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1 Summary of Lecture Content

This lecture covers foundational material on the use of models in epidemiology.

The lecture began by covering important concepts regarding models in general, such as
how to effectively review models and conflicting properties that arise, so that their applica-
tions and limitations in an epidemiological setting can be better understood.

After this overview, we moved into discussing specific models used in epidemiology, begin-
ning with Bernoulli’s smallpox model. This model is a simple differential equation model
that Bernoulli implemented to weigh the risks and benefits of variolation for smallpox.
This model introduces how models are used in epidemiology in a simplistic yet effective
way. Next, we began discussing modern epidemiology models.

The most fundamental model used in epidemiology today is the SIR model, which was
explained in depth. From this model, we then discussed several extensions and variations.
These models are all considered compartmental models and can be modified extensively to
fit the particular parameters of the disease and situation being studied.

This lecture concluded with a discussion of the Threshold Phenomenon, which is an im-
portant concept in understanding models and how infectious diseases spread throughout a
population.

2 Models: General Information and Implications

Models, in an epidemiological setting, can be useful for several purposes including abstract-
ing meaning from noisy or limited data, predicting future events, and guiding decision
making and intervention. When reviewing model results or designing a model, there are
several important questions to keep in mind in order to determine what exactly the model
is telling [4]. These include the following:

The purpose or time-frame of the model

The modeling assumptions used
e How uncertainty is computed

What data the model is fit to

If the model is general or designed for a specific situation



All of these questions are especially important when considering epidemiology models, as
they are being used in real time to make policy decisions. Furthermore, it is also important
to consider the conflicting properties of models, like accuracy, transparency, and flexibility,
when applying them to real-life situations in order to avoid mismatches and erroneous ap-
plications of a model.

The focus for the lecture today is mechanistic models.

3 Bernoulli’s Smallpox model

Daniel Bernoulli’s smallpox model is one of the oldest cases of a mechanistic model. He
was particularly interested in smallpox because it was one of the leading causes of death at
the time and variolation, although well known, was not common in France, so he wanted
to compare the benefits of variolation versus the immediate risk of dying.

His model began by dividing the population into a groups of those who are susceptible
and those who have immunity under the assumption that an infection either causes death
or life-long immunity. Resulting in the simple equation:

1(t) = 2(t) + 2(t) (1)

Where t is any age group, [(t) is the probability of survival at age ¢, z(t) is the probability
of never getting infected, and z(t) is the probability of obtaining immunity after infection.
It is also assumed, for simplification purposes, that the probability of someone within z(%)
getting infected is a constant, b. From this, we can compose the following differential
equations and solution:

Z—f = —bx*z(t) (2)
dw
gz(l—a)*b*a}(t) (3)

To apply this solution, Bernulli looked at the data to estimate that parameters a and b were
both 0.125. These values were then plugged into the equation and allowed him to make
the conclusions that, while not considering the risk of variolation, if all children are vario-
lated at birth, the population will be 14% larger at age 26 and life expectancy will increase
3.17 years. Furthermore, with the inclusion of the risk of variolation, the life expectancy
gain would only be reduced by one month and secondary infection effects would be minimal.

Although the benefit of variolation appears to be clear, there is still a risk, such that
the state of the population as a whole will improve at the risk of the individual.



4 SIR ODE Model

4.1 Basic Description

The SIR model is one of the most simple models used in epidemiology today and is an
example of a compartmental model, which divides the population into different ” compart-
ments” that interact with each other. SIR, specifically, begins by having the population
divided into susceptible (.5), infected (I), and recovered (R) groups and assumes that any
infected person can infect any susceptible person, the total population remains constant,
and that it is deterministic. This model includes the parameters § and § which are rate of
infection and rate of cure, respectively. The model is as follows:

%§:551—a1 (5)
dR

ds

B st ™)

Equation 5 represents the rate of change in the number of infections by subtracting the
number of infected people who have been cured from the number of new infections, which is
obtained by determining the fraction of successful attacks from all attacks that occur. Equa-
tion 6 represents the change in the number of people entering the recovered compartment.
Finally, equation 7 computes the rate of change of people who are susceptible that become
infected. The sum of all of these equations results in zero, which matches the assumption
that the population remains constant.

4.2 Force of Infection

The force of infection is also helpful in understanding the kinds of transmission that can
occur in these models. The equation for force of infection, with the parameter A representing
the number of infected people, is:

F=2\S (8)

There are generally two types of transmission of infectious diseases. The first is mass action
transmission, A = (I, which simply shows that each newly infected person successfully
infects a particular number of other people. The other form in density-dependent transmis-
sion, A = BI/N. This transmission is similar to mass action but suggests that an increase
in density will cause an increase in the transmission.

4.3 SIR Solution

Solving the SIR model results in no closed form solution but the functions can be computed
numerically and graphed to understand the general shape of the curves, shown in Figure 1,
such that S(t) decreases as more people become infected and move out of the susceptible
group. Likewise, R(t) increases as every infected person eventually recovers, and, finally,
I(t) is unimodal, as it represents the total number of infections at any given time. It is also
important to note that it is not necessary for every susceptible person to become infected, so
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Figure 1: Numerical solution of SIR model [2]

there will remain a susceptible population as the graph approaches infinity. To investigate
how different starting parameters (A, 3, S, I, and R) can change the solution to the graph,
visit Epirecipes, which provides an interactive Python notebook designed specifically for

the SIR model [2].

5 Extensions and Variations of SIR

Compartmental models follow the basic scheme pictured in Figure 2. By using these com-
partments, a variety of different combinations and can also be extended to account for
different constraints such as birth and death rates, changing contact rates, making things
stochastic, multiple diseases, etc. The framework of these models is very extensive and
can be modified to fit many different complexities. The main driver is the .S compartment
moving to the I compartment, since it is an infectious disease and this movement models

the spread.
births| with births without
passiye itmmunity pasgive tmmunity

M transfer g horizontal E transfer I transfer R

from M | incidence from E from I

deciths de%ths de%ths deciths dec{ths

Figure 2: Compartment model scheme [3]

5.1 SIS Model (Susceptible and Infected Compartments)

The SIS model is a typical model used for endemics. It follows the same perfecting mixing
assumption as the SIR model but differs from the SIR model since the disease does not
die out, instead the infected and susceptible populations remain near constant after initial
introduction of the disease to the population. The model is as follows:


http://epirecip.es/epicookbook/chapters/sir/python

s

= —BSI+ 4l (9)
I
% = BSI — 61 (10)

The decrease in the susceptible population, represented in equation 9, is the same as in SIR,
but the group that is cured after infection is added back into the population since they do
not acquire immunity. The change in the infected population, equation 10, is simply the
opposite of the change in the susceptible population. Again, the sum of these equations
results in a total rate of change of zero, so the population is remaining constant, and there
is no closed form solution but you can do numerical computations to achieve the graph
shown in Figure 3.
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Figure 3: Numerical solution of SIS model [?]

5.2 SIR with Birth and Death Rates

In this model, the population is fixed but there are people dying, not due to disease, and
being born at rate u. In this example, the birth and death rates are assumed to be the
same but this is not necessary.

dsS
dl
dR

Equation 11 shows what makes it infectious, such that [ is infecting S with the addition of
people becoming susceptible due to birth. Equation 12 shows inflow from the S compart-
ment and outflow to the R compartment and some people that are just dying, and equation
13 simply shows the inflow to R.



5.3 SEIR Model (Susceptiable, Exposed, Infected, and Recovered Com-
partments)

This model includes the exposed state and is currently being used widely for COVID and
influenza. The exposed state includes those who have been exposed to the disease but
are not yet exhibiting symptoms or contagious. The length of the exposed state can vary
greatly and is currently a major issue in controlling COVID. The model is as follows:

P a1 (14)
W~ ps1 ok (15)
% —oE -l (16)

% 1 (17)

6 Threshold Phenomenon

The implicit solution for SIR can be found by setting up a system of equations that depend
on the value of Ry, which is known as the reproductive number. This represents the average
number of secondary cases caused by one individual.

_NB_ 8
546
The curing rate is §, so the average time for someone in I to go into R is %, and every time
you are in the I compartment, you are attacking others at the rate 5.

Ry (18)

To investigate the threshold phenomenon we need to rewrite the equation for %.
dl
EzﬁSl—éI:I(ﬁS—é) (19)

This implies that % will be less than zero if 85 is less than §, which means S(0) is less than

%. If % is less than zero, this means that the rate of change in infections per unit time is
negative, so the disease will die out.

If Ry is less than 1, then S(0) is less than % and the epidemic dies out. On the other
hand, the number of infections R, will only be large if Ry is greater than 1. Reducing the
number of susceptible people to below R%)’ you are able to reduce the epidemic. A high
Ry value will cause the epidemic to reach a higher peak number infection earlier in time
in comparison to a lower Ry value. This is the basic concept of “flattening the curve.” It
is also important to note that reducing Ry can not only change the peak, but it can also
change the area under the curve, or the total number of infections. The impact of these
variations in Ry can be seen in Figure 3.

The Ry value varies greatly across different diseases and plays a role in vaccinations and
understanding how diseases spread. However, the estimation of Ry takes time to determine
through accumulating data and can vary across different populations.
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Figure 4: Impact of Ry on the magnitude of an epidemic [!]
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