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1 Lecture Summary

This lecture covers the use of Statistical, ML and AI models for Epidemiological Forecasting.
From relatively simple models (regression) to complex models (recurrent neural networks),
the lecture provides a foundation for understanding how machine learning is applied to
Epidemiological problems as well as provides examples of state of the art applications of
ML to specific problems.

2 Statistical, ML and AI Models for Forecasting

Statistical, ML and AI models use historical data to learn patterns that can be used to
predict different outcomes. In the application of this class, these models use prior epidemic
data for forecast peak times, peak intensities, reproduction numbers and more. In this
approach, one finds the best model, out of a selection of possible approaches, that performs
the best using the given historical data. Generally, these functions are trained by inputting
historical data into a model and comparing the generated output to the ground truth to
adjust model parameters and increase accuracy. A high-level representation of this is shown
below:

min

T∑
i=1

L(f(xi)− yi)

Where f(xi) is the prediction of the model given an input xi and yi is the ground truth.
Then we optimize parameters that minimize the loss function L. At the end of training,
a subset of the dataset that isn’t used for training is used to determine how effective the
model is.

Figure 1: ML Model Considerations



It is worth noting that ML models don’t try to model the mechanics of epidemics (unlike
mechanistic models). It is not recommended to try to use ML models to model the long
term transmission of diseases, as there is limited data and mechanistic models perform
better. Future lectures on hybrid models will detail how to combine these approaches.
That being said, ML approaches have the advantage of supporting a variety of training
data (including time series, text, and image data). One challenge with these models is that
epidemic data can be sparse or require data revisions (which can decrease model accuracy).
Additionally, these models are used to inform public health policy decisions so they must
be interpretable. For example, a model that forecasts cases might be used to implement
public health policies (like social distancing). So models that can be explained can make
justify public health actions. The figure above expands on factors that must be considered
when using ML models. In the following sections, we will explore different models.

2.1 Regression Models

Regression models assume a linear relationship between input features and results. These
inputs can be high-dimensional and multi-modal (including data from prior epidemic cases,
search trends, word occurrences in text, features from satellite images, and more). Due to
the temporal nature of epidemics (e.g. daily case counts) autoregressive models are popular.
In this approach, past values of epidemics are used to predict future values:

yt =

p∑
j=1

ϕjyt−j + ϕ0 + e

Where yt is the value being predicted, yt−j are the past values, e is error and ϕi are the
parameters to learn. In the next section, we will explore specific examples of auto-regressive
models.

2.1.1 ARGO

ARGO is one example of an AutoRegression model that uses Google Search Trend data of
common symptoms (e.g. coughing, fever, etc.) to predict flu cases. The approach of using
a linear regression model on flu search symptom trends was proposed in the Google Flu
Trends (GFT). ARGO differs from GFT by learning parameters for each symptom and also
using ILI data from the current season up to the current time iteration [7]. An overview of
this approach is summarized below:

yt = µy +

N∑
j=1

αjyt−j +

K∑
i=1

βiXi,t + e

Where the first summation learns parameters for the ILI data from the current season up
until the current time-step and the second summation learns parameters for each search
trend.

2.1.2 ARGO2

ARGO2 is an extension of ARGO that predicts regional and national influenza like illness
(ILI) rates. This applies the original ARGO methodology to predict ILI values for each
region using search trends and historical ILI data. Then, it uses a multi-variate gaussian
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to pool regional predictions to estimate national ILI rates. This approach models the
differences of epidemic spread in different regions to provide a more nuanced and accurate
national estimate. Because of this more incremental approach, this national ILI estimation
is more accurate.

2.1.3 Flu Forecasting based on Surrogate Data

The paper Flu Forecasting based on Surrogate Data emphasizes how data from various
sources can be aggregated using an autoregressive linear model [3]. In this paper, the au-
thor proposes using various data sources including weather data, search trends, restaurant
reservation information, twitter text data and current season ILI data for future ILI pre-
dictions. This multi-modal approach shows how the combination of many data sources can
result in more accurate methods (which is only possible using machine learning models).

Figure 2: Flu Forecasting

2.1.4 Ensemble of ML Models

The core idea of using an Ensemble of ML models is to train multiple models using historical
data and combine their outputs to get a better result. The outputs of each model can be
combined using different approaches including Matrix Factorization Based Regression, Near-
est Neighbor Based Regression and Matrix Factorization Regression using Nearest Neighbor
embedding. The result of the combination of models is a meta-model that overcomes the
limitation of a single model but using the results of multiple models.
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2.2 Language Models

There is a large source of online text data that can be used to drive epidemiology models.
One simple example of this is search query data. Many models analyze how searches for
common disease symptoms can indicate an increase in disease cases. This is a relatively
simple example of text based data. More complex examples might include extracting rele-
vant information from social media posts (like Twitter tweets). Regardless of how the text
data is collected and analyzed, the results can be used as inputs into auto-regressive models
to improve predictions. This extra dimension can improve model accuracy when data is
limited (e.g. when disease testing isn’t possible or expensive).

2.2.1 Using Tweets to Forecast the H1N1 Pandemic.

This research used words in tweets to infer the epidemiological states of Twitter users via
a HFSTM temporal model. Using this information, the researchers were able to create a
mechanistic model that accurately models how people get sick and recover from a sickness
sometimes better than Google Flu Trends approaches. This indicates that some of the
limitations of search trends can be overcame using a different method that is also text-
based [4].

2.2.2 Cross Lingual Word Embeddings For Transfer Learning.

In the field of natural language processing, a embedding for a word or phrase is a multi-
dimensional vector. Similar words will have embeddings that are relatively similar to ea-
chother (small distance in the embedded vector space) whereas different words will have
different embedings (large distance in embedded the vector space). In this paper, the author
uses word embeddings to find search queries that are related to disease symptoms. Using
this temporal search trend data, the researchers trained a model for predicting ILI rates for
a country with ILI ground-truth data available. Then, the researchers showed that using
embeddings for search trends in different languages could be used by the same model to
predict ILI rates. This approach was used to demonstrate how models trained in one region
with ILI data can be applied to other countries with search trends in different languages
and no ILI data [8].

Figure 3: Search Trend Language Transfer

2.3 Vision Models

There is some recent work that use satellite images of locations that are sensitive to disease
outbreak (e.g hospital parking lots) to measure the severity of an outbreak of a disease.
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2.3.1 Satellite images to detect Flu outbreaks

In this paper, researchers used satellite images of parking lots near hospitals to estimate
the number of vehicles. Using this information, and the hospital occupancy rates as truth
data, the researchers trained a linear regression model to estimate weekly ILI rates [2].
Other approaches combine parking lot data with search trend and ILI counts as additional
features as well.

2.4 Neural Models

Neural Models (Deep Learning) capture non-linear patterns in high dimensional data with
minor assumptions. They are generally flexible and generalize to complex domains, but
require large amounts of data. A current deep-learning approach to epidemiology problems
is to use sequential models. These models use sequential data (e.g. time series, or words
in a sentence) where the output of the last step is used as the input to the current step.
This approach captures long-range patterns. Some popular examples of such models are
recurrent neural networks and transformers. A high-level overview of how recurrent neural
networks work is shown in the figure below.

Figure 4: Sequential Models

In a sequential model, each logical block contains multiple logical functions. One func-
tion learns the parameters used for the input of the block and another function learns the
parameters for the input of the prior block’s output. A different function learns the param-
eters for generating the block’s output and a final function learns the parameters that will
be used to create the input for the next sequential block. A more detailed overview of this
is shown in the figure below:
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Figure 5: Detailed overview of RNNs

As with all machine learning models, the model’s output is compared to the ground-
truth data of the given example to determine how the correctness of the model. This is
done using a loss function. Some common examples of loss functions are mean squared
error and cross-entropy loss. To optimize the model’s parameters, the derivative of the loss
of a given example is calculated. This derivative is known as the gradient which is then
used to update each parameter (depending on how much each parameter contributed to the
loss error). This is repeated until additional iterations don’t increase the model’s accuracy.
This optimization is known as gradient descent. An example of this is shown in the figure
below:

Figure 6: Overview of Gradient Descent
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One major issue with gradient descent in recurrent neural networks is the idea of ”van-
ishing gradients”. The main idea behind this problem is that the gradients of early parts of
long sequential inputs will become basically zero when the loss of the model is calculated.
This essentially means that the model doesn’t learn how to remember early inputs which
limits the patterns that RNN models can learn. This limitation motivated LSTMs, a vari-
ation of RNNs, that use ”gates” which decides which data in a sequence is important to
keep or okay to throw away. This allows the model to keep relevant early information when
necessary.

One final augmentation of Recurrent Neural Networks is the use of the Attention Mech-
anism. This allows models to pay attention to only parts of an input sequence that are most
relevant to predict the output of an input. Essentially, attention captures the relevance of
an RNN block’s state in determining the output. Inputs that don’t contribute to determin-
ing the output won’t have high attention which signals to the model to focus on the other
RNN blocks instead. The attention weights ai,j are calculated using the logic below:

ai,j = softmax(score(hdi−1, h
e
j)∀jϵe)

Where the score function captures the relevance of each encoder hidden state to the decoder
state:

score(hdi−1, h
e
j) = hdi−1 ∗ hej

A visual example of attention is shown in the figure below:

Figure 7: Attention Overview

Transformers are recurrent neural networks that use self-attention. Self-attention does
not depend on the output of the model (unlike normal attention) and only depends on the
input itself.

2.5 Training a model for Forecasting

When training a model for forecasting future targets, careful consideration must be taken
to partition the dataset. Given a time series X = x1, x2, ..., xt and a time series window
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of length L, we can splice the dataset to get the inputs for each time step. An example is
shown below:

input = [x1, ..., xL−1, xL] target = yL+k

input = [x2, ..., xL, xL+1] target = yL+1+k

...

input = [xt−L−k, ..., xt−1−k, xt−k] target = yt

The pseudocode for training a model for real-time forecasting is shown below:

Figure 8: Realtime Model Training Psuedocode

2.6 Neural Models (Continued)

The previous section details the application of general Neural Networks and Deep Learn-
ing models to epidemic forecasting. This section elaborates some deep learning approaches
specific to Epidemiology. These models are designed to overcome the problem of data spar-
sity, improve inductive bias and interpretability, and incorporate transfer learning and the
spatiotemporal nature of disease spread.

2.6.1 EpiDeep

EpiDeep [1] is one such approach that leverages the similarity with past data. This is par-
ticularly useful for seasonal diseases (eg. Flu). The model uses the historical data of the
past seasons and the partially observed data for the current season to predict the future in-
cidence, the peak time, the peak intensity and the onset. Leveraging the similarity between
the current season and the past seasons is non-trivial because the current season is only
observed till week t while the historical seasons are fully observed. EpiDeep overcomes this
challenge by using two different clustering steps, Query Length Data Clustering and Full
Length Data clustering. The first step captures the similarity between the current season
and the past seasons only up to time t. The observed part of the current season is termed
as the ’query’, while the truncated parts of the past seasons till week t are referred to as
query length historical data. Query Length Data Clustering is performed using Improved
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Figure 9: Overview of the EpiDeep Architecture

Deep Embedded clustering (IDEC) which is an auto-encoder which minimizes clustering
loss. The next step involves capturing the similarities between the complete length of the
historical seasons without the current season. This is done using Full Length Data clus-
tering. A mapping function uses the embeddings from both the steps to convert the query
length embedding of the current season to represent a complete season. The output of the
mapping function is fed to a Decoder along with the encoded input for the current season.
The role of the Decoder is to make the required predictions. The high level architecture of
the EpiDeep model is given in Fig. 9.
The Input Encoder is an LSTM network that uses an attention mechanism approach to

assign different weights to parts of the data. This reduces reliance on the latest data. How-
ever, this encoding suffers from data sparsity and does not generalize well. To overcome
these issues, the encoded data is combined with the similarity embedding from the mapping
function as explained above.
The Decoder is a feed-forward network which exploits different architectures for different
prediction tasks. The Decoder uses the encoded input h̄j , and the embedding zTc to per-
form the predictive tasks. The summary of the different architectures is given below. The
EpiDeep model outperformed the baselines by up to 40% for the US National region as well
as for other HHS regions.
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2.6.2 Using Multiple Clustering Methods

This approach was popular during the early days of COVID-19, when data for different
regions was not abundantly available. The technique involves training a single model for a
set of regions. The regions are clustered based on their geographical similarity. Ensemble
approaches are used to combine multiple models having different clustering strategies.

2.6.3 Inter-series attention

The past time-series of all the regions are segmented and passed through Convolutional
layers to convert them to fixed embeddings. Attention-based similarity is used between the
input for the current season and the embeddings of the past seasons to make predictions.

2.6.4 Transfer knowledge representations

This method is used to transfer models from a data-rich domain to a data-scarce domain.
Transfer learning can also reduce the computational costs. An example includes transferring
a historical model to a novel scenario. For instance, many pre-COVID flu models were
transferred to analyze COVID-contaminated flu counts. However, the historical flu models
were unable to adapt to the new trends and dynamics induced by COVID-19.
CALI-Net is an example where a historical flu model was fine-tuned and adapted to the
new COVID-related signals like testing data, mobility information, exposure details, crowd-
sourced and social media surveys. The historical flu model was combined with the COVID-
ILI model which captured these signals. The historical model was steered using the Hint
Loss and the Attentive imitation loss to adapt it to the new trends.

2.6.5 Incorporate Spatial Structure

When monitoring disease, pathogens will propagate to adjacent regions in a graph repre-
sentation. If we use a spatial graph as a representation, and connect nearby nodes, we can
track the spread of pathogens. This can be tackled in a few ways.

First of all, by combining CNNs and RNNs, it is possible to model the entire situation.
CNNs are able to capture the regional proximity, while RNNs are able to model temporal
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dynamics. With residual connections, there is much better generalization to unknown
scenarios.

Another possibility is using ColaGNN. This is a graph neural network that also maintains
spatial structure. It uses dilated convolution for temporal modeling, so it is able to keep
track of both the sptial and temporal aspects of the problem. ColaGNN is also found to be
improve accuracy in making long term predictions.

A third possibility for the issue is to use Transfer Learning with Graph Neural Networks.
One can construct a graph using movement data across the regions of a country to generate
a reasonably accurate graph of the situation. From there, GNN (MPNN) and LSTM can be
combined to monitor the spatial and temporal aspects respectively of the question. Meta-
Learning can be then used to train over different regions, which will help improve accuracy
for regions with less data.
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2.7 Density Estimation

With a Density Estimation Model, the goal is to directly model the forecast distribution.
In other words, when given X and Y , we want to be able to predict future probabilities
from this data. This generally works, as the model is able to focus on point-predictions.
Additionally, the model is probabilistic, and thus can do well at conveying uncertainty and
the likelihood of different outcomes.

There are a few types of density estimation functions. These include parametric, non-
parametric, and neural probabilistic models. Parametric density estimation models have
the parameters of distribution result from a function of the features. Non-parametric ones
take a function of training datapoints and use their similarity. Finally, neural probabilistic
models use deep learning to find complex, hard to notice patterns to improve their results.

2.7.1 Empirical Bayes

Empirical Bayes is a parametric density estimation function. It uses a probabilistic distri-
bution to model the current season’s epidemic curve. The parameters found are the peak
height and week, the scaling factor of the curve, as well as the shape, which can be sim-
ilar to past sequences. Using Bayesian Inference, the result for the current season can be
optimized for accuracy.

2.7.2 Delta Density

Delta Density is a non-parametric density estimation function. It uses kernel density esti-
mation to find similarities with historical seasons. It was rather successful, and was one of
the top models in the Flusight 2017 challenge.

2.7.3 Gaussian Process

Gaussian Process is a non-parametric density estimation function. It is run on the data
from previous seasons, and also shows a relatively accurate confidence interval and log score
over past models.
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However, most statistical methods can’t use relatively complex patterns that might exist,
but are harder to detect with just basic statistics. Thus, when there are new conditions,
they can’t be expected to produce reliable forecasts on uncertainty.

2.7.4 EpiFNP

EpiFNP is a neural non-parametric model. It improves on calibration for the forecasts
from previously mentioned models. It uses a non-parametric Gaussian Process to allow for
flexibility, while also looking at similarities with historical data.

A Gaussian Process is a probability distribution over all possible functions that can fit
a set of points. Parametric approaches will put knowledge into a set of parameters, while
non-parametric approaches like GP will take the entire training data into account every
time a prediction is made. To build predictive distributions, it is important to combine the
uncertainty from all of the different areas, including the current sequence, comparisons to
historical data, as well as the uncertainty of historical data.

The results for EpiFNP are as follows:
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It can be very challenging to use multi-view forecasting. This is because of the large
number of possible inputs and variations between inputs. It is hard to capture the in-
formation and uncertainty from a number of different data sources, and to also integrate
the beliefs from all of these sources. In particular, factoring in conflicting beliefs, data
redundancy, variations in noise are some of the most challenging problems with multi-view
forecasts.

The goal is thus to derive the importance of each view automatically based off the data.
If we are able to determine this, we can combine the belief from each view with the weighted
aggregation of their stochastic embeddings, which will result in a powerful overall summary.
Using a latent encoder, we are able to capture information and uncertainty from each of
the different views and sources. By combining them with a neural network, we can solve
the issue of context specific dynamic view selection.

2.7.5 CaMuL

The CaMuL model had only an 18-30% accuracy with recards to Covid-19 and flu prediction
tasks when scored with CRPS.

2.7.6 Pros/Cons List

Regarding the pros and cons of statistical models, we can summarize them as follows.
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Statistical models can use a large variety of types of data directly. This includes high-
dimensional data, data that might be indirectly related, and non domain-specific data
regarding the dynamics of an epidemic. They are known to be excellent in multiple areas,
including short-term forecasting and modern forecasting initiatives and challenges.

However, statistical models are unaware of epidemic spread mechanisms, and thus have
poor long-term performance. They are also unable to evaluate potential new scenarios,
and are poorly adapted to predict counterfactual scenarios. They also need to be well
monitored and fine-tuned if designed for real world development, as they tend to decrease
in performance over time with the data.
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