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Administrivia
- PS5 due on Wed Nov 12, 11:55pm

- Hopfully PS6 out Thurs Nov 13, due Nov 23

- Problem set resubmission policy:
- Full questions only
- Be email to me and the TAs.

- You get 50% credit to replace whatever you got last time on that
guestion.

- Must be submitted by: DEC 1. NO EXCEPTIONS.
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Today

- Eigen vectors and axes of inertia

- Principal components as dimensionality reduction

- PCA In recognition
- Eigenfaces
- D >> N trick

- PCA In tracking
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Principal Components

- All principal components (PCs)

start at the origin of the ordinate
axes.

- First PC is direction of maximum
variance from origin

- Subsequent PCs are orthogonal
to 1st PC and describe
maximum residual variance
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2D example: fitting a

E(a,b,d) =" (ax; +by, ~d)’

2= =023 (ax +by, ~d) =0

d =aX+hby

Substitute (== subtract mean):

E =X [a(x, =) +b(y, - I =[Bnf

Yi—

X]__
—_ yZ_

X

x| X

where B =

< <

line

) minimizeHBnH2
subject to |n|=1 gives
axis of least inertia
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Sound familiar???



CS 4495 Computer Vision — A. Bobick

Direct linear calibration - homogeneous
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This Is a homogenous set of equations.

When over constrained, defines a least squares problem
— minimize |Am|
e Since m is only defined up to scale, solve for unit vector m*
e Solution: m* = eigenvector of ATA with smallest eigenvalue
* Works with 6 or more points
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Total least squares
E-Yl(ax rby d) axeby=d % ¥

Unit normal:
N=(a, b)

(X;, ¥i)

Solution to (UTU)h = 0, subjectto [|h]||? = 1:
eigenvector of UTU associated with the smallest
eigenvalue
(Again SVD to least squares solution to homogeneous
linear system)
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Another interpretation

- Minimizing sum of squares of distances to the line is the
same as maximizing the sum of squares of the projections
on that line, thanks to Pythagoras.

X (unit vector
through origin)
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Algebraic Interpretation

- Trick: How Is the sum of squares of projection
lengths expressed In algebraic terms?

BT B X
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Algebraic Interpretation

- Trick: How Is the sum of squares of projection
lengths expressed In algebraic terms?

max( X"BTBX), sujectto XX =1
maximize E = x' Mx subjectto x'x=1 (M =B'B)

E'=x"Mx +A(1-X'X)
OE’
OX

=2MX + 21X

OE'
OX

=0— Mx =Ax (Xis an eigenvector of A’ A)
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Yet another interpretation

/ n n \
Z X; Z X Yi
B'B=| " - if about origin
Z X Yi Z yi2
\_i=1 i=1 Y,

- S0 the principal components are the orthogonal directions
of the covariance matrix of a set points.
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Yet one more algebraic interpretation

B'B =) xx' ifaboutorigin

B'B =) (x—X)(x—X)'otherwise — outer product

So the principal components are the orthogonal directions
of the covariance matrix of a set points.
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Eigenvectors

How many eigenvectors are there?

- For Real Symmetric Matrices of size NxN

- Except in degenerate cases when eigenvalues repeat, there are N
distinct eigenvectors



PCA: Eigenvalues
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PCA Eigenvalues
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Dimensionality Reduction

Dimensionality reduction

— We can represent the orange
points with only their v,
coordinates

* since v, coordinates are all
essentially O

— This makes it much cheaper to
store and compare points

— A bigger deal for higher
dimensional problems
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Higher Dimensions

- Suppose each data point is N-dimensional

- Same procedure applies:

Outer product
var(v) = ZH(X—f)T V|| /p

vIAv where A = d (x—x)(x— x) T
X

- The eigenvectors of A define a new coordinate system

- eigenvector with largest eigenvalue captures the most variation among
training vectors x

- eigenvector with smallest eigenvalue has least variation
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Higher Dimensions

- Suppose each data point is N-dimensional

- Same procedure applies:

Outer product
var(v) = ZH(X—f)T V|| /p

vIAv where A = d (x—x)(x— x) T
X

- We can compress the data by only using the top few
eigenvectors

- corresponds to choosing a “linear subspace”
* represent points on a line, plane, or “hyper-plane”
- these eigenvectors are known as the principal components

- We talk about the “percentage of variance explained by the first k
eigenvectors”.
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Algebraic Interpretation

- How many eigenvectors are there?

- For Real Symmetric Matrices of size NxN

- Except in degenerate cases when eigenvalues repeat, there are N
distinct eigenvectors
- The eigenvectors are mutually orthogonal and therefore form a new

basis

- Eigenvectors corresponding to the same eigenvalue have the
property that any linear combination is also an eigenvector with the
same eigenvalue; one can then find as many orthogonal
eigenvectors as the number of repeats of the eigenvalue.
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The space of all face images
- When viewed as vectors of pixel values, face images

are extremely high-dimensional
- 100x100 image = 10,000 dimensions

- However, relatively few 10,000-dimensional vectors
correspond to valid face images

- We want to effectively model the subspace of face
Images
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The space of all face images

We want to construct a low-dimensional linear subspace
that best explains the variation in the set of face images

\ Pixel value 2

Pixel value 1

@ A face image
® A (non-face) image
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Principal Component Analysis

- Given: N data points x4, ... ,Xy in R4 where d is big

- We want to find a new set of features that are linear
combinations of original ones:

u(x;) = u'(x;— W)
(1: mean of data points)

- What unit vector u in RY captures the most variance of the
data?
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Principal Component Analysis

- Direction that maximizes the variance of the projected
data:

var(u) =~ (¢, - 1)U (- )

~
Projection of data point

“u’ [%Z(X — )(x —ﬂu

— _/
Y

Covariance matrix of data

=u'2-u

The direction that maximizes the variance is the eigenvector
assoclated with the largest eigenvalue of



CS 4495 Computer Vision — A. Bobick

How many eigenvectors are there?

- If had M > d then there would be d. But M «< d.

- S0 Intuition would say there are M of them.

- But wait: if 2 points in 3D, how many eigenvectors? 3
points?

- Subtracting out the mean yields M-1.
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Principal component analysis

- The direction that captures the maximum covariance of
the data is the eigenvector corresponding to the largest
eigenvalue of the data covariance matrix

- Furthermore, the top k orthogonal directions that capture
the most variance of the data are the k eigenvectors
corresponding to the k largest eigenvalues

- But first, we’ll need the PCA d>>>n trick...
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The dimensionality trick

Let ®; be the (very big vector length d ) that is face
iImage I with the mean image subtracted.

. 1
Define C = MZCDL-CDL-T = AAT

where A = [®,D, ... Dy, ] IS the matrix of faces, and
IS d X M.

Note: Cis a huge d x d matrix (remember d iIs
the length of the vector of the image).
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The dimensionality trick

So C = AA" is a huge matrix.

But consider AT A. Itis only M x M. Finding
those eigenvalues Is easy.

Suppose v; is an eigenvector A" A:

AT Av; = Av;
Premultiply by :
AAT Av; = AAv;
So: Av; are the eigenvectors of C = AA”
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Eigenfaces: Key idea

- Assume that most face images lie on
a low-dimensional subspace determined by the first k
(k<<<d) directions of maximum variance

- Use PCA to determine the vectors or “eigenfaces”
u,, ... u, that span that subspace

- Represent all face images in the dataset as linear
combinations of eigenfaces

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991



http://www.cs.ucsb.edu/%7Emturk/Papers/mturk-CVPR91.pdf
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Eigenfaces example

Top eigenvectors: u,, ... u,,

Mean: u




Eigenfaces example

Principal component (eigenvector) uy

af EHllsamd

M + 30Uy

dal BH0EEEE

M— 3UkUk

of AT T
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Eigenfaces example

- Face x In “face space” coordinates:

X — [} (x = 1), ..ot (x — 1)

— wWie... W
1 » Wk This vector is the
representation of the
face.
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Eigenfaces example

- Face x In “face space” coordinates:

'L? X — [uj(x — p),...,ul(x — p)]

= wWi,...,Wg

This vector is the
_ representation of the
- Reconstruction: face.

=1 - -

L+ WU WU, WaU WU+

X >
[
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Reconstruction example

Figure 14.13 Face modeling and compression using eigenfaces (Moghaddam and Pentland
1997) © 1997 IEEE: (a) input image; (b) the first eight eigenfaces; (c) image reconstructed
by projecting onto this basis and compressing the image to 85 bytes; (d) image reconstructed
using JPFEG (530 bytes).
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Recognition with eigenfaces
- Process labeled training images:

- Find mean 1 and covariance matrix
- Find k principal components (eigenvectors of ) u,,...u,

- Project each training image x; onto subspace spanned by
principal components:

(Wig, .o Wy) = (U T(X = 1), een s U T (X = 1))

- Given novel image X:

- Project onto subspace:
(Wy,eWi) = (U (X = 1), oy U T (X = 1))

- Optional: check reconstruction error X — X tq determine
whether image is really a face

- Classify as closest training face in k-dimensional subspace

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991



http://www.cs.ucsb.edu/%7Emturk/Papers/mturk-CVPR91.pdf
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Recognition with eigenfaces

- Process labeled training images:
- Find mean u and covariance matrix X

- Find k principal components (eigenvectors of 2)
U, ... Ug

- Project each training image x; onto subspace
spanned by principal components:

Wity s Wig) = (uf(xi — W, ---ug(xi — M))

M. Turk and A. Pentland, Face Recognition using Eigenfaces, CVPR 1991



http://www.cs.ucsb.edu/%7Emturk/Papers/mturk-CVPR91.pdf
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Recognition with eigenfaces

Given novel image x:
- Project onto subspace:
(Wi, o, Wil = [u] (X = W), ., Ui (x = W]

- Optional: check reconstruction error x -x to
determine whether image is really a face

- Classify as closest training face in k-
dimensional subspace

- This is why it's a generative model (more later)
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Recognition demo...
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Limitations

- Global appearance method: not robust to misalignment,
background variation
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Limitations

- The direction of maximum variance is not always good
for classification
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How to use this in tracking?
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Visual Tracking

- Conventional approach
- Build a model before tracking starts

- Use contours, color, or appearance to represent an
object

- Optical flow

- Incorporate invariance to cope with variation in pose,
lighting, view angle ...

- View-based approach
- Solve complicated optimization problem

- Problem:

- Object appearance and environments are always
changing

Slide from Ming-Hsuan Yang
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A few key Iinspirations:

- Eigentracking [Black and
Jepson 96]

- View-Based learning
method

- Learn to track a “thing”
rather than some “stuff”

- Key insight: separate
geometry from appearance
— use deformable

- But...need to solve
nonlinear optimization
problem

- And fixed basis set

Slide from Ming-Hsuan Yang
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A few key Inspirations:

- Active contour [Isard and

Blake 96]

- Use particle filter

- Propagate uncertainly over
time

- But .. edge information is
sensitive to lighting change

field 221 (4420 ms)

field 265 (5300 ms)

Slide from Ming-Hsuan Yang
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Incremental Visual Learning

- Aim to build a tracker that:
- Is not single image based

- Constantly updates the model

- Learns a representation while
tracking

- Runs fast (close to real time)
- Operates on moving camera

- Challenge
- Pose variation
Partial occlusion
Adaptive to new environment
lllumination change
Drifts

Int J Comput Vis (200) 77: 125-141
DO 10, 1007 1 2E3-I07-0075-7

Incremental Learning for Robust Visual Tracking

David A. Ross - Jongwoo Lim - Ruei-Sung Lin -
Ming-Hsuan Yang

Received: & Sepeermber 2005 § Accepizd: 17 Juby X007 / Published online: 17 Asgust 2007

& Springer Science s Business Media, 11C 2007

Abstract ¥Visual tracking, in essence, deals with non-
stationary imape streams that change over time. While most
existing algorithms are able to track objects well in con-
trodked environments, they usually fail in the presence of sig-
nificant variation of the ohject’s appearance o surrounding
illuminaticn. One reason for sach failures is that many algo-
rithms employ fixed appearance models of the target. Such
meadels are trained using cnly appearance data available be-
fore tracking begine, which in practice limits the range of ap-
pearances that are modebed, and ignores the Large volume of
information (such as shape changes or specific lighting con-
ditions) that becomes pvailable daring tracking. In this pa-
per, we present a tracking method that incrementally leams a
loa-dimensional subspace representation. efficiently adapt-
ing online io changes in the appearance of the target The
meodel npdate, based on incremental algorithms for princi-
pal component analysis, includes two imporant Features: a
method for comectly wpdating the sample mean, and a for-
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getting factor to ensare less modeling power is expended
fitting older observations. Both of these festures contribute
measurably 10 improving overall tracking performance. Nu-
merous experiments demonsirale the effectiveness of the
proposed tracking algorithm in indoor and outdoor envi-
ronments where the target objects underpo large changes
in pose, scale, and illumination.

Keywords Visaal iracking - Subspace update - Online
algorithms - Adaptive methods - Particle filter - Ilumination

1 Imiroduction

Visual tracking essentially deals with non-stationary data,
bath the target ohject and the background, that change over
time. Most existing alporithms are able to trick objects,
either previously viewed or nob, in short durations and in
well controlled environments. However these algorithms
wsnally fail o observe the object molon or have signifi-
cant drift after some period of time, due to drstic change
in the ohject’s appearance of large lighting variation in its
surroundings. Although such sitaations can be ameliorated
with recourse to richer representations, effective prediction
schemes or combination, most alporithms typically oper-
ate on the premise that the moded of the target object does
oot change drastically over time. Examples abound, ranging
from representation methods based on view-based appear-
ance models (Black and Jepson 1906), contours (Isard and
Blake 1996), parametric templates of geometry and illumi-
mation (Hager and Belhumeur 1994), integration of shape
and color (Birchfield 1998), mixture models (Black et al.
1998}, 30 models (La Coscia and Sclaroff 19900, exemplars
(Toyama and Blake 2001, foreground’background models
(Harville 2002} templates with updating (Matthews et al.

&) fpringer
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Main ldea

- Adaptive visual tracker:

- Particle filter algorithm - draw samples from distributions of
deformation

- Subspace-based tracking
- learn to track the “thing” — like the face in eigenfaces
- use it to determine the most likely sample

- With incremental update
- does not need to build the model prior to tracking
- handle variation in lighting, pose (and expression)

- Performs well with large variation in
- Pose
- Lighting (cast shadows)
- Rotation
- Expression change

Slide from Ming-Hsuan Yang
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For sampling-based method

- Nomenclature:
- Current location L,
- Current observation F, - F is for “frame”
- Predict the target location L, in the next frame

- Bayes: p(L R, L)< p(R[L)-p(L|L.,)

*p(L¢|Li—1)—> dynamics model
- Use Brownian motion to model the dynamics

-p(F,|L,) - observation model
- Use eigenbasis with approximation

Slide from Ming-Hsuan Yang
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Dynamic Model: p(L; L, ;)

- Representation of L, :
- Position (X, ,y,), rotation (r,),
and scaling (s,
o Lo =(Xc e ot oSy
- Or affine transform with 6

parameter estimate/samples basis

parameters | £ 5 2nl
- Simple dynamics model: 5L ../ . )”H N |
. EaCh parameter iS -log( probability) mean cropped reconstruction diff mask
independently Gaussian
distributed

pliL1|L[|]| - “H’T(Ii:xﬂs m]v[ylsyﬂs y]v{ﬁ 7o, JE]“H"T(S']-!SU: g] (1]

Slide from Ming-Hsuan Yang


http://vision.ucsd.edu/%7Ejwlim/researchlog/archives/files/ID251_1.avi
http://vision.ucsd.edu/%7Ejwlim/researchlog/archives/files/ID251_1.avi
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Dynamics Model: p(L;|Ls—1)

Simple dynamics model.

- Each parameter is independently Gaussian distributed
P(L, | L) =N(X;x,0)N(Y,;Yy,, 0, )N(E;0,,0,)N(s;s,,0,)

I—t+1
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Observation Model: p(F; [L,)

- Use probabillistic principal component analysis (PPCA) to
model our image observation process

- Given a location L, , assume the observed frame was
generated from the eigenbasis

- The probability of observing a datum z given the
eigenbasis B and mean ,

P(z|B)=N (z ; u, BBT+¢l)
where ¢l i1s additive Gaussian noise

/o

Slide from Ming-Hsuan Yang
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Observation Model: p(F; [L,)

- The probability of observing a datum z given the
eigenbasis B and mean ,

P(z|B)=N (z ; u, BBT+¢l)
where ¢l i1s additive Gaussian noise

- In the limit ¢ = 0O (actually as the variance in the space is
much greater than the variance out of the space)
N (z ; u, BBT+¢l) is proportional to negative exponential of

the square distance between z and the li _ ,
l.e., Reconstruction

p(z|B) o exp(-l(z- w)- BB (z- p) ||) ®z

P(F; |l a exp(-[|(F, - w)- BB (F; - p) [)) /#/

Slide from Ming-Hsuan Yang




CS 4495 Computer Vision — A. Bobick

Observation Model: p(F|L;)

The probability of observing a datum z given the eigenbasis
B and mean p, o °
p(z|B) = N(z; u, BB + €D T =

where ¢I Is additive Gaussian noise / /

B
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Observation Model: p(F;|L;)

- p(z|B) aexp (—||(z—w) — BB (z— W)
N\ J
Y Z
reconstruction ®

- Why is that the reconstruction?

- BT is (big) d x (small) k / ‘ /
B

- B (z — ) is the coefficient vector
(say y) of (z —p)
- Then By Is the reconstruction.
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Inference

Fully Bayesian inference needs to compute

- Could do full particle filtering which is an approximation of
full Bayesian inference

“But still a lot of work™ (uh, maybe...)
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Inference

- Fully Bayesian inference needs to compute
p(L¢|Fy, Froq, Fe—p, ..., L)

- Could do full particle filtering which is an
approximation of full Bayesian inference. But they
claim it is still a lot of work (?).

- Instead approximate with p(L,|F;, I'.;) where I'_; is
the best prediction at time t-1. Maximum a posteriori
estimate

- This is different than what we did in original particle filters —
here we’re keeping only the “best” from the last time frame.

Slide from Ming-Hsuan Yang
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Sampling for proposal

Basic tracking algorithm — given a current location:

1. Consider a number of sample locations [, from our prior
p(L¢|l_1). Their “weight” is from the prior.

2. For each sample [, we compute the posterior
ps = p(l|F;, [i_1) by using Bayes rule
3. Choose new best location (maximum a posteriori):

lt = argmax p(ls|Ft, le—1)
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The cool part...

- Do not assume the probability of observation remains
fixed over time

- Allow for incremental update of our object model

- Given an initial eigenbasis B, ; , and a new observation
W, ,, compute a new eigenbasis B,

- B, Is then used in p(F|L,)

Slide from Ming-Hsuan Yang
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Incremental Subspace Update

- To account for appearance change due to
pose, illumination, shape variation

- Learn an appearance representation while
tracking

- Based on the R-SVD algorithm [Golub and
Van Loan 96] and the sequential Karhunen-
Loeve algorithm [Levy and Lindebaum 00]

- Develop an update algorithm with respect
to running mean, allow for decay

Slide from Ming-Hsuan Yang
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R-SVD Algorithm (in case you care)

-Let X=UZV'and new data Y

- Decompose Y into projection of Y onto U and its
complement, L=U"Y, H=Y-UL=(-UU")Y

-Let Y =UL+JK where JK=QR(H)
- SVD of [X Y]can be written as

: [x Y]=[u J]B Ij {\é ﬂT

- Compute SVD of E H=U'2'VT
- Then SVD of [x Y]=u"zVvTwhere

’ u'=u Ju s oy v"{\é ﬂv'

Slide from Ming-Hsuan Yang
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Put All Together

1.  (Optional) Construct an initial eigenbasis if necessary
(e.g., for initial detection)

Choose Initial location L,

Generate possible locations: p(L,|L. )

Evaluate possible locations: p(F,|L )

Select the most likely location by Bayes: p(L,|F;, L)
Update eigenbasis using R-SVD algorithm

Go to step 3

N o oA W N

Slide from Ming-Hsuan Yang
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Experiments

- 30 frame per second with 320 x 240 pixel
resolution on old machines...

- Draw at most 500 samples

- 50 eigenvectors

- Update every 5 frames

- Runs XXX frames per second using Matlab

- Results
- Plush toy tracking
- Large lighting variation

Slide from Ming-Hsuan Yang
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Most Recent Work

- Handling occlusion...
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Occlusion Handling

- An iterative method to
compute a weight mask

- Estimate the probability a
pixel is being occluded

- Glven an observation |,, and
Initially assume there is no
occlusion with W ©)

DY =W *(I —UUI)
W(i+1) — eXF)(_D(i)Z /02)

where .* Is a element-wise
multiplication
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