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1 A two paragraph summary of the lecture

In epidemiology, we create models to forecast what we think will happen with an infectious
disease in the short-term and long-term given data that is sometimes limited and noisy.
We ask a series of questions about the purpose, underlying assumptions, uncertainty, and
generalizability of these models and what data is being used in order to create better and
more useful models. These models come with properties that conflict and trade off with one
another including accuracy, transparency, and flexibilty. One model of note is Bernoulli’s
Smallpox Model which describes the dynamics of a population that contains members who
are susceptible and immune to a disease and how this changes as portions of that population
are immunized through variolation. This model shows how measures such as immunization
can lead to drastically larger life expectancies.

Another important model is SIR and the related family of ODE models that model the
dynamics of a population that contains members who are susceptible to, infected with, and
recovered from an infectious disease (as well as exposed but not infectious in the case of
SEIR). An implicit solution of these models reveals an important term called R0 whose
value allows us to understand whether an epidemic will die out or become large. Many
decisions can be made to change the value of R0.Overall, ODE models are considered to be
the workhorse of epidemiology as they are empirically-backed, easy to extend, and good for
long-term forecasting. However, some of their limitations lie in their reliance on simplifying
assumptions that may not reflect reality.

2 Why Models?

“Essentially, all models are wrong, but some are useful” - George E. P. Box

2.1 Limited and Noisy Data

We don’t know how many people are actually infected or not at any given time, and there is
always only have fraction of people who are effected that we can surveil. Thus, we sometimes
need to rely on approximations and simplifying assumptions.

2.2 Forecasting and What-If Scenarios

What happens if certain measures are implemented, and how will these effect transmission?
We need a causal model to figure this out. In general, we need a model of how the world
works to answer the questions we have. This will help us guide our decision-making.



3 5 Questions to Ask about Model Results

3.1 What is the purpose and time frame of the model?

Some questions have models that need short-term forecasting and some need models with
long-term forecasting. That’s why it’s important to ask why you are creating this model.
And what is the ultimate goal?

3.2 What are the basic model assumptions?

This requires some work to understand things like what are the parameters, contact pat-
terns, etc. that allow the model to exist as is without having to consider more complexities.

3.3 How is uncertainty being displayed?

This is very important because data is noisy, you have assumptions, and the situation is
volatile. If there is no certainty at the end of the day, there’s nothing to gain.

You have to ask questions like whether confidence intervals calibrated properly and
what parameters are being varied. These are tough asks, and lots of models don’t get them
answered fully.

3.4 If the model is fitted to data, what data is being used?

How do we understand which data points are most useful? We need to understand the
context of the model and ensure our data is appropriate.

3.5 Is the model generalizable or does it just reflect a particular context?

A model might be built for Atlanta, and might be less useful somehere else. We need to
understand the underlying assumptions made for things like age, demographics, mobility
patterns, etc. and see if we can generalize the model to other situations accordingly.

4 Conflicting Properties

4.1 Accuracy

If a model is too detailed, it is hard to generalize it. Accuracy is important in general,
but what metrics are most important (precision, recall, etc.)? We also have to consider the
differences between short-term and long-term accuracy.

4.2 Transparency

Can we understand why the model is making certain predictions or decisions? This also
suffers if you make the model too detailed or have too many parameters. It is important to
ensure the model does not become a black box with no way of knowing why it makes the
predictions that it makes.
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4.3 Flexibility

If a model is too simple, it won’t be flexible. This is to say that if a model has too little
parameters, it can’t produce meaningful results, especially when there is a variance in the
situation.

4.4 Overall

These are properties we will focus on as we go over generative, theory-based models. We
will talk about ODE-based, Agent-based, Multiscale/Metapopulation-based, and Network-
based models. Later we will also discuss statistical models.

5 Bernoulli’s Smallpox Model

5.1 Context

The idea of variolation was well known at the time. Some people have mild cases, so we take
samples from them and use them to inoculate target patients to give them mild cases as well
as immunity. This was common in Asia, England, US, but not France. Bernoulli wanted to
compare the benefit of variolation vs immediate risk of dying. How do you quantify this?

5.2 Setup

The population is divided into

• Susceptible (not yet infected)

• Immune (immunized for life after one infection)

Assume those infected with smallpox either

• Die instantaneously with probability a

• Get life immunity

This is a rough modeling of what happens in real life.

5.3 Model

I (t) = x (t) + z (t) (1)

• I(t) = probability of survival till age t

• x(t) = prob of never getting infected

• z (t) = prob of immunity

Note that x(t) is hard to determine because contact patterns are different. This is
more true for homogenous populations, so that will be part of the simplifying assumptions.
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Assume the probability of anyone in x(t) getting smallpox is a constant b. We have the
following:

dx

dt
= −bx(t) (2)

dw

dt
= (1− a)bx(t) (3)

x (t) =
w (t)

(1− a) ebt + a
(4)

a and b can be roughly inferred from observational data

5.4 Results

If all children were variolated at birth

• Population will be 14% larger at age 26

• Life expectancy increases from 26.58 to 29.75

But this doesn’t include the risk of variolation itself. Assume 2% die from variolation.
This reduces life expectancy gain by 1 month, so still net almost 3 year increase in life
expectancy. We can extend analysis to secondary spread infections from variolation, but
this doesn’t really change the bottom line that you can get almost 3 years additional life
expectancy with variolation from birth. We have to make these sorts of complex tradeoff
judgements, and models like this help us do that.

Note that there are lots of simplifying assumptions that ignore demographics or condi-
tions of people, but this is still useful for providing general guidance.

In figure 1, we can vizualize life expectancy increase due to immunization:

6 ODE Models: SIR

6.1 Setup

This is one of the most simple models. Setup is as follows:

• Susceptible: healthy, but can get infected

• Infected: can infect others through contact

• Recovered: can’t infect others (dead or no longer at risk of being infectious)

Assumptions:

• Perfect mixing: Any infected person can infect any susceptible person (meaning all
people come into contact with each other)

• Total population constant

• Deterministic
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Figure 1: The above shows how average life expectancies for immunized and non-immunized
portions of the population increase as a larger proportion gets immunizied. Notice how at
some point (80% immunized) the non-immunized portion has the same life expectancy as
the immunized portion. This shows when herd immunity has been achieved.

6.2 Model

dS

dt
= −βSI (5)

• The above represents number of susceptible who are getting infected

• The change in number of susceptible people is inverse to the change in number of
people getting infected as expected

dI

dt
= βSI − δI (6)

• BSI is number of new infections

• δI is number of infected that are cured or removed

• SI is number of times susceptible and infectious meet

The above equation represents the rate of change of infectious people. Notice that if there
are I infected people, they are cured or getting removed at rate δ, so we have:

dR

dt
= δI (7)
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6.3 Force of Infection

F = λS (8)

where F is the Force of Infection and λ is number of infected people.

Kinds of transmission:

• Mass-action transmission λ = βI

• Density-dependent λ = βI/N

– As density increases so does transmission

– Depends on density of infected people rather than total number of infected people

– Consider β′ = β/N to update SIR

6.4 Solving SIR

There is no closed form solution, but numerical integration produces something like figure 2
As an example of applying SIR to real cases, see figure 3

Figure 2: As seen above, SIR doesn’t naturally model multiple waves of a pandemic
without external pushing. View a more interactive example at the following link:
http://epirecip.es/epicookbook/chapters/sir/python
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Figure 3: The goal is to find β and δ where I fits the curve above

6.5 SIS Model

Assume perfect mixing

dS

dt
= −βSI + δI (9)

dI

dt
= βSI − δI (10)

This results in an endemic state where there is an equilibrium with infected still existing.
In SIR, infected eventually drops to 0, making SIS more useful for endemic states and SIR
more useful for modeling diseases that burn through the population. Possible extensions of
these models include:

• Birth/death rates

• Variable contact rates

• Age-structure models

• Make things stochastic

• Multiple viruses/diseases
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6.6 SIR with Birth and Death

µ : birth/deathrate (11)

dS

dt
= −BIS + µ (I +R) (12)

dI

dt
= BIS − γI − µI (13)

dR

dt
= γI − µR (14)

6.7 General Scheme of SIR

See figure 4 for an overview of the general scheme of SIR extensions

Figure 4: Nonlinearity introduces complexity and more interesting model behaviors

6.8 SEIR: SIR with Exposed State

People move from S to E to I. E is exposed state (Exposed to infections but not showing
symptoms/infectious yet). This is 1-4 days for Flu and 2-14 for COVID.

dS

dt
= −βIS (15)

dE

dt
= βIS − σE (16)

dI

dt
= σE − γI (17)

dR

dt
= γI (18)

You can add even more detail by baking complexities into the constants.
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6.9 SIR: Implicit Solution and R0

S (t) = S (0) e−R0(R(t)−R(0)) (19)

Rinf = 1− S (0) e−R0(Rinf−R(0)) (20)

R0 = Nβ/δ (21)

R0 is the reproductive number. There is a threshold phenomenon with this constant.
Observe that

dI

dt
= I(βS − δ) (22)

This implies that:

• The rate of change of infected is less than 0 if S (0) < δ
β

• This means if S (0) < δ
β = 1

R0
, the epidemic will die out

• We will have a large epidemic if and only if R0 > 1

Because ODEs are network based models where everyone is assumed to be in contact with
everyone else, it is especially important to pay attention to and estimate R0. Many deci-
sions can be made based on changing the value of R0. Immunization, for example, seeks to
reduce S(0) to below 1

R0
.

Figure 5 shows how disease dynamics change as R0 changes
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Figure 5: Note that R0 is not easy to estimate and may be miscalculated. SARS, for
example, was estimated in hospitals and assumed perfect mixing which caused R0 to be
estimated to be much higher than reality suggested.

6.10 Pros and Cons of ODE models

ODE models are considered to be the workhorse of epidemiology because

• There have been many success stories over 100 years

• They are easy to extend and build upon

• We have good numerical solvers

• They sometimes can be solved analytically

• Are good for long term forecasting

However, a few of their limitations include

• Have too many simplifying assumptions to perform short-term forecasting

• Don’t properly quantify interactions between people

• Are difficult to refine

• Don’t account for how humans adapt and change their behavior

• Don’t provide the information neeeded to properly design implementable interventions
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