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OUTLINE

• Introduction to visual SLAM 

• Behind front-end tracking and back-end mapping 

• Sparse tracking and mapping 

• Dense Tracking and mapping 

• Challenges and Opportunities



SLAM in General



What is SLAM?  
Simultaneous Localization and Mapping

• A general problem: A robot with quantitative 
sensors, navigating in a previously unknown 
environment, mapping the environment and 
calculate its ego-motions. 

• Make it simple: estimate the robot poses, and 
meanwhile map the scene. 

• In visual SLAM, the only sensor we use is camera.



General Visual SLAM pipeline
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Visual Odometry

• We want to estimate 6-DoF camera pose [R|T] incrementally 

• Recall what we have in two-view geometry class. We use 
epipolar geometry to estimate relative camera motions:

Image from [C.Beall, Stereo VO, CVPR’14 workshop]



Visual Odometry

• For monocular camera, triangulation can be done in consecutive 
frames.

[M.Pollefeys, Hand-held acquisition of 3D models with a video camera., 1999, 3DIM]



Graph Relaxation
• The robot localization is a belief propagation. 

• Uncertainty increases! Odometry will drift! 

• How do we solve it?

 [H.Strasdat, et al. Scale Drift-Aware Large Scale Monocular SLAM, 2010, RSS]



Belief Propagation using Filtering

• Extended Kalman Filter model. 

• States including both camera motions and features. 

[A.Davison et al. MonoSLAM: real-time single camera SLAM, 2007, PAMI]



Belief Propagation using Filtering — Good?

• Tracking and mapping here are coupled at each frame. Work well at 
high frame rates, but may loose robustness when frame-rate drop.  

• Either tracking or mapping fail, the system fails.  

• Number of landmarks are limited. Unpractical in a large-scale 
environment. Fatal!



Can we do better? 
Recap: Structure from Motion

Photo Tourism 
[Snavely et al. SIGGRAPH’06]

Build Rome in a Day 
[Agarwal et al. ICCV’09]

• What we have: incremental increasing images. 

• What’s the same: estimate the 3D structure from the image, and meanwhile get their camera poses. 

• What’s different: we need a real-time incremental pose estimation. (Or maybe not! Some people 
think they are the same! )



Optimization: Bundle Adjustment

• Good initial pose estimation? Yes, from the multi-view geometry! Then optimize it. 

• Too many frames is a pain! Select key frames and set up correspondence. 

• We can either do it locally, eg. 5 local key frames (refinement to odoemtry), or globally (refinement 
to whole pose graph). 

• The same model, as a minimization problem:

[H.Strasdat et al.Visual SLAM: Why Filter?, 2010, ICRA]



SLAM as Factor Graph

• A more power representation for SLAM. 

• A pure optimization problem: Inference? Factorize the matrix? Eliminate the number of 
factors? Global Optimal? 

• Use GTSAM to solve it!

[F.Dellaert et al. Square Root SAM Simultaneous Localization and Mapping  
via Square Root Information Smoothing, 2006, IJRR]



What’s in between — Loop Detection

• Optimization works the best if we have global correspondence from landmarks. 

• When a loop is detected, we can set up the global correspondence.

Loop 
detected!!!

[T.Whelan et al. Deformation-based Loop Closure for Large Scale Dense RGB-D SLAM, 2013, IROS]



What’s in between — Loop Detection

• A loop detection is an image-matching step: detected the visited the image 
content and estimate its relative pose. 

• The number of features increase incrementally, especially in large-scale 
environment. How to manage? 

• Bag-of-Words system, e.g. Vocabulary tree.

[D.Lopes et al. Bags of Binary Words for Fast Place Recognition in 
Image Sequences, 2012, TRO]



Sparse Tracking and 
Mapping



PTAM: Parallel Tracking and Mapping for Small 
AR Workspaces



PTAM: Parallel Tracking and Mapping for Small 
AR Workspaces

• Tracking and Mapping are in two parallel threads. 

• Tracking is frame-to-model, against the point clouds in the world. 

• The global point clouds are initialized with epipolar geometry.  

• Once we found feature points in key frames are not in the global frame, add them into the global 
point clouds.



PTAM: Parallel Tracking and Mapping for Small 
AR Workspaces

• Tracking is a two-step process: 

• A coarse-to-fine feature matching to estimate a initial camera pose; 

• Use local bundle adjustment to refine the pose. 

• Project the global points to the image frame (eg. five frames). Minimize this error：

Image from [M.Lourakis et al,SBA: A Software Package  
for Generic Sparse Bundle Adjustment, 2009, MS]



Dense Tracking and 
Mapping



Why Dense Mapping?
• Tracking from frame-to-model: more dense scene, more 

information for tracking. 

• Robot can approach perception at human-level. 

• The secrets: RGB-D cameras and GPGPU!

[M.NieBner et al, Real-time 3D Reconstruction at Scale Using Voxel Hashing, 2013, SIGGRAPH]



KinectFusion: Real-time Dense Surface 
Mapping and Tracking



KinectFusion Pipelines  
Depth Tracking: ICP matching

• What we have: 
• a global surface model; 
• a local surface model, generated by input point clouds; 
• an estimated camera pose from last frame, a good initial estimation when movement is small. 

• Utilising these, we optimize the global point-plane energy to estimate the camera pose:

[K.Low, Linear Least-Squares Optimization for 
Point-to-Plane ICP Surface Registration, 2003, Tech Report]



KinectFusion Pipelines 
Fuse the Model: TSDF Volume

• Each Voxel stores a pair of values, signed distance value (SDF) F, and weight W: 

• SDF value represents the uncertainty around the surface 

• 0 means the voxel lies on the surface 

• 1 means empty space, -1 means behind the surface. 

• At each frame, update the SDF value by its weight:

Both images from [Point Cloud Library]



KinectFusion Pipelines  
Get the 3D Global Map: Ray-casting

• Each pixel corresponds to a camera ray. 

• The ray starts from the minimum depths for the pixel and stops at the zero crossings. (zero 
crossing is the surface). 

• Voxel value might not correspond to exact zero. To find the exact value, we do interpolation. 

• The output here is a 3D global surface. Use this to estimate the next frame camera pose. 

Image from [Volume Graphics Library http://vg.swan.ac.uk/gallery/]

http://vg.swan.ac.uk/gallery/%5D


Challenges  
& 

 Opportunities



What happens in the last decade

monoSLAM 
[A.Davison, ICCV’03]

PTAM 
[G.Klein et al. ISMAR’07]

KinectFusion 
[R.Newcombe et al, ISMAR’11]

Kintinuous 
[T.Whelan et al, MIT Tech’12]

LSD-SLAM 
[J.Engel ECCV’14]

More dense! 
More accurate! 
Larger!



Challenges & Opportunities

• A more dense map in real-time? Approach real-time 3D reconstruction. 
• A more smooth mapping in large area?  

• Graph deformation is hard. The complexity grows! 

• City-wide SLAM, Life-long SLAM, or season-wide SLAM? 
• Features are variant to scenes. 

• How to manage millions of features? How to fast retrieve? 

• SLAM assumes static scenes. How to tackle with a dynamic environment?  
• Remove outliers? 

• Could we also track the object and the scene? 

• My previous work (youtube demo): https://www.youtube.com/watch?v=gphF88LtHuM&list=UUx-DbdC03CZiQqMhtliAwhg 

• SLAM is perception. How perception can help learning and planning? 
• Sematic SLAM: understanding the scene from segmentation, clustering, etc. 

• Distributed SLAM: map the environment from multiple robots.  

• Active SLAM: actively select the landmarks, active tracking etc. 



For more visual SLAM tutorials: 
!

http://www.cc.gatech.edu/~dellaert/FrankDellaert/Frank_Dellaert/Entries/
2014/6/28_Visual_SLAM_Tutorial_at_CVPR.html 

!
!

or Come to BORG lab to discuss! 
!

http://www.cc.gatech.edu/~dellaert/FrankDellaert/Frank_Dellaert/Entries/2014/6/28_Visual_SLAM_Tutorial_at_CVPR.html

