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Administrivia
• PS5 due on Wed Nov 12, 11:55pm

• Hopfully PS6 out Thurs Nov 13,  due Nov 23rd

• Problem set resubmission policy:
• Full questions only
• Be email to me and the TAs.
• You get 50% credit to replace whatever you got last time on that 

question.
• Must be submitted by: DEC 1.  NO EXCEPTIONS.
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Today
• Eigen vectors and axes of inertia 

• Principal components as dimensionality reduction

• PCA in recognition
• Eigenfaces
• D >> N trick

• PCA in tracking 
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Principal Components
• All principal components (PCs) 

start at the origin of the ordinate 
axes.

• First PC is direction of maximum 
variance from origin

• Subsequent PCs are orthogonal 
to 1st PC and describe 
maximum residual variance
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2D example: fitting a line
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Sound familiar???
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Direct linear calibration - homogeneous

This is a homogenous set of equations.
When over constrained, defines a least squares problem 

– minimize

A m 0
2n × 12 12 2n

• Since m is only defined up to scale, solve for unit vector m*
• Solution: m* = eigenvector of ATA with smallest eigenvalue
• Works with 6 or more points

Am
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Total least squares

2
1 ( )n

i i iE ax by d== + −∑

Solution to 𝑈𝑈𝑇𝑇𝑈𝑈 h = 0, subject to ||h||2 = 1: 
eigenvector of UTU associated with the smallest 

eigenvalue 
(Again SVD to least squares solution to homogeneous 

linear system)
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• Minimizing sum of squares of distances to the line is the 
same as maximizing the sum of squares of the projections 
on that line, thanks to Pythagoras.

Another interpretation

P

𝑥⃗𝑥 (unit vector
through origin)

𝑥⃗𝑥𝑇𝑇𝑃𝑃

Origin
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Algebraic Interpretation

• Trick: How is the sum of squares of projection 
lengths expressed in algebraic terms?
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• Trick: How is the sum of squares of projection 
lengths expressed in algebraic terms?

max( xTBTBx), subject to xTx = 1

Algebraic Interpretation

maximize subject to 1 ( )T T TE = = =x Mx x x M B B

(1 )T TE λ′ = + −x Mx x x

2 2E λ
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= +
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x
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Mx x x A A

x



PCACS 4495 Computer Vision – A. Bobick

Yet another interpretation

• So the principal components are the orthogonal directions 
of the covariance matrix of a set points.
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Yet one more algebraic interpretation

So the principal components are the orthogonal directions 
of the covariance matrix of a set points.
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Eigenvectors 
How many eigenvectors are there?
• For Real Symmetric Matrices of size NxN

• Except in degenerate cases when eigenvalues repeat, there are N 
distinct eigenvectors
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PCA: Eigenvalues

4.0 4.5 5.0 5.5 6.0
2

3

4

5

λ1
λ2



PCACS 4495 Computer Vision – A. Bobick

PCA Eigenvalues
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Dimensionality Reduction

• Dimensionality reduction
– We can represent the orange 

points with only their v1
coordinates

• since v2 coordinates are all 
essentially 0

– This makes it much cheaper to 
store and compare points

– A bigger deal for higher 
dimensional problems

𝐺𝐺

𝑅𝑅

𝑥𝑥
𝑥̅𝑥
𝑣𝑣1

𝑣𝑣2
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Higher Dimensions

• Suppose each data point is N-dimensional
• Same procedure applies:

• The eigenvectors of A define a new coordinate system
• eigenvector with largest eigenvalue captures the most variation among 

training vectors x
• eigenvector with smallest eigenvalue has least variation

Outer product
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Higher Dimensions

• Suppose each data point is N-dimensional
• Same procedure applies:

• We can compress the data by only using the top few 
eigenvectors
• corresponds to choosing a “linear subspace”

• represent points on a line, plane, or “hyper-plane”
• these eigenvectors are known as the principal components
• We talk about the “percentage of variance explained by the first k 

eigenvectors”.

Outer product
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Algebraic Interpretation
• How many eigenvectors are there?

• For Real Symmetric Matrices of size NxN

• Except in degenerate cases when eigenvalues repeat, there are N 
distinct eigenvectors
• The eigenvectors are mutually orthogonal and therefore form a new 

basis
• Eigenvectors corresponding to the same eigenvalue have the 

property that any linear combination is also an eigenvector with the 
same eigenvalue; one can then find as many orthogonal 
eigenvectors as the number of repeats of the eigenvalue.
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The space of all face images
• When viewed as vectors of pixel values, face images 

are extremely high-dimensional
• 100x100 image = 10,000 dimensions

• However, relatively few 10,000-dimensional vectors 
correspond to valid face images

• We want to effectively model the subspace of face 
images
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The space of all face images
We want to construct a low-dimensional linear subspace
that best explains the variation in the set of face images
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Principal Component Analysis
• Given: N data points x1, … ,xN in Rd where d is big

• We want to find a new set of features that are linear 
combinations of original ones:

u(xi) = uT(xi – µ)

(µ: mean of data points)

• What unit vector u in Rd captures the most variance of the 
data?
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1

1var( ) ( )( ( ))
N

T T T

i i
iN

µ µ
=

= − −∑u u x u x

Principal Component Analysis
• Direction that maximizes the variance of the projected 

data:

Projection of data point

Covariance matrix of data
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The direction that maximizes the variance is the eigenvector 
associated with the largest eigenvalue of Σ
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How many eigenvectors are there?
• If had 𝑀𝑀 > 𝑑𝑑 then there would be d.  But 𝑀𝑀 ≪ 𝑑𝑑.
• So intuition would say there are M of them.
• But wait: if 2 points in 3D, how many eigenvectors?  3 

points?  
• Subtracting out the mean yields M-1. 
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Principal component analysis
• The direction that captures the maximum covariance of 

the data is the eigenvector corresponding to the largest 
eigenvalue of the data covariance matrix

• Furthermore, the top k orthogonal directions that capture 
the most variance of the data are the k eigenvectors 
corresponding to the k largest eigenvalues

• But first, we’ll need the PCA d>>>n trick…
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The dimensionality trick
Let Φ𝑖𝑖 be the (very big vector length 𝑑𝑑 ) that is face 
image 𝐼𝐼 with the mean image subtracted. 

Define 𝐶𝐶 = 1
𝑀𝑀
∑Φ𝑖𝑖Φ𝑖𝑖

𝑇𝑇 = 𝐴𝐴𝐴𝐴𝑇𝑇

where 𝐴𝐴 = [Φ1Φ2 …Φ𝑀𝑀] is the matrix of faces, and 
is  𝑑𝑑 × 𝑀𝑀.

Note:  C is a huge 𝑑𝑑 × 𝑑𝑑 matrix (remember d is 
the length of the vector of the image).  
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The dimensionality trick
So 𝐶𝐶 = 𝐴𝐴𝐴𝐴𝑇𝑇 is a huge matrix. 
But consider 𝐴𝐴𝑇𝑇𝐴𝐴. It is only 𝑀𝑀 × 𝑀𝑀. Finding 
those eigenvalues is easy. 
Suppose v𝑖𝑖 is an eigenvector 𝐴𝐴𝑇𝑇𝐴𝐴:  

𝐴𝐴𝑇𝑇𝐴𝐴v𝑖𝑖 = 𝝀𝝀v𝑖𝑖
Premultiply by A:

𝐴𝐴𝐴𝐴𝑇𝑇𝐴𝐴v𝑖𝑖 = 𝝀𝝀𝐴𝐴v𝑖𝑖
So:       𝐴𝐴v𝑖𝑖 are the eigenvectors of C = 𝐴𝐴𝐴𝐴𝑇𝑇
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Eigenfaces: Key idea
• Assume that most face images lie on 

a low-dimensional subspace determined by the first k
(k<<<d) directions of maximum variance

• Use PCA to determine the vectors or “eigenfaces” 
𝒖𝒖1, …𝒖𝒖𝑘𝑘 that span that subspace

• Represent all face images in the dataset as linear 
combinations of eigenfaces

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

http://www.cs.ucsb.edu/%7Emturk/Papers/mturk-CVPR91.pdf
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Eigenfaces example
Training 
images

𝒙𝒙1, … , 𝒙𝒙𝑁𝑁
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Eigenfaces example
Top eigenvectors: 𝒖𝒖𝟏𝟏, …𝒖𝒖𝒌𝒌

Mean: μ
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Eigenfaces example
Principal component (eigenvector) uk

μ + 3σkuk

μ – 3σkuk
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Eigenfaces example
• Face x in “face space” coordinates:

=
This vector is the 

representation of the 
face.
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Eigenfaces example
• Face x in “face space” coordinates:

• Reconstruction:

= +

µ +    w1u1+w2u2+w3u3+w4u4+ …

=

x̂ =

This vector is the 
representation of the 

face.
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Reconstruction example
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Recognition with eigenfaces
• Process labeled training images:
• Find mean µ and covariance matrix Σ
• Find k principal components (eigenvectors of Σ) u1,…uk
• Project each training image xi onto subspace spanned by 

principal components:
(wi1,…,wik) = (u1

T(xi – µ), … , uk
T(xi – µ))

• Given novel image x:
• Project onto subspace:

(w1,…,wk) = (u1
T(x – µ), … , uk

T(x – µ))
• Optional: check reconstruction error x – x to determine 

whether image is really a face
• Classify as closest training face in k-dimensional subspace

^

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

http://www.cs.ucsb.edu/%7Emturk/Papers/mturk-CVPR91.pdf
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Recognition with eigenfaces
• Process labeled training images:
• Find mean µ and covariance matrix 𝚺𝚺
• Find k principal components (eigenvectors of Σ) 
𝑢𝑢1, …𝑢𝑢𝑘𝑘

• Project each training image 𝒙𝒙𝑖𝑖 onto subspace 
spanned by principal components:

𝑤𝑤𝑖𝑖𝑖, … , 𝑤𝑤𝑖𝑖𝑖𝑖 = 𝑢𝑢1𝑇𝑇 𝑥𝑥𝑖𝑖 − 𝜇𝜇 , …𝑢𝑢2𝑇𝑇 𝑥𝑥𝑖𝑖 − 𝜇𝜇

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991

http://www.cs.ucsb.edu/%7Emturk/Papers/mturk-CVPR91.pdf
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Recognition with eigenfaces
Given novel image x:

• Project onto subspace:
𝑤𝑤1, … ,𝑤𝑤𝑘𝑘 = [u1𝑇𝑇 x – µ , … , u𝑘𝑘𝑇𝑇 x – µ ]

• Optional: check reconstruction error x –�x to 
determine whether image is really a face

• Classify as closest training face in k-
dimensional subspace

• This is why it’s a generative model (more later)
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Recognition demo…



PCACS 4495 Computer Vision – A. Bobick

Limitations
• Global appearance method: not robust to misalignment, 

background variation
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Limitations
• The direction of maximum variance is not always good 

for classification
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How to use this in tracking?
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Visual Tracking
• Conventional approach

• Build a model before tracking starts
• Use contours, color, or appearance to represent an 

object
• Optical flow
• Incorporate invariance to cope with variation in pose, 

lighting, view angle …
• View-based approach
• Solve complicated optimization problem

• Problem: 
• Object appearance and environments are always 

changing

Slide from Ming-Hsuan Yang
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A few key inspirations:
• Eigentracking [Black and 
Jepson 96]
• View-Based learning 

method 
• Learn to track a “thing” 

rather than some “stuff”
• Key insight: separate 

geometry from appearance 
– use deformable 

• But…need to solve 
nonlinear optimization 
problem

• And fixed basis set

Slide from Ming-Hsuan Yang
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A few key inspirations:

• Active contour [Isard and 
Blake 96]
• Use particle filter
• Propagate uncertainly over 

time
• But .. edge information is 

sensitive to lighting change

Slide from Ming-Hsuan Yang
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Incremental Visual Learning
• Aim to build a tracker that:

• Is not single image based
• Constantly updates the model 

• Learns a representation while 
tracking

• Runs fast (close to real time)
• Operates on moving camera

• Challenge
• Pose variation
• Partial occlusion
• Adaptive to new environment 
• Illumination change
• Drifts
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Main Idea
• Adaptive visual tracker:

• Particle filter algorithm  - draw samples from distributions of 
deformation

• Subspace-based tracking 
• learn to track the “thing” – like the face in eigenfaces
• use it to determine the most likely sample

• With incremental update 
• does not need to build the model prior to tracking
• handle variation in lighting, pose (and expression)

• Performs well with large variation in
• Pose
• Lighting (cast shadows)
• Rotation
• Expression change

Slide from Ming-Hsuan Yang
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For sampling-based method
• Nomenclature: 

• Current location Lt 
• Current observation 𝐹𝐹𝑡𝑡 - F is for “frame” 
• Predict the target location Lt+1 in the next frame 

• Bayes:  

• 𝑝𝑝(𝐿𝐿𝑡𝑡|𝐿𝐿𝑡𝑡−1) dynamics model
• Use Brownian motion to model the dynamics

• 𝑝𝑝(𝐹𝐹𝑡𝑡 |𝐿𝐿𝑡𝑡) observation model
• Use eigenbasis with approximation

Slide from Ming-Hsuan Yang

1 1| , )( ( | ) · ( | )t t t t t t tF L p F L p L Lp L − −∝
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Dynamic Model: p(Lt |Lt-1 )

• Representation of Lt : 
• Position (xt ,yt), rotation (rt), 

and scaling (st) 
• Lt =(xt ,yt ,rt ,st)
• Or affine transform with 6 

parameters

• Simple dynamics model:
• Each parameter is 

independently Gaussian 
distributed

Lt

Lt+1

Slide from Ming-Hsuan Yang

http://vision.ucsd.edu/%7Ejwlim/researchlog/archives/files/ID251_1.avi
http://vision.ucsd.edu/%7Ejwlim/researchlog/archives/files/ID251_1.avi
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Simple dynamics model:
• Each parameter is independently Gaussian distributed

Lt

Dynamics Model: 𝑝𝑝(𝐿𝐿𝑡𝑡|𝐿𝐿𝑡𝑡−1)

2 2 2 2

1 0 1 0 1 0 1 0 1 0( | ) ( ; , ) ( ; , ) ( ; , ) ( ; , )x y sp L L N x x N y y N N s s
θ

σ σ θ θ σ σ=

Lt+1
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Observation Model: p(Ft |Lt ) 
• Use probabilistic principal component analysis (PPCA) to 

model our image observation process

• Given a location Lt , assume the observed frame was 
generated from the eigenbasis

• The probability of observing a datum z given the 
eigenbasis B and mean µ, 

p(z|B)=N (z ; µ, BBT+εI) 
where εI is additive Gaussian noise 

Slide from Ming-Hsuan Yang
B

z

µ
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Observation Model: p(Ft |Lt ) 
• The probability of observing a datum z given the 

eigenbasis B and mean µ, 
p(z|B)=N (z ; µ, BBT+εI) 

where εI is additive Gaussian noise 

• In the limit ε 0 (actually as the variance in the space is 
much greater than the variance out of the space) 
N (z ; µ, BBT+εI) is proportional to negative exponential of 
the square distance between z and the linear subspace B, 
i.e., 

p(z|B) α exp(-||(z- µ)- BBT (z- µ) || )

p(Ft |Lt) α exp(-||(Ft - µ)- BBT (Ft - µ) ||)
B

z

µ
Slide from Ming-Hsuan Yang

Reconstruction 
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Observation Model: 𝑝𝑝(𝐹𝐹𝑡𝑡|𝐿𝐿𝑡𝑡)

The probability of observing a datum z given the eigenbasis
B and mean µ,

𝑝𝑝 𝑧𝑧 𝐵𝐵 = 𝑁𝑁(𝑧𝑧; 𝜇𝜇, 𝐵𝐵𝐵𝐵𝑇𝑇 + 𝜀𝜀𝜀𝜀)
where 𝜀𝜀𝜀𝜀 is additive Gaussian noise

B

z

µ
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Observation Model: 𝑝𝑝(𝐹𝐹𝑡𝑡|𝐿𝐿𝑡𝑡)
• 𝑝𝑝(𝑧𝑧|𝐵𝐵) α exp (−‖ 𝑧𝑧 − 𝜇𝜇 − 𝐵𝐵𝐵𝐵𝑇𝑇 𝑧𝑧 − 𝜇𝜇 ‖ )

• Why is that the reconstruction?

• 𝐵𝐵𝑇𝑇 is (big) d x (small) k
• 𝐵𝐵𝑇𝑇(𝑧𝑧 − 𝜇𝜇) is the coefficient vector 

(say 𝛾𝛾) of (𝑧𝑧 − 𝜇𝜇)
• Then 𝐵𝐵𝐵𝐵 is the reconstruction.

reconstruction 

B

z

µ
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Inference
Fully Bayesian inference needs to compute

𝑝𝑝(𝐿𝐿𝑡𝑡|𝐹𝐹𝑡𝑡, 𝐹𝐹𝑡𝑡−1, 𝐹𝐹𝑡𝑡−2, … , 𝐹𝐹0, 𝐿𝐿0)

• Could do full particle filtering which is an approximation of 
full Bayesian inference

“But still a lot of work” (uh, maybe…)
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Inference
• Fully Bayesian inference needs to compute

𝑝𝑝 𝐿𝐿𝑡𝑡 𝐹𝐹𝑡𝑡, 𝐹𝐹𝑡𝑡−1, 𝐹𝐹𝑡𝑡−2, … , 𝐿𝐿0)

• Could do full particle filtering which is an 
approximation of full Bayesian inference. But they 
claim it is still a lot of work (?).  

• Instead approximate with p(Lt |Ft , l*t-1) where l*t-1 is 
the best prediction at time t-1. Maximum a posteriori 
estimate
• This is different than what we did in original particle filters –

here we’re keeping only the “best” from the last time frame.

Slide from Ming-Hsuan Yang
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Sampling for proposal
Basic tracking algorithm – given a current location:

1. Consider a number of  sample locations 𝑙𝑙𝑠𝑠 from our prior 
𝑝𝑝 𝐿𝐿𝑡𝑡 𝑙𝑙𝑡𝑡−1∗ . Their “weight” is from the prior.

2. For each sample 𝑙𝑙𝑠𝑠 , we compute the posterior
𝑝𝑝𝑠𝑠 = 𝑝𝑝(𝑙𝑙𝑠𝑠|𝐹𝐹𝑡𝑡, 𝑙𝑙𝑡𝑡−1∗ ) by using Bayes rule

3. Choose new best location (maximum a posteriori):

𝑙𝑙𝑡𝑡∗ = arg max 𝑝𝑝(𝑙𝑙𝑠𝑠|𝐹𝐹𝑡𝑡, 𝑙𝑙𝑡𝑡−1∗ )
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The cool part…
• Do not assume the probability of observation remains 

fixed over time
• Allow for incremental update of our object model
• Given an initial eigenbasis Bt-1 , and a new observation 

wt-1 , compute a new eigenbasis Bt

• Bt is then used in p(Ft |Lt) 

Slide from Ming-Hsuan Yang
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Incremental Subspace Update
• To account for appearance change due to 
pose, illumination, shape variation
• Learn an appearance representation while 
tracking

• Based on the R-SVD algorithm [Golub and 
Van Loan 96] and the sequential Karhunen-
Loeve algorithm [Levy and Lindebaum 00]

• Develop an update algorithm with respect 
to running mean, allow for decay

Slide from Ming-Hsuan Yang
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R-SVD Algorithm (in case you care)

• Let                 and new data 
• Decompose    into projection of   onto    and its 
complement, 

• Let                     where 
• SVD of            can be written as
•

• Compute SVD of 
• Then SVD of                  where
•
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Put All Together
1. (Optional) Construct an initial eigenbasis if necessary 

(e.g., for initial detection)
2. Choose initial location L0

3. Generate possible locations: p(Lt |Lt-1 ) 
4. Evaluate possible locations: p(Ft |Lt-1 ) 
5. Select the most likely location by Bayes: p(Lt |Ft , Lt-1 ) 
6. Update eigenbasis using R-SVD algorithm
7. Go to step 3
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Experiments
• 30 frame per second with 320 × 240 pixel 
resolution on old machines…

• Draw at most 500 samples 
• 50 eigenvectors
• Update every 5 frames
• Runs XXX frames per second using Matlab
• Results

• Plush toy tracking
• Large lighting variation 
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Most Recent Work
• Handling occlusion…
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Occlusion Handling
• An iterative method to 

compute a weight mask
• Estimate the probability a 

pixel is being occluded
• Given an observation It , and 

initially assume there is no 
occlusion with W (0)

where .* is a element-wise 
multiplication

( ) ( )

( 1) ( ) 2 2

.* ( )
exp( / )

i i T

t t

i i

D W I UU I
W D σ+

= −
= −
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