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Administrivia
• Project 1 is (still) on line – you should really get started 

now!

• Readings for this week: FP Chapter 4 (which includes 
reviewing 4.1 and 4.2)
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Questions about PS1?
• Where should I put the origin?

• It’s up to you – you get to define the geometry.

• Should 𝜃𝜃 go from −𝜋𝜋 to 𝜋𝜋 or −𝜋𝜋
2

to π
2

or what?
• It’s up to you – you get to define the geometry.

• How do I draw the line?
• I’m guessing that any line in your image crosses approximately two 

edges in the image.  So given an equation of the line, you could try 
x=1 or x=256 or y=1 or y=256  and see what values you get.  Just a 
thought… 
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Salvador Dali
“Gala Contemplating the Mediterranean Sea, 
which at 30 meters becomes the portrait 
of Abraham Lincoln”, 1976
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Decomposing an image
• A basis set is (edit from to Wikipedia):

• A basis B of a vector space V is a linearly independent subset of V that spans
V.

• In more detail:suppose that B = { v1, …, vn } is a finite subset of a vector space 
V over a field F (such as the real or complex numbers R or C). Then B is a 
basis if it satisfies the following conditions: 
• the linear independence property:

• for all a1, …, an ∈ F, if a1v1 + … + anvn = 0, 
then necessarily a1 = … = an = 0;

• and the spanning property,
• for every x in V it is possible to choose a1, …, an ∈ F such that 

x = a1v1 + … + anvn. 
• Not necessarily orthogonal….

• If we have a basis set for images, could perhaps be useful for 
analysis – especially for linear systems because we could 
consider each basis component independently. (Why?)

http://en.wikipedia.org/wiki/Vector_space
http://en.wikipedia.org/wiki/Linear_independence
http://en.wikipedia.org/wiki/Linear_span
http://en.wikipedia.org/wiki/Field_(mathematics)
http://en.wikipedia.org/wiki/Real_numbers
http://en.wikipedia.org/wiki/Complex_number
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Images as points in a vector space
• Consider an image as a point in a NxN size space – can 

rasterize into a single vector 

• The “normal” basis is just the vectors: 

• Independent
• Can create any image

• But not very helpful to consider how each pixel 
contributes to computations. 

00 10 20 ( 1)0 10 ( 1)( 1)... .. ][ . T
n n nx x x x xx − − −

0 0 0...010 0 0.[0 .. 0]T
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A nice set of basis

This change of basis has a special name…

Teases away fast vs. slow changes in the image.
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Jean Baptiste Joseph Fourier (1768-
1830)
• Had crazy idea (1807):

• Any periodic function can 
be rewritten as a weighted 
sum of sines and cosines 
of different frequencies. 

• Don’t believe it?  
• Neither did Lagrange, 

Laplace, Poisson and other 
big wigs

• Not translated into English 
until 1878!

• But it’s true!
• Called Fourier Series
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A sum of sines
•Our building block:
•

•Add enough of them to 
get any signal f(x) you 
want!

•How many degrees of 
freedom?

•What does each control?

•Which one encodes the 
coarse vs. fine structure of 
the signal?

)+φωxAsin(
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Time and Frequency
• example : g(t) = sin(2p f  t) + (1/3)sin(2p (3f) t)
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Time and Frequency
• example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +
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Frequency Spectra - Series
• example : g(t) = sin(2pf t) + (1/3)sin(2p(3f) t)

= +

One form of 
spectrum – more in 
a bit 
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+

= 

Frequency Spectra - Series

≈ 
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= 
1

1 sin(2 )
k

A kt
k

π
∞

=
∑

Frequency Spectra - Series

Usually, frequency is more interesting than the phase 
for CV because we’re not reconstructing the image
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Fourier Transform
We want to understand the frequency ω of our signal.  So, 
let’s reparametrize the signal by ω instead of x:

)+φωxAsin(
f(x) F(ω)Fourier 

Transform

For every ω from 0 to inf (actually –inf to inf), F(ω) holds the 
amplitude A and phase φ of the corresponding sine  

• How can F hold both?  Complex number trick!

Matlab sinusoid demo…

 (or )cos sin 1  ik je k i k i= + = −Recall :
Even Odd
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Fourier Transform

)()()( ωωω iIRF +=

We want to understand the frequency ω of our signal.  So, 
let’s reparametrize the signal by ω instead of x:

)+φωxAsin(
f(x) F(ω)Fourier 

Transform

F(ω) f(x)Inverse Fourier 
Transform

For every ω from 0 to inf, (actually –inf to inf), F(ω) holds 
the amplitude A and phase φ of the corresponding sine  

• How can F hold both?  Complex number trick!
22 )()( ωω IRA +±=

)(
)(tan 1

ω
ωφ

R
I−=

And we can go back:
Even Odd
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Computing FT: Just a basis
• The infinite integral of the product of two sinusoids of 

different frequency is zero.  (Why?)

• And the integral is infinite if equal (unless exactly out of 
phase):

If φ and ϕ not exactly pi/2 out of phase (sin and cos). 

sin( )sin( ) 0, if ax bx dx a bφ ϕ∞

−∞
+ + = ≠∫

sin( )sin( )ax ax dxφ ϕ∞

−∞
+ + = ±∞∫
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Computing FT: Just a basis
• So, suppose f(x) is a cosine wave of freq ω:

• Then: 

Is infinite if u is equal to ω (or - ω ) and zero otherwise:

( ) cos(2 )f x xπω=

( ) ( )cos(2 )xC u f x u dxπ∞

−∞
= ∫

ω

Impulse
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Computing FT: Just a basis
• We can do that for all frequencies u.

• But we’d have to do that for all phases, don’t we???

• No!  Any phase can be created by a weighted sum of 
cosine and sine. Only need each piece:

• Sinusoid demo?
• Or…

( ) ( )sin(2 )xS u f x u dxπ∞

−∞
= ∫

( ) ( )cos(2 )xC u f x u dxπ∞

−∞
= ∫
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Fourier Transform – more formally

Spatial Domain (x) Frequency Domain (u or s)

Represent the signal as an infinite weighted sum 
of an infinite number of sinusoids

( ) ( ) 2i uxF u f x e dxπ∞ −

−∞
= ∫

(Frequency Spectrum F(u))

1sincos −=+= ikikeik
Again:

Inverse Fourier Transform (IFT) – add up all the sinusoids at x:

( ) ( ) 2i uxf x F u e duπ∞

−∞
= ∫
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Fourier Transform - limitations

• The integral ∫−∞
∞ 𝑓𝑓 𝑥𝑥 𝑒𝑒−𝑖𝑖2𝜋𝜋𝜋𝜋𝜋𝜋𝑑𝑑𝑑𝑑 exists if the function 

𝑓𝑓 is integrable:

• If there is a bound of width T outside of which f is zero 
then obviously could integrate from just –𝑇𝑇/2 to 𝑇𝑇/2

( )| |f x dx∞

−∞
< ∞∫
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• The bounded integral give some relation between the Fourier 
transform and the series and the Discrete Fourier transform.

• The Discrete FT:

• k is the number “cycles per period of the signal” or “cycles per 
image.

• Only makes sense k = −𝑁𝑁/2 to 𝑁𝑁/2.  Why?  What’s the highest 
frequency you can unambiguously have in a discrete image?

• What is F(k) when k is zero? 

21

0

1( ) ( )
x k

N

x

xiN

F k f x e
N

π=

=

−−

= ∑

Fourier Transform Fourier Series
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2D Fourier Transforms
• The two dimensional version: .

• And the 2D Discrete FT:

• Works best when you put the origin of k in the middle….

211

0 0

( )1( ) ( , ),
iy Nx N

N

x y
x y

x yk x k y

F k f xk y e
N

π= −= −

= =

−
+

= ∑ ∑

( ) ( ) 2 ( ), , i ux vyF u v f x y e dx dyπ∞ −

−

∞

−∞∞

+
∫= ∫
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Frequency Spectra – Even/Odd
Frequency actually goes from –inf to inf. 
Sinusoid example:   

Even (cos)

ω ω

Odd (sin)

ω

Magnitude 

Real Imaginary Power



Frequency and Fourier TransformCS 4495 Computer Vision – A. Bobick

Frequency Spectra
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Extension to 2D

?
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2D Examples – sinusoid magnitudes
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2D Examples – sinusoid magnitudes
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2D Examples – sinusoid magnitudes
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Linearity of Sum
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Extension to 2D – Complex plane

Both a Real and Im version
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Examples

B.K. Gunturk
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Man-made Scene

Where is this strong horizontal 
suggested by vertical center line?
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Fourier Transform and Convolution
hfg ∗=

( ) ( )∫
∞

∞−

−= dxexguG uxi π2

( ) ( )∫ ∫
∞

∞−

∞

∞−

−−= dxdexhf uxi τττ π2

( )[ ] ( ) ( )[ ]∫ ∫
∞

∞−

∞

∞−

−−− −= dxexhdef xuiui τπτπ τττ 22

( )[ ] ( )[ ]∫ ∫
∞

∞−

∞

∞−

−−= '' '22 dxexhdef uxiui πτπ ττ

Let

Then

( ) ( )uHuF=

Convolution in spatial domain
Multiplication in frequency domain⇔
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Fourier Transform and Convolution

hfg ∗= FHG =
fhg = HFG ∗=

Spatial Domain (x) Frequency Domain (u)

So, we can find g(x) by Fourier transform

g = f ∗ h

G = F × H

FT FTIFT
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Example use: Smoothing/Blurring
• We want a smoothed function of  f(x)

( ) ( ) ( )xhxfxg ∗=

• The Fourier transform of a Gaussian 
is a Gaussian

( ) ( ) 



−= 222

2
1exp σπuuH

πσ2
1

u

( )uH

( ) 







−= 2

2

2
1exp

2
1

σσπ
xxh

• Let us use a Gaussian kernel

σ

( )xh

x
Fat Gaussian in space 
is skinny Gaussian in 

frequency.  Why? 



Frequency and Fourier TransformCS 4495 Computer Vision – A. Bobick

Example use: Smoothing/Blurring
• We want a smoothed function of  f(x)

( ) ( ) ( )xhxfxg ∗=

H(u) attenuates high frequencies in F(u) (Low-pass Filter)!

• Convolution in space is multiplication in freq:

( ) ( ) ( )uHuFuG = πσ2
1

u

( )uH

( ) 







−= 2

2

2
1exp

2
1

σσπ
xxh

• Let us use a Gaussian kernel

σ

( )xh

x
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2D convolution theorem example

*

f(x,y)

h(x,y)

g(x,y)

|F(sx,sy)|

|H(sx,sy)|

|G(sx,sy)|

( or  |F(u,v)| )
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Low and High Pass filtering

Ringing
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Properties of Fourier Transform
Spatial Domain (x) Frequency Domain (u)

Linearity ( ) ( )xgcxfc 21 + ( ) ( )uGcuFc 21 +

Shifting ( )0xxf − ( )uFe uxi 02π−

Symmetry ( )xF ( )uf −

Conjugation ( )xf ∗ ( )uF −∗

Convolution ( ) ( )xgxf ∗ ( ) ( )uGuF

Differentiation ( )
n

n

dx
xfd ( ) ( )uFui nπ2

Scaling ( )axf 







a
uF

a
1Shrink

Stretch

Differentiate

Multiply by u
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Fourier Pairs  (from Szeliski)
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Fourier Transform smoothing pairs
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Fourier Transform Sampling Pairs
FT of an “impulse train” 

is an impulse train
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Sampling and Aliasing
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Sampling and Reconstruction
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Sampled representations
• How to store and compute with continuous functions?
• Common scheme for representation: samples

• write down the function’s values at many points

S. Marschner



Frequency and Fourier TransformCS 4495 Computer Vision – A. Bobick

Reconstruction
• Making samples back into a continuous function

• for output (need realizable method)
• for analysis or processing (need mathematical method)
• amounts to “guessing” what the function did in between

S. Marschner
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1D Example: Audio

low high
frequencies
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Sampling in digital audio
• Recording: sound to analog to samples to disc
• Playback: disc to samples to analog to sound again

• how can we be sure we are filling in the gaps correctly?

S. Marschner
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Sampling and Reconstruction
• Simple example: a sign wave

S. Marschner
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Undersampling
• What if we “missed” things between the samples?
• Simple example: undersampling a sine wave

• unsurprising result: information is lost

S. Marschner
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Undersampling
• What if we “missed” things between the samples?
• Simple example: undersampling a sine wave

• unsurprising result: information is lost
• surprising result: indistinguishable from lower frequency

S. Marschner
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Undersampling
• What if we “missed” things between the samples?
• Simple example: undersampling a sine wave

• unsurprising result: information is lost
• surprising result: indistinguishable from lower frequency
• also was always indistinguishable from higher frequencies
• aliasing: signals “traveling in disguise” as other frequencies

S. Marschner
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Aliasing in video

S. Seitz
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Aliasing in images
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What’s happening?
Input signal:

x = 0:.05:5;  imagesc(sin((2.^x).*x))

Plot as image:

Alias!
Not enough samples
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Antialiasing
• What can we do about aliasing?

• Sample more often
• Join the Mega-Pixel craze of the photo industry
• But this can’t go on forever

• Make the signal less “wiggly” 
• Get rid of some high frequencies
• Will loose information
• But it’s better than aliasing
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Preventing aliasing
• Introduce lowpass filters:

• remove high frequencies leaving only safe, low frequencies
• choose lowest frequency in reconstruction (disambiguate)

S. Marschner
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(Anti)Aliasing in the Frequency Domain
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Impulse Train

■ Define a comb function (impulse train) in 1D as follows

[ ] [ ]M
k

comb x x kMδ
∞

=−∞

= −∑

where M is an integer

2[ ]comb x

x

1

B.K. Gunturk
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Impulse Train in 1D

2 ( )comb x

x u

1 1
2

1
2

1 ( )
2

comb u

1
2

2

Scaling ( )axf 







a
uF

a
1

Remember:

B.K. Gunturk
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• Fourier Transform of an impulse train is also an impulse train:

Impulse Train in 2D (bed of nails)

( ) 1, ,
k l k l

k lx kM y lN u v
MN M N

δ δ
∞ ∞ ∞ ∞

=−∞ =−∞ =−∞ =−∞

 − − ⇔ − − 
 

∑ ∑ ∑ ∑

1 1,
( , )

M N

comb u v
, ( , )M Ncomb x y

( ), ( , ) ,M N
k l

comb x y x kM y lNδ
∞ ∞

=−∞ =−∞

≡ − −∑ ∑

As the comb samples get further apart, the 
spectrum samples get closer together!

B.K. Gunturk
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Impulse Train

2[ ]comb n

n u

1 1
2

1
2

1 ( )
2

comb u

1
2

B.K. Gunturk

Scaling ( )axf 







a
uF

a
1

Remember:
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Sampling low frequency signal

x

( )f x

x
M

( )Mcomb x

u

( )F u

u
1
M

1 ( )
M

comb u

x

( ) ( )Mf x comb x

u

1( )* ( )
M

F u comb u

B.K. Gunturk

Multiply: Convolve:
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Sampling low frequency signal

x

( )f x

u

( )F u

u

1( )* ( )
M

F u comb u

x

( ) ( )Mf x comb x

WW−

M

W

1
M1 2W

M
>No “problem” if

B.K. Gunturk
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Sampling low frequency signal

u

1( )* ( )
M

F u comb u

x

( ) ( )Mf x comb x

M

W

1
M

If there is no overlap, the original signal 
can be recovered from its samples by 
low-pass filtering.

1
2M

B.K. Gunturk
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Sampling high frequency signal

u

( )F u

WW−

u

1( )* ( )
M

F u comb u

( ) ( )Mf x comb x

W

1
M

Overlap:  The high frequency 
energy is folded over into low 
frequency.  It is “aliasing” as lower 
frequency energy.  And you 
cannot fix it once it has happened. 

x

( )f x
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Sampling high frequency signal

u

( )F u

u
[ ]( )* ( ) ( )Mf x h x comb x

WW−

1
M

Anti-aliasing 
filter

u
WW−

( )* ( )f x h x
1

2M

B.K. Gunturk

x

( )f x
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Sampling high frequency signal

u
[ ]( )* ( ) ( )Mf x h x comb x

1
M

u
( ) ( )Mf x comb x

W

1
M

■ Without anti-aliasing filter: 

■ With anti-aliasing filter: 

B.K. Gunturk
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Aliasing in Images
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Image half-sizing

This image is too big to
fit on the screen.  How
can we reduce it?

How to generate a half-
sized version?

S. Seitz
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Image sub-sampling

Throw away every other row and 
column to create a 1/2 size image

- called image sub-sampling

1/4

1/8

S. Seitz
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Image sub-sampling

1/4  (2x zoom) 1/8  (4x zoom)

Aliasing!  What do we do?

1/2

S. Seitz
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Gaussian (lowpass) pre-filtering

G 1/4

G 1/8

Gaussian 1/2

Solution:  filter the image, then subsample
• Filter size should double for each ½ size reduction.  Why? S. Seitz
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Subsampling with Gaussian pre-filtering

G 1/4 G 1/8Gaussian 1/2

S. Seitz
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Compare with...

1/4  (2x zoom) 1/8  (4x zoom)1/2

S. Seitz
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Campbell-Robson contrast sensitivity curve

The higher the frequency the less sensitive 
human visual system is…
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Lossy Image Compression (JPEG)

Block-based Discrete Cosine Transform (DCT) on 8x8
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Using DCT in JPEG 
• The first coefficient B(0,0) is the DC component, the 

average intensity
• The top-left coeffs represent low frequencies, the bottom 

right – high frequencies
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Image compression using DCT
• DCT enables image compression by concentrating most 

image information in the low frequencies
• Lose unimportant image info (high frequencies) by cutting 

B(u,v) at bottom right 
• The decoder computes the inverse DCT – IDCT 

•Quantization Table
3      5     7     9     11   13   15   17
5      7     9     11   13   15   17   19
7      9     11   13   15   17   19   21
9      11   13   15   17   19   21   23
11    13   15   17   19   21   23   25
13    15   17   19   21   23   25   27
15    17   19   21   23   25   27   29
17    19   21   23   25   27   29   31
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JPEG compression comparison

89k 12k
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Maybe the end?
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Or not!!!
• A teaser on pyramids…
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Image Pyramids

Known as a Gaussian Pyramid [Burt and Adelson, 1983]
• In computer graphics, a mip map [Williams, 1983]
• A precursor to wavelet transform

S. Seitz
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Band-pass filtering
• Laplacian Pyramid (subband images)
• Created from Gaussian pyramid by subtraction

Gaussian Pyramid (low-pass images)

These are “bandpass” images (almost).
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Laplacian Pyramid

• How can we reconstruct (collapse) this 
pyramid into the original image?

Need this!

Original
image
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Computing the Laplacian Pyramid

Reduce
Expand

Need Gk to 
reconstruct 

Don’t worry about these details – YET! (PS4?) 
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What can you do with band limited 
imaged?
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Apples and Oranges in bandpass

L0

L2

L4

Reconstructed

Coarse

Fine
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What can you do with band limited 
imaged?
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