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1 Lecture Summary

In this lecture, we examine various facets of the problem of outbreak detection. Outbreak
detection is an important problem in epidemiology because the earlier one can identify
outbreaks, the quicker one can move to prevent further spread of infections. Recent techno-
logical advancements in outbreak detection involve many interlocking parts, which include
(but are not limited to) individual participation in epidemic surveillance via smart phone
usage, statistical algorithms used to identify potential outbreaks, and machine learning
models that predict ways of monitoring for outbreaks. The summary of this lecture will
examine these recent advancements in more detail.

The following is a brief overview of the sections. In Section 2, we present an algorithm
for identifying regions within a geographic boundary that are likely to contain a subset of
a population that has recently experienced an outbreak. Section 3 presents a reinforcement
learning algorithm that was deployed by a country during the Covid-19 pandemic to deter-
mine how best to allocate scarce testing resources. Importantly, this algorithm was able to
utilize subpopulation statistics to outperform approaches based on country-level statistics.
Finally, in Section 4, we examine the efficacy of using smartphones to monitor epidemic
trends, including the pros and cons of such approaches and the current research being done
in the area.

2 Subset Scans

In this section, we will cover an algorithmic technique for identifying outbreaks within
populations.

2.1 Outbreak Detection as Anomaly Detection

An outbreak is by definition an anomalous event within a population. Therefore, if we
can properly identify relevant population subsets, we can run anomaly detection algorithms
across their epidemic-related data in order to locate outbreaks by finding outliers among
the subsets.

In outbreak detection, we are interested in detecting emerging events, pinpointing the af-
fected subset of locations of the outbreak and the times across which the outbreak occurred,
and characterizing the outbreak event by identifying the affected streams. For example, in
the figure above, we can develop hypotheses about specific regions by utilizing location,
symptom-related data streams, and time data. We then compare the hypotheses of these
different subpopulations (which are identified by zip codes in the figure) to identify an
outbreak.



Figure 1: Example Outbreak Detection Scenario

2.2 Scan Statistics: Basic Idea

In order to identify regions (subsets) that could contain outbreaks, we want to search across
regions and select relevant ones via the criteria ”higher-than-expected infection counts.”
This involves constructing a way to quantify the ”surprise” of a subset’s scan statistics.
This way, we can choose subsets with the highest surprise as regions likely to contain an
outbreak. We quantify surprise with a likelihood ratio and decide whether or not it is
significant with a computed p-value statistic. The following describe the quantification of
a subset’s ”surprise”:

F (D,S,W ) =
Pr(Data|H1(D,S,W ))

Pr(Data|H0)
(1)

Note that surprise value grows as the probability of observing the data given a hypothesis
dependent on a datastream (D), time-duration (W), and location subset (S) grows. Further-
more, the surprise decreases as the probability of observing the data given the hypothesis
that none of these events occur increases.

After we have quantities that represent the surprise of each subset, we need to determine if
they are statistically significant before deciding if an outbreak occurred within the subset.
We do this via a p-value computation, where we compare a subset’s score to the maximum
subset scores of simulated datasets under the H0.

2.3 Fast Subset Scans

Note that conducting the process defined above for every possible subset is generally impos-
sible due to the exponential growth of the size of the power set with the size of the original
set. This necessitates developing algorithms such as the fast subset scan algorithm in [3]
to deal with such situations. The general idea is to first sort each spatial location with a
priority function and evaluating regions with only the top-k highest priorities. It can be
shown that this guarantees that the highest scoring subset of all subsets will be evaluated
under this approach.

3 Using RL for Outbreak Detection

Reinforcement learning is a machine learning technique that trains an agent based on re-
warding desired behaviors and punishing undesired behaviors with different scores. Impor-
tantly, reinforcement learning algorithms can be deployed in situations that require lifelong
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learning, meaning that the agent’s model must adapt as it is presented with new environ-
ments and information. In this section, we will observe the deployment of a reinforcement
learning algorithm that was applied to the problem of allocating limited Covid-19 testing
resources over the course of the pandemic.

3.1 Outbreak Detection on Border

The spread of Covid-19 was, of course, not limited to national boundaries. Each country
had an interest in monitoring the state of Covid-19 infections at the borders in order to
minimize the impact of the disease spreading to within the borders. These countries applied
border control to prevent the importation of the disease.

Border control workers had access to real-time outbreak statistics globally and correspond-
ing demographic features of the outbreaks, specifically different countries’ data. As a first
pass, one could imagine combining all of this data to construct an algorithm that deter-
mines the ideal behavior of each countries’ border control to mitigate the spread of Covid-19.
However, this approach comes with two key drawbacks. First, the reported Covid-19 data
from each country can be unreliable for a number of reasons such as incomplete testing
and deliberate misreporting. Second, there is a difference between the Covid-19 related
statistics of an entire population and the people within the population who are likely to
travel to a new one.

3.2 Eva in Greece

In 2019, Greece decided to deploy a reinforcement learning system called ”Eva” to determine
how to test populations of travelers [1]. It was needed because of the impossibility of testing
every traveler given the scarcity of testing resources, which furthermore would have caused
harm to the tourism industries. The general idea was to test only the travelers that were
deemed the most high-risk of having an infection in order to maximize the amount of
detected infected travelers. This also necessitated data collection at a scale to determine
”high-risk” travelers. The Eva system was deployed successfully and communicated in a
subsequent Nature article.

3.3 Eva Method

Broadly, the Eva method was composed of the following steps. The first was to classify
travelers using a Passenger Locator Form where travelers input information such as flight
details and companions. The second was to use bayesian approaches to infer the risk of
different travelers given the types determined by the form details. Each step’s accuracy is
dependent on the need to collect data about enough of the different kinds of travelers in
order to classify them (and subsequently their risk) accurately. This is where the RL comes
in!

3.4 RL in the Data Collection Loop

In order to prevent the spread of Covid-19, the highest-risk travelers needed to be detected.
In order to detect the highest-risk travelers, the right kind of data needed to be collected
about different traveler types. The Eva RL agent was designed to find a tradeoff between
”exploitation” and ”exploration.” The number of infectious passengers detected had to be
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Figure 2: The Eva Method

maximized (”exploitation”) in order to detect enough cases to identify risk levels of different
traveler types. At the same time, mutliple types of travelers had to be tested in order to
guarantee that estimates of the risk-level of a particular type was accurate (”exploration”).
The second target allowed the agent to detect new outbreaks in traveler types that were
originally deemed low-risk.

3.5 Multi-Armed Bandit

A multi-armed bandit is a reinforcement learning agent that is trained to maximize the total
reward that it receives in a set number of time steps. It can be trained to both ”explore”
and ”exploit.” The figure below is an example of a multi-armed bandit problem.

Figure 3: Multi-Armed Bandit Problem Setup

In the problem above, the agent faces the dilemma of exploring or exploiting. An strategy
for exploiting would entail picking the machine the highest probability of a known reward
many times over (Machine 2). An exploration-based strategy would entail picking each
machine an equal amount of times and iterating over many trials to get an estimate of an
”average” reward, which could then be compared against exploitation-based strategies.
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3.6 Gittins Index

We need to decide which ”arm” (aka machine state from the related figure) to select at
a time step. Gittins Index is a formula for assigning an expected reward value to each
potential selected state. Here is the formula:

Gi(xi) = supτ
E[reward(choose(xi until τ)|xi]

E[time from now to τ |xi]
(2)

The numerator represents the expected reward of choosing an arm from the current time
step to a future one τ . The denominator indicates the the expected amount of time from
the current state to τ . Therefore Gi(xi) is therefore the reward associated with choosing xi
at the current time step, and we use maximum of these values to select the arm.

3.7 Applying Multi-Armed Bandit to Eva

Given what we know about setting up an MAB problem, we can define the Eva goal func-
tion as follows. First, we need to represent the number of travelers arriving at a certain
entrypoint e from a specific country c on a specific day t. Let’s use Ace(t) to represent this
quantity. We also need to represent the number of travelers in this quantity who have been
tested. Call this value Tce(t) and its maximum (the test capacity at e) Be(t). Given an
unknown infected rate Rc(t), we have the resulting goal of the problem:

minE[
∑
τ

∑
c

∑
e

TceRc(t)] (3)

By the problem setup, this is subject to the constraints Tce(t) < Ace(t) and
∑

c Tce <
Be(t).
Now we have the necessary quantities to define the high-risk assessment and data collection
problem in terms of a reinforcement learning algorithm. For Eva, the machines are the
travelers that arrive at an entry point on day t from a certain country, Ace(t). Our ”reward”
probability becomes the infected rate Rc(t). Our Gittins Index therefore represents the risk
score of different traveler populations. Now we can optimize the expected number of infected
travelers tested by Eva.

3.8 High-Level Algorithm

Putting all of the above together, the first step is to test the type of travelers with the
highest Gittins Index. Then, after observing the test result, the infected rate is updated
for that population and a new Gittins Index is calculated for that type. This is repeated
across time and populations.

3.9 Results of Eva

Recall that the overall problem was allocating limited testing resources to the riskiest pop-
ulations. Eva was shown to detect more Covid-19 infections than random testing, which is
indicated by the chart below.
Eva is compared against random testing because random testing was the original method
used by Greece to monitor Covid-19. Note that Eva performed better during the travel
season, when there were more incoming travelers and fewer testing resources!
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Figure 4: Eva vs Random Testing

Ideally, Eva performs well even when testing relatively few subjects. The below figure
indicates this: Eva is more efficient when the fraction tested is low.

Figure 5: Eva Efficiency
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Another key metric for quantifying Eva’s performance is comparing it against methods that
use country-level Covid-19 metrics. The figure below indicates that Eva detecs more Covid-
19 infections than selecting populations based on the country-level statistics of incoming
travelers such as cases and deaths. Eva outperforms these methods because it accounts for
the unreliability of raw data from incoming countries and utilizes finer-grained populations
(travelers vs. entire populations).

Figure 6: Eva vs. Country-Level Selection Statistics

It might be counter-intuitive that country-level statistics do not result in better forecasting
of high-risk groups. However, the group of practitioners behind Eva empirically demon-
strate that this is in fact the case. The figure below shows that using country-level metrics
as selection criteria is not more effective than simple random testing. The black line indi-
cates randomly choosing high-risk countries. The different country-level selection criteria
are indicated by the other lines. Note there is not a large difference in performance between
the two!

3.10 Lessons Learned from Eva

Measuring quantities related to health data and inter-country travel comes with many
challenges, and utilizing Eva was no exception. One challenge is minimizing the request for
data from individuals in order to effectively implement a policy that benefits a population
as a whole. It can be ethically perilous to gather data without fully informing subjects, and
everyone has a right to the privacy of their health data. Note that Eva’s efficiency takes
steps towards addressing these concerns. In short, it can do more with less.
One difficulty that arises with using algorithms to inform policy is the interpretability
of their outputs. Any result and its metrics should be explainable in order to convince
policymakers of their utility and fairness. Eva’s clearly-defined reward function over many
states and repeatable performance addresses some of these concerns.
Another difficulty of deploying models of population behavior is adapting models to account
for new developments in the population. Note that by modeling the situation as a multi-
armed bandit problem, Eva could utilize the ”explore” feature of the reward to account for
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Figure 7: Comparison of Selection Methods

new developments in the transmission rate of different populations.

3.11 Summary

Recall that the topic of the lecture is monitor outbreaks. Frequently, as in the case of
Greece and Eva, we have limited resources to detect outbreaks. If we focus solely on
high-risk populations, we may miss developments in other populations that make them
high-risk. However, we must also avoid being too general in the surveillance of outbreaks
because testing resources will not be effectively allocated where they are needed most.
So we must design algorithms to account for these challenges, and reinforcement learning
techniques, which are flexible in incorporating new knowledge of environments, are useful
in such situations.

4 Usage of Smartphones for Covid-19 Outbreaks

Traditional surveillance of outbreaks comes with many drawbacks when compared with the
surveillance capabilities offered by smartphones. In this section, we will learn about the
drawbacks and benefits associated with using smartphones to surveil outbreaks.

4.1 Traditional Surveillance vs Smartphone Apps

Traditionally, surveillance is conducted via clinical diagnoses of the disease in question. This
is a very slow process (on the order of weeks to get data and deploy a strategy to different
populations), and the slowness puts more people at risk as infected people mix with the rest
of the population. Reporting results via smartphone, on the other hand, is almost real-time
[2]. Furthermore, the location data they provide helps individuals make decisions according
the immediate environment around them. This is of particular benefit for surveillance in
regions that do not have adequate health care facilities to measure and prescribe different
actions to take.
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4.2 Participatory Surveillance

Participatory surveillance involves populations of individuals self-reporting their health data
relevant to the epidemic of interest. This is facilitated by prevalence of smartphones, a
method of surveillance that can match traditional methods but actually detect outbreaks
earlier given the lower latency between positive case, reporting, data gathering, and re-
sponse. There are several research groups associated with different universities developing
surveillance techniques like smartphone apps that allow clinical populations to report things
like vaccine efficacy and symptoms. However, one must keep in mind that this approach
likely leads to biased data as sick patients tend to participate more.

4.3 Population Level Tracking

One can utilize data from the public internet to monitor outbreaks. For example, social
media websites often display trends that can be utilized to predict outbreak behavior. Of-
ficial websites are also useful in real-time monitoring because they can be updated quickly.
However, when utilizing these indirect methods of outbreak surveillance, one runs the risk
not understanding the outbreak as quickly. Because inferring outbreak statistics is harder
in this regime, the disease may have spread for a while before an effective model can be
created.
Beyond tracking populations, an important component of containing outbreaks is commu-
nication with at-risk populations. Social media and official websites further help with this
due to the real-time communication that they allow and the localized information that can
be conveyed.

4.4 Individual Risk Assessment

Individuals can utilize data gathered across populations characterized by more detail to
make decisions about how to deal with an outbreak. Surveillance techniques that smart-
phones allow can help individuals identify risks among populations that resemble themselves
demographically. Using this information, there can be a greater use of nonpharmaceutical
preventative behaviors such as mask-wearing, volunteering for more testing, and social dis-
tancing.

4.5 Future Prospects

The ability to surveil outbreaks via smartphones offers exciting prospects for individuals in
the future to make decisions about managing their health during epidemics. Smartphones
open up the potential to inform individuals about their specific infection risk during an
epidemic. Individuals can also monitor infections in real-time in their communities. Models
can be developed at the level of these communities in order forecast future risk for an
individual.
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