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1 Summary

As data collection will never be a perfect process, we continue to discuss ways that missing
data can be inferred from what data we do have. In the first half of the class, we wrapped
up the Inference I powerpoint by discussing the GT Wifi Mobility Project that was used
during the pandemic to track spread. Then we discussed several possible ways to calibrate
agent-based models in general.

Then we moved onto the Inference II powerpoint and discussed two main topic: how to
find Patient Zero and how to infer missing infections. In the former, several methods are
given to inituitively track down the center of an infection graph. Then in the latter, we
discussed 4 methods in detail for finding the infections that have slipped through the crack.
Using these methods in tandem, we can observe a more complete view of an epidemiological
history and better understand how to contain current and future epidemics.

2 Lecture 8 Wrapup

We can consider the GT Wifi Mobility Study. Localized wifi connection points around
campus were used to build mobility networks, and those were used with time series of GT
postive test rates and Fulton county infection case rates to develop a model.

2.1 Parameters

They constructed a dynamic network using SEIR progression. Recall that this progression
includes a noninfectious Exposed phase with its own probability of transition to Infected.
As an agent-based model, the researchers used the mobility data to predict how people and
the disease would move.

Parameters to estimate included, number of initial asymptotic cases, transmission proba-
bility 3, and a scaling factor to determine spread due to cases outside of the Wifi network.
Maximum Likelihood Estimation cannot be done since the likelihood is intractable.

To calibrate, first set up the objective function:
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where S = newasymptomaticinweekW , R =surveillance testing aggregated result, and
a key assumption is that each population gets tested at the same rate.
Then to optimize, find the arguments that minimize the function:

argmin f((lo, o, p))



Lastly, to train and validate the set, they trained the model on the first five weeks of

data and validated using the remaining weeks.
Generally, this task can also be done through attempting different calibration time
frames (use weeks 0-4 vs weeks 5-9) or through evaluating the model’s effectiveness on

other, similar datasets.
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2.2 ABM Calibration

The Nelder Mead method of minimization is gradient-free, so gradient descent isn’t used.
Rather, 40 different parameter sets sampled from within 40% of the minimum root mean
square error are taken and their means and standard deviations are calculated.

In general, it is computationally difficult to calibrate agent-based models. Other meth-

ods include

e Grid Search: Search ranges for each parameter and find where in the n-dimensional
space RMSE is minimized. The multiple points are sampled evenly across the space.

e ODE-based: Observe time series data through a simple Ordinary Differential Equa-
tion model and transfer found parameters to ABM; computationally fast
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e Beam search particle filtering: Used to explore search space while avoiding local op-
tima traps. Then we use particle filtering for the process of data assimilation where
we sample and resample particles based on prior knowledge and learned weights. It
is computationally slow. Can be used in models without gradients, where gradient

descent isn’t possible.
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e Digital Source Seeding: Use another available database to seed the agent-based model.
An example would be learning the initial conditions of the metapopulation model
GLEAM by learning from tweets that are categorized by location.

e End-to-end learning with ODE/ABMs: As a more recent concept, they use differen-
tiable modules that take advantage of gradient-based optimization. Setup involves
continually adding modules between two polar opposites that are differentiable at ei-

ther end: i.e. a cat vs dog prediction.



Trainable Computational Graph
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e Physics Informed Neural Networks: They take time as input and match ODE gradi-
ents to learn the latent dynamics before outputting the SEIR fractions at each time
step. They can be difficult to teach, even with a lot of data. They also require epi-
demiological knowledge such as time and SEIR transition probabilities to be trained
and later discover the parameters. Lastly, they can be quite abstract, since they can
be left with new data and figure out how to incorporate it.
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Bayesian calibration, iterative methods, rejection ABC, Markov




Chain Monte Carlo

Other methods: bayesian calibration, iterative methods, rejection ABC, Markov chain
Monte Carlo

3 Finding Patient Zero

Data collection is not perfect and will miss some cases. In some real-world disease analyses,
such as with Tuberculosis (CDC, 2007) or AIDS, the source was able to be predicted through
reconstructing the likely transmission path to the first case, Patient Zero.

Humans can pick up on trends, such as figuring out from past experience where the
likely origin of these two clusters are:
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The best source is the one that maximizes the data likelihood in the SI model.

0 = argmazP(Gy|vx = v)

where G is the infected subgraph and v is an observed node in G
For any given infection subgraph, there can be a multitude of starting positions. This
means that calculating the probability of a given cascade is stochastic and non-trivial.

3.1 Rumor Centrality

This process sums up the likelihood of all ripples across different time snapshots of a network.

P(Gpylvx =v) = Z R;
allripples
These are difficult to compute: P-hard! However, probabilities of different cascades can
be computed efficiently for k-regular trees assuming it’s an SI model.
To extend for general graphs, extract a tree from the graph such as a Minimum spanning
tree that covers all nodes in the graph or use breadth-first search to generate a subgraph.



3.2 Finding Number and Identity of Sources

When infected nodes are surrounded by a lot of uninfected nodes, this reduces the chance
that the former is the originator. This is called exoneration. Since the original infected has
the longest time frame to infect neighbors, one that still has uninfected neighbors is less
likely to be the first.

In the below example, Y is much less likely to be the source due to its uninfected edges.
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(b) A chain-star

We arrive at a two part solution: use minimum description length for various numbers of
seeds, and for that seed number, calculate exoneration as the sum of centrality and penalty.
The first part, MDL uses bit compression to figure out which source is the simplest, and
therefore according to Occam’s Razor, the most likely explanation of the spread. The
running time of this method is linear and can be completed in NetSleuth. Seedset Scoring:
L(S) = Ly(]S]) + log(‘]g‘) where —S— is the encoding integer and the log term is the
number of possible —S—-sized sets. Big O Runtime: O(k x (Ey + Er + V1))

The method to optimize the score is first we identify the high-quality node set given k,
and then given the nodes we must optimize the ripple R. The ripple cost of each additional

one added is:
T

L(R|S) = Ln(T) + > L(F")
t
where Ly (T) represents how long a ripple is and the summed term describes how the
"frontier” advances.
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Overall, the total MDL cost is
L(G1,S,R) = L(S) + L(R|S)
Some extensions that have been published include:
e Different models
e Temporal networks
e More rigorous results on specific graphs
e Noisy input
e Using graph neural networks

A final method to detect patient zero is using graph neural networks. We can use a
deep generative model to estimate the distribution of diffusion sources. We can use the
graph neural networks to approximate the forward direction of the epidemic and discover
the diffusion probabilities. It can both learn the model parameters by iterating forward and
guess the source through iterating in reverse.

3.3 Reconstructing the COVID-19 Pandemic Epicenter

How was Hunan Seafood Wholesale Market in Wuhan guessed as COVID ground zero?
Researchers used spatial relative risk analysis done by compiling data from many sources:
Weibo cases, CCDC sequencing PCR report, population density data, animal sales records,
and mobility data.



Investigators were able to pinpoint the source to vendors selling live mammals.
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4 Finding Missing Infections

A large number of COVID-19 infections went and still are continuing to go unreported.
When there was only 23 reported infections in 5 major American cities in March 1st, there
may have been greater than 28,000 in actuality.

The difficulty in estimating the unreported infections allowed it to spread more quickly
in the US and worldwide, and when severity is slowed so too is the remedial action that
follows.

To identify the true reported rate, consider a serological methodology. This is consid-
ered the gold standard for disease reporting, It tests if the person’s body has the required
antibodies for the disease, indicating that they contracted the disease. Hence, it can give
a very accurate picture of the people who contracted the infection. However, this is an
expensive method and is also a delayed process and we might not obtain the information
for analysis in time.

4.1 Approach 1: Real-World Calibration

Calibrate an epidemiological model using reported data and infer missing infections. Then
fit I, to reported infections to estimate the unknown parameters such as the rate of reporting
«. However, they suffer greatly from ad-hoc modeling assumptions. This means altering «



slightly can drastically alter forecasts.
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4.2 Approach 2: MDLInfer

In this approach the number of reported infections is known: D,eported. If we are then
given the correct count of total infections D, the model can be calibrated with both to find
a better fit of D,eported. Put simply, we want to find the Dx that fits the D,eported curve
the best.

* Problem formulation:

D* = arggxin L(Dyeported|D) + L(D)

* Here, L(-) denotes the number of bits for encoding.
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MDLInfer tends to better match the total infected curve than other approaches.



4.3 Approach 3: Steiner Trees

This is a datamining method that learns the tree with minimum weight in the graph that
connects all of the given terminals. In our case, the terminals would be known cases and
the minimum tree built to include each of those would implicate many other nodes that
may be the unreported infections. These are determined with dynamic solvers.

The Steiner tree method can be extended to temporal networks by converting it to one
static graph. It can also be used to learn node weights from features, thus allowing us to
estimate high-danger patients, for instance.

» Convert the temporal networks to one static graph
[F{ozenshtein et al. SIGKDD 201 6] Yellow are observed infections

* Let (i, t) represent node i at time t. Blue is the estimated Steiner Tree and
, , . found unreported infections

« Connect (i, t) to (i, t + 1) unconditionally.

« Connect (i, t) to (j, t) if there is one edge from i to j on day t.

4.4 Approach 4: Netfill

Steps
1. Find starting points given missing nodes
2. Find missing nodes given starting points
3. Iterate above steps until convergence

The two ideas directly feed into one another and can be done in NetSleuth.
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4.5 Other Approaches

Researchers can also consider graphical approaches or using contact tracing. Privacy must
be maintained in the latter case.
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