normal" basis is just the vectors:  $[0 \ 0 \ 0 \ 0 ... 01 \ 0 \ 0 \ 0 ... 0]^T$ 
  - Independent
  - Can create any image
- But not very helpful to consider how each pixel contributes to computations.



This change of basis has a special name...

Geille Sculp

#### Jean Baptiste Joseph Fourier (1768-1830)

3. Boilly Del.

- Had crazy idea (1807):
  - Any periodic function can be rewritten as a weighted sum of sines and cosines of different frequencies.
- Don't believe it?
  - Neither did Lagrange, Laplace, Poisson and other big wigs
  - Not translated into English until 1878!
- But it's true!
  - Called Fourier Series

#### A sum of sines

•Our building block:

 $A\sin(\omega x + \phi)$ 

•Add enough of them to get any signal *f*(*x*) you want!

•How many degrees of freedom?

•What does each control?

•Which one encodes the coarse vs. fine structure of the signal?



## Time and Frequency

• example :  $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$ 



## **Time and Frequency**

• example :  $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$ 



• example :  $g(t) = \sin(2pf t) + (1/3)\sin(2p(3f) t)$ 













المحمحم

Mmm.



Usually, frequency is more interesting than the phase for CV because we're not reconstructing the image

## Fourier Transform

We want to understand the frequency  $\omega$  of our signal. So, let's reparametrize the signal by  $\omega$  instead of *x*:



For every  $\omega$  from 0 to inf (actually –inf to inf),  $F(\omega)$  holds the amplitude A and phase  $\phi$  of the corresponding sine

• How can *F* hold both? Complex number trick!

Recall: 
$$e^{ik} = \cos k + i \sin k$$
  $i = \sqrt{-1}$  (or j)  
*Even Odd*

Matlab sinusoid demo...

## Fourier Transform

We want to understand the frequency  $\omega$  of our signal. So, let's reparametrize the signal by  $\omega$  instead of *x*:



For every  $\omega$  from 0 to inf, (actually –inf to inf),  $F(\omega)$  holds the amplitude A and phase  $\phi$  of the corresponding sine

• How can *F* hold both? Complex number trick!

$$A = \pm \sqrt{R(\omega)^2 + I(\omega)^2}$$

$$F(\omega) = R(\omega) + iI(\omega)$$
  
Even Odd

$$\phi = \tan^{-1} \frac{I(\omega)}{R(\omega)}$$

And we can go back:

| $\omega) \longrightarrow$ | Inverse Fourier |  | f() |
|---------------------------|-----------------|--|-----|
|                           | Transform       |  |     |

## Computing FT: Just a basis

• The infinite integral of the product of two sinusoids of *different* frequency is zero. (Why?)

$$\int_{-\infty}^{\infty} \sin(ax + \phi) \sin(bx + \phi) dx = 0, \text{ if } a \neq b$$

 And the integral is infinite if equal (unless exactly out of phase):

$$\int_{-\infty}^{\infty} \sin(ax + \phi) \sin(ax + \phi) dx = \pm \infty$$

If  $\phi$  and  $\phi$  not exactly pi/2 out of phase (sin and cos).

## Computing FT: Just a basis

• So, suppose f(x) is a cosine wave of freq  $\omega$ :

$$f(x) = \cos(2\pi\omega x)$$

• Then:

$$C(u) = \int_{-\infty}^{\infty} f(x) \cos(2\pi u x) dx$$

Is infinite if *u* is equal to  $\omega$  (or -  $\omega$ ) and zero otherwise:



# Computing FT: Just a basis

- We can do that for all frequencies *u*.
- But we'd have to do that for all *phases*, don't we???
- No! Any phase can be created by a weighted sum of cosine and sine. Only need each piece:

$$C(u) = \int_{-\infty}^{\infty} f(x) \cos(2\pi u x) dx$$
$$S(u) = \int_{-\infty}^{\infty} f(x) \sin(2\pi u x) dx$$

- Sinusoid demo?
- Or...

## Fourier Transform – more formally

Represent the signal as an infinite weighted sum of an infinite number of sinusoids

$$F(u) = \int_{-\infty}^{\infty} f(x) e^{-i2\pi ux} dx$$
  
Again:  $e^{ik} = \cos k + i \sin k$   $i = \sqrt{-1}$ 

Spatial Domain (x)  $\longrightarrow$  Frequency Domain (u or s) (Frequency Spectrum F(u))

Inverse Fourier Transform (IFT) – add up all the sinusoids at x:

$$f(x) = \int_{-\infty}^{\infty} F(u) e^{i 2\pi u x} du$$

## Fourier Transform - limitations

• The integral  $\int_{-\infty}^{\infty} f(x)e^{-i2\pi ux}dx$  exists if the function f is integrable:

$$\int_{-\infty}^{\infty} |f(x)| \, dx < \infty$$

• If there is a bound of width *T* outside of which *f* is zero then obviously could integrate from just -T/2 to T/2

## Fourier Transform > Fourier Series

- The bounded integral give some relation between the Fourier transform and the series and the Discrete Fourier transform.
- The *Discrete FT*:

$$F(k) = \frac{1}{N} \sum_{x=0}^{x=N-1} f(x) e^{-i\frac{2\pi kx}{N}}$$

- k is the number "cycles per period of the signal" or "cycles per image.
- Only makes sense k = -N/2 to N/2. Why? What's the highest frequency you can unambiguously have in a discrete image?
- What is F(k) when k is zero?

## 2D Fourier Transforms

The two dimensional version: .

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dx dy$$

And the 2D Discrete FT:

$$F(k_x,k_y) = \frac{1}{N} \sum_{x=0}^{x=N-1} \sum_{y=0}^{y=N-1} f(x,y) e^{-i\frac{2\pi(k_x x + k_y y)}{N}}$$

• Works best when you put the origin of *k* in the middle....

## Frequency Spectra – Even/Odd

Frequency actually goes from –inf to inf. Sinusoid example:



## **Frequency Spectra**



## Extension to 2D



## 2D Examples – sinusoid magnitudes



#### 2D Examples – sinusoid magnitudes



#### 2D Examples – sinusoid magnitudes



## Linearity of Sum



## Extension to 2D – Complex plane



#### Both a Real and Im version
#### Examples





#### Man-made Scene





Where is this strong horizontal suggested by vertical center line?

#### Fourier Transform and Convolution Let g = f \* h

Then 
$$G(u) = \int_{-\infty}^{\infty} g(x) e^{-i2\pi u x} dx$$

$$=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}f(\tau)h(x-\tau)e^{-i2\pi ux}d\tau dx$$

$$= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \left[ f(\tau) e^{-i2\pi u \tau} d\tau \right] h(x-\tau) e^{-i2\pi u(x-\tau)} dx$$

$$= \int_{-\infty}^{\infty} \left[ f(\tau) e^{-i2\pi u\tau} d\tau \right] \int_{-\infty}^{\infty} \left[ h(x') e^{-i2\pi ux'} dx' \right]$$
$$= F(u) H(u)$$

Convolution in spatial domain

 $\Leftrightarrow$  Multiplication in frequency domain

#### Fourier Transform and Convolution

Spatial Domain (x) Frequency Domain (u)

$$g = f * h \qquad \longleftrightarrow \qquad G = FH$$
$$g = fh \qquad \longleftrightarrow \qquad G = F * H$$

So, we can find g(x) by Fourier transform



## Example use: Smoothing/Blurring

• We want a smoothed function of *f(x)* 

$$g(x) = f(x) * h(x)$$



• Let us use a Gaussian kernel

$$h(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\frac{x^2}{\sigma^2}\right]$$

 The Fourier transform of a Gaussian is a Gaussian

$$H(u) = \exp\left[-\frac{1}{2}(2\pi u)^2\sigma^2\right]$$



## Example use: Smoothing/Blurring

• We want a smoothed function of *f(x)* 

$$g(x) = f(x) * h(x)$$



• Let us use a Gaussian kernel

$$h(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left[-\frac{1}{2}\frac{x^2}{\sigma^2}\right]$$

• Convolution in space is multiplication in freq:

$$G(u) = F(u)H(u)$$





*H(u)* attenuates high frequencies in *F(u)* (Low-pass Filter)!

#### 2D convolution theorem example

f(x,y)



\*

h(x,y)











|*F*(s<sub>x</sub>,s<sub>y</sub>)| ( or |*F(u,v)*| )

 $|H(s_x, s_y)|$ 

 $|G(s_x, s_y)|$ 

## Low and High Pass filtering





#### **Properties of Fourier Transform**



#### Fourier Pairs (from Szeliski)

| Name                  | Signal |                                                                           |   | Transform                                                                   |          |
|-----------------------|--------|---------------------------------------------------------------------------|---|-----------------------------------------------------------------------------|----------|
| impulse               |        | $\delta(x)$                                                               | ⇔ | 1                                                                           |          |
| shifted impulse       |        | $\delta(x-u)$                                                             | ⇔ | $e^{-j\omega u}$                                                            |          |
| box filter            |        | $\operatorname{box}(x/a)$                                                 | ⇔ | $a \mathrm{sinc}(a \omega)$                                                 |          |
| tent                  |        | tent(x/a)                                                                 | ⇔ | $a { m sinc}^2(a \omega)$                                                   | <u> </u> |
| Gaussian              |        | $G(x;\sigma)$                                                             | ⇔ | $rac{\sqrt{2\pi}}{\sigma}G(\omega;\sigma^{-1})$                            | <u> </u> |
| Laplacian of Gaussian |        | $(\frac{x^2}{\sigma^4} - \frac{1}{\sigma^2})G(x;\sigma)$                  | ⇔ | $-\frac{\sqrt{2\pi}}{\sigma}\omega^2 G(\omega;\sigma^{-1})$                 | <u> </u> |
| Gabor                 |        | $\cos(\omega_0 x) G(x;\sigma)$                                            | ⇔ | $\frac{\sqrt{2\pi}}{\sigma}G(\omega\pm\omega_0;\sigma^{-1})$                | <u> </u> |
| unsharp<br>mask       |        | $\begin{array}{l} (1+\gamma)\delta(x) \\ -\gamma G(x;\sigma) \end{array}$ | ⇔ | $\frac{(1+\gamma)-}{\frac{\sqrt{2\pi\gamma}}{\sigma}G(\omega;\sigma^{-1})}$ |          |
| windowed<br>sinc      |        | $\frac{\operatorname{rcos}(x/(aW))}{\operatorname{sinc}(x/a)}$            | ⇔ | (see Figure 3.29)                                                           | <u> </u> |

# Fourier Transform smoothing pairs



#### **Fourier Transform Sampling Pairs**



## Sampling and Aliasing

# Sampling and Reconstruction



#### Sampled representations

- How to store and compute with continuous functions?
- Common scheme for representation: samples
  - write down the function's values at many points

Sampling

#### Reconstruction

- Making samples back into a continuous function
  - for output (need realizable method)
  - for analysis or processing (need mathematical method)
  - amounts to "guessing" what the function did in between



#### 1D Example: Audio



# Sampling in digital audio

- Recording: sound to analog to samples to disc
- Playback: disc to samples to analog to sound again
  - how can we be sure we are filling in the gaps correctly?



#### Sampling and Reconstruction

• Simple example: a sign wave



# Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
  - unsurprising result: information is lost



# Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
  - unsurprising result: information is lost
  - surprising result: indistinguishable from lower frequency



# Undersampling

- What if we "missed" things between the samples?
- Simple example: undersampling a sine wave
  - unsurprising result: information is lost
  - surprising result: indistinguishable from lower frequency
  - also was always indistinguishable from higher frequencies
  - *aliasing*: signals "traveling in disguise" as other frequencies



## Aliasing in video

Imagine a spoked wheel moving to the right (rotating clockwise). Mark wheel with dot so we can see what's happening.

If camera shutter is only open for a fraction of a frame time (frame time = 1/30 sec. for video, 1/24 sec. for film):



Without dot, wheel appears to be rotating slowly backwards! (counterclockwise)

#### Aliasing in images







# Antialiasing

- What can we do about aliasing?
- Sample more often
  - Join the Mega-Pixel craze of the photo industry
  - But this can't go on forever
- Make the signal less "wiggly"
  - Get rid of some high frequencies
  - Will loose information
  - But it's better than aliasing

# Preventing aliasing

- Introduce lowpass filters:
  - remove high frequencies leaving only safe, low frequencies
  - choose lowest frequency in reconstruction (disambiguate)



#### (Anti)Aliasing in the Frequency Domain

## Impulse Train

Define a comb function (impulse train) in 1D as follows

$$comb_{M}[x] = \sum_{k=-\infty}^{\infty} \delta[x - kM]$$

where *M* is an integer



#### Impulse Train in 1D



## Impulse Train in 2D (bed of nails)

$$comb_{M,N}(x, y) \equiv \sum_{k=-\infty}^{\infty} \sum_{l=-\infty}^{\infty} \delta(x - kM, y - lN)$$

• Fourier Transform of an impulse train is also an impulse train:



As the comb samples get further apart, the spectrum samples get closer together!

#### Impulse Train



# Sampling low frequency signal









 $F(u) * comb_1(u)$ 

М

Multiply:



B.K. Gunturk

U

## Sampling low frequency signal



B.K. Gunturk

U

## Sampling low frequency signal



If there is no overlap, the original signal can be recovered from its samples by low-pass filtering.

# Sampling high frequency signal


## Sampling high frequency signal





# Sampling high frequency signal

#### Without anti-aliasing filter:





B.K. Gunturk

#### Aliasing in Images



# Image half-sizing

This image is too big to fit on the screen. How can we reduce it?

How to generate a halfsized version?



#### Image sub-sampling





X

1/8

1/4

Throw away every other row and column to create a 1/2 size image - called *image sub-sampling* 

#### Image sub-sampling



1/2 1/4 (2x zoom)

1/8 (4x zoom)

Aliasing! What do we do?

## Gaussian (lowpass) pre-filtering







G 1/8

G 1/4

#### Gaussian 1/2

Solution: filter the image, then subsample

• Filter size should double for each 1/2 size reduction. Why?

#### Subsampling with Gaussian pre-filtering







#### Gaussian 1/2

G 1/4



# Compare with...







1/2

1/4 (2x zoom)

1/8 (4x zoom)

#### Campbell-Robson contrast sensitivity curve



human visual system is...

## Lossy Image Compression (JPEG)



Block-based Discrete Cosine Transform (DCT) on 8x8

# Using DCT in JPEG

- The first coefficient B(0,0) is the DC component, the average intensity
- The top-left coeffs represent low frequencies, the bottom right – high frequencies



#### Image compression using DCT

- DCT enables image compression by concentrating most image information in the low frequencies
- Lose unimportant image info (high frequencies) by cutting B(u,v) at bottom right
- The decoder computes the inverse DCT IDCT

•Quantization Table

7 9 11 13 15 11 13 15 17 19 15 17 17 19 17 19 23 25 

#### JPEG compression comparison





12k

89k

#### Maybe the end?

### Or not!!!

#### • A teaser on pyramids...



## Image Pyramids

#### Idea: Represent NxN image as a "pyramid" of 1x1, 2x2, 4x4,..., 2<sup>k</sup>x2<sup>k</sup> images (assuming N=2<sup>k</sup>)



Known as a Gaussian Pyramid [Burt and Adelson, 1983]

- In computer graphics, a *mip map* [Williams, 1983]
- A precursor to *wavelet transform*

#### Band-pass filtering Gaussian Pyramid (low-pass images)



#### These are "bandpass" images (almost).

#### Laplacian Pyramid



 How can we reconstruct (collapse) this pyramid into the original image?

## **Computing the Laplacian Pyramid**



# What can you do with band limited imaged?





#### Apples and Oranges in bandpass



# What can you do with band limited imaged?





