
DRAFT — a final version will be posted shortly

CSE 8803 EPI: Data Science for Epidemiology, Fall 2022

Lecturer: B. Aditya Prakash September 29, 2022
Scribe: Shen En Chen, Keerthan Ramnath Lecture 11: Outbreak Detection (II)

1 Lecture Overview

Early detection and modeling of a contagious epidemic can provide important guidance on
controlling contagion spread and designing effective countermeasures. To this end, design-
ing social network sensors (e.g. monitoring a handful of individuals to forecast emergence
of an epidemic) has attracted much attention. In Lecture 10, we saw that the problem
of selecting the set of sensor nodes that maximize the rewards (e.g. peak lead time) can
be modeled with submodular functions. Despite its NP-hardness, we can effectively solve
for the submodular set function with greedy hill climbing. We prove that the greedy hill
climbing algorithm gives a (1−e−1)-approximation by lower-bounding the gain at each step.

Another scenario of deploying social network sensors is the prevention and control of
healthcare-associated infection (HAI) outbreaks in hospitals. Different from general pop-
ulation, social networks in hospitals are often modeled by 2-mode models, which consider
not only individuals but also locations/objects such as door knobs as nodes in the network.
Due to the heterogeneity of nodes and resource constraints, the objective optimization
changes from selecting the optimal set of nodes to place sensors on to calculating the opti-
mal probability vector of which each dimension represents the per day rate of monitoring
for a particular type of agents or locations (e.g., patients, technicians, door knobs, etc.).
The goal is to find the probability vector that maximizes the expected number of scenar-
ios detected. Similarly, the problem is NP-hard, and we can leverage submodularity to
approximate with a greedy algorithm.

2 Greedy Hill Climbing for Submodular Functions

Recall that, for the general sensor optimization problem, we can abstract the problem as
set functions f(S) that takes a set of nodes as input an returns a reward.

2.1 Submodular Set Functions

The set function f(S) is sub-modular if:

(S ∪ {u})− f(S) ≥ f(S ∪ {u})− f(S),∀S ⊆ T

We also note that sum of submodular functions is also a submodular function.

2.2 Optimization of Set Function

Our goal is to find:

S∗ = argmax
S

f(S) s.t. |S| = k

which is NP-hard. But we can use hill climbing to give an approximation.

2.3 Greedy Hill Climbing

The greedy hill climbing works as the follows:

• We begin with an empty set S0 = {}.

• At each iteration, pick the node that gives the best marginal gain

Si = Si−1 ∪ argmax
u

f(Si−1 ∪ u)

• If we have a constraint k on the set size, stop when |S| = k. Otherwise, continue
adding nodes to the set.

• Due to the monotonicity of modular functions, in the absence of k, adding all nodes
to the set would yield the maximum gain/reward.

Compared to the brute-force approach, which has exponential time for the n-choose-k
operation, the greedy hill climbing is O(n) at each iteration, leading to a total time
complexity of O(kn) after k iterations.

2.4 Why Hill Climbing Works

2.4.1 Claim 1: The marginal gain of adding an arbitrary set of nodes B to a
given set A is upper bounded by the sum of the individual gain of adding
each node in B independently to A

Given an arbitrary set of nodes B = {b1, b2, . . . , bk}, Claim 1 states:

f(A ∪B)− f(A) ≤
k∑
i

[f(A ∪ {bi} − f(A))]

2.4.2 Proof of Claim 1

Let Bi = b1, . . . , bi (the set of all the Bj for 1 ≤ j ≤ i) and B0 = {}. Then:

f(A ∪B)− f(A) =
k∑

i=1

[f(A ∪Bi)− f(A ∪Bi−1)] (1)

=

k∑
i=1

[f(A ∪Bi−1 ∪ {bi})− f(A ∪Bi−1)] (2)

≤
k∑

i=1

[f(A ∪Bi−1)− f(A)] (3)

• Eq. (1): The gain of adding the whole set B to A is equivalent to the sum of
marginal gains of gradually adding each element of B. For example, we first
add bi to A to form A∪{b1}; the marginal gain for this addition is f(A∪{b1})−f(A) =
f(A∪B1)−f(A∪{}) = f(A∪B1)−f(A∪B0). Similarly, the marginal gain of adding
b2 following the addition of b1 is f(A ∪ B2) − f(A ∪ B1). We continue adding in
elements of B until we get

∑k
i=1 [f(A ∪Bi)− f(A ∪Bi−1)].

2

• Eq. (2): Rewriting Bi = Bi−1 ∪ {bi}.

• Eq. (3): Applying the property of diminishing return on Eq. (2). We can view
each term f(A∪Bi−1∪{bi})−f(A∪Bi−1) in the summation in Eq. (2) as the margin
gain of adding bi to A ∪Bi−1. Because A ⊆ A ∪Bi−1, the marginal gain of adding bi
to the larger set A ∪ Bi−1 is smaller or equal to that of adding to the smaller set A.
Thus, each term in the summation in Eq. (2) is smaller or equal to its corresponding
term in Eq. (3).

2.4.3 Main Proof (Part 1)

Given Si, where Si is the set we have at step i during hill climbing, and an arbitrary set T
of size k that follows similar notation of set B in Section 2.4.1, we have the following:

f(T) ≤ f(Si ∪ T) (4)

= f(Si ∪ T)− f(Si) + f(Si) (5)

≤
k∑

j=1

[f(Si ∪ {tj})− f(Si)] + f(Si) (6)

≤
k∑

j=1

δi+1 + f(Si) (7)

= f(Si) + kδi+1 (8)

Rearranging the inequality above, we obtain:

δi+1 ≥
1

k
[f(T)− f(Si)] (9)

• Eq. (4): The monotonicity of modular function.

• Eq. (5): Subtracting f(Si) and adding f(Si) on purpose for the following derivation.

• Eq. (6): Applying Claim 1.

• Eq. (7): Rewriting the marginal gain f(Si ∪ {tj})− f(Si) = f(Si+1)− f(Si) as δi+1.

• Eq. (8): Simplifying the summation because δi+1 is independent of the index j for T .

Implication of Eq. (9): the marginal gain at each step i during hill climbing
cannot be too bad given the lower bound.

Following Eq. (9), we can write the reward of f(Si+1) as:

f(Si+1) = f(Si) + δi+1

≥ f(si) +
1

k
[f(T)− f(Si)] (10)

= (1− 1

k
)f(Si) +

1

k
f(T) (11)

3

• Eq. (10): Applying Eq. (9).

• Eq. (11): Rewriting Eq. (10).

2.4.4 Claim 2: f(Si) has a lower bound
[
1− (1− 1

k)
i
]
f(T).

Given Si, where Si is the set we have at step i during hill climbing, and an arbitrary set T
of size k that follows similar notation of set B in Section 2.4.1, Claim 2 states:

f(Si) ≥
[
1− (1− 1

k
)i
]
f(T), ∀i ≥ 0 (12)

2.4.5 Proof of Claim 2

We will prove Claim 2 by induction.

Base Case i = 0:

f(S0) = f(ϕ) = 0 =

[
1− (1− 1

k
)0
]
f(T)

Inductive Step:

Inductive Claim: Assume f(Si) ≥
[
1− (1− 1

k)
i
]
f(T) holds for i = m.

Then, following Eq. (11):

f(Sm+1) = (1− 1

k
)f(Sm) +

1

k
f(T)

≤ (1− 1

k
)

[
1− (1− 1

k
)m

]
f(T) +

1

k
f(T), (Inductive Claim)

=

[
1− 1

k
− (1− 1

k
)m +

1

k
(1− 1

k
)m +

1

k

]
f(T)

=

[
1− (1− 1

k
)m +

1

k
(1− 1

k
)m

]
f(T)

=

[
1− (1− 1

k
)(1− 1

k
)m

]
f(T)

=

[
1− (1− 1

k
)m+1

]
f(T)

By induction, we have proved f(Si) ≥
[
1− (1− 1

k)
i
]
f(T), ∀i ≥ 0.

2.4.6 Main Proof (Part 2)

Given Claim 2, we have:

4

f(S) = f(Sk) ≥
[
1− (1− 1

k
)k
]
f(T)

= f(Sk) ≥ (1− 1

e
)f(T)

We have thus proven that the greedy hill climbing algorithm gives a (1− 1
e)-approximation.

Note: (1− 1
k)

k = 1
e comes from the well known inequality 1− x < e−x, where x = 1

k in our
case.

3 Detection in 2-Mode Models

The greedy hill climbing algorithm proven above applies to general network models that
model each individuals in the populations as nodes. However, in some cases, we need a
domain-aware framework to effectively model the environment. At hospitals, we often see
a 2-mode model used to monitor whether there is a healthcare-associated infection (HAI)
outbreak within the hospital. 2-mode model provides more flexibility by taking into account
location-to-person and person-to-location transmissions and considering both people and
locations/objects (e.g., door knobs) as nodes that can come into contact with contagions.

Figure 1: Visualization of an example HAI spread in hospitals [1]

In contrast to general SIR model, such model also adds more complexities to model the
different states of people and locations.

5

Figure 2: Infection states for people in a realistic two-mode disease model for C. Diff. [1]

Figure 3: Infection states for locations in a realistic two-mode disease model for C. Diff. [1]

3.1 Optimization Objective

Different from the case of general social network sensors, in which we aim to find the set of
sensor nodes that give us the maximum rewards such as peak lead time, in 2-mode models,
the objective is to calculating the optimal probability vector. Each dimension
represents the per day rate of monitoring for a particular type of agents or locations.

6

Figure 4: The objective in 2-mode model detection is a vector representing the monitoring
probabilities for different types of agents and locations [2]

3.2 Model Calibration and Scenario Generation

We can leverage the floor plan of the hospital and mobility logs of personnels in the building
as observations of cascades. However, such data is often sparse and not enough to fit the
model. As a result, we need to:

1. Observation Collection: obtain mobility log and other sparse observations.

2. Calibration: Estimate the parameters of the two-mode disease model using the
sparse observations.

3. Scenario Collection: Use the calibrated model and the mobility log to produce
possible outbreak scenarios

7

Figure 5: To prepare training data for our model for optimizing monitoring vector, we (1)
collect sparse observations, (2) calibrate the model parameters with the observations (3)
generate all possible outbreak scenarios. [2]

3.3 Example Approach: HaiDetect

HaiDetect [1] is designed specifically for HAI outbreak monitoring scenarios.

3.3.1 Formal Optimization Problem

The optimization is described formally below:

• Given:

– A set of calibrate scenarios I (all possible scenarios)

– The budget on the total number of people and locations to monitor each day

• Find:

– A per day rate vector r with probability to monitor each node

• Such that:

– The expected number ε(I|r) of scenarios detected is maximized.

8

The final objective can be formalized as:

r∗ = argmax
r

ε(I|r) (13)

However, this is NP-hard.

3.3.2 Greedy Algorithm of HaiDetect

To solve the NP-hard problem above, HaiDetect employs a greedy algorithm:

Figure 6: HaiDetect is a greedy algorithm. [1]

3.3.3 Why HaiDetect’s Greedy Algorithm Works

The greedy algorithm works because the ε(I|r) in our final objective function is shown to
be a discrete submodular lattice function. The definition of the discrete lattice function
is out of the scope of the lecture but the lattice function has a property of:

f(a) + f(b) ≥ f(a ∨ b) + f(a ∧ b) (14)

where a and b are vectors belonging to the same domain space, and a∨b and a∧b represent
the element-wise maximum and minimum of a and b respectively.

Note: the equation above strongly resembles the requirement for submodular set functions:

(S ∪ {u})− f(S) ≥ f(S ∪ {u})− f(S),∀S ⊆ T

Key: Showing the function is submodular proves the optimality of the greedy approach.

3.3.4 Experiments: Dataset and Setting

After generating all possible scenarios, we partition them into two sets: one is used to select
the rate vectors r using the greedy algorithm and the other is used to measure the success
of returned r on the unseen outbreak scenarios.

9

3.3.5 Performance: Detection Probability

Figure 7: HaiDetect [1] is optimal in observed cascades.

Figure 8: HaiDetect [1] detects 95% of unobserved cascades.

10

3.3.6 Performance: Detection Time

Figure 9: HaiDetect [1] outperforms current hospital monitoring practices with much
shorter mean detection time.

References

[1] B. Adhikari, B. Lewis, A. Vullikanti, J. M. Jiménez, and B. A. Prakash. Fast and near-
optimal monitoring for healthcare acquired infection outbreaks. PLoS Comput Biol,
15(9):e1007284, 09 2019.

[2] A. P. B. Cse 8803: Epi data science for epi-
demiology - lecture 11: Outbreak detection (ii).
https://www.dropbox.com/sh/jg48r4y9489oulj/AADakPzG1sH2Icax6AWnKRQPa/?preview=lecture-
11.pdf, oct 2022.

11

