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1 Summary of Lecture Content

This lecture covered the dynamics of network-based epidemiological models.

We first discussed the dynamics of single-virus models in static networks and examined
the threshold at which the behavior of the virus propagation model changes from extinction
to invasion. Along with intuitive explanations on how the threshold is derived, we observed
its utility through experimental results on synthetic and actual graphs. We also looked at
an extension to dynamic graphs in which the topology changes over time.

In the later part of lecture, we studied synchronization of the SIRS model where the infec-
tive fraction shows periodic oscillations, an interesting phenomenon that occurs in complex
dynamical systems. Lastly, we discussed models with multiple viruses that compete under
mutual immunity or cooperate towards survival.

2 Dynamics of the Single-Virus Model on Static Graphs

2.1 Problem Statement

When a virus is introduced, there can be two distinct outcomes intuitively. A strong enough
virus will lead to an epidemic (the above phase), whereas a weak virus will be extinct after
a certain period (the below phase). This section tackles the following problem: Can we
mathematically distinguish the two phases? Can we find a condition under which the virus
will die out quickly regardless of initial infection condition?

Specifically, we consider the threshold phenomenon introduced in Lecture 3 within the con-
text of static graph-based models. Given a graph G and virus specifications such as attack
probability β and curing rate δ, we aim to find the condition for virus invasion/extinction.

A solution to this problem can be used to accelerate simulations, as we can avoid simu-
lating the spread of a virus if we already expect it to be extinct. We can also accurately
forecast the size of an epidemic, which allows development of effective precautionary mea-
sures such as immunization to control the spread.

2.2 Results

The solution is expected to depend on the topology of the graph as well as the parameters of
the virus propagation model (VPM). Note that the graph is itself a high dimensional object
with many different properties such as the average degree, maximum degree, graph diame-
ter, etc. The VPM also involves multiple parameters such as the attack/cure probabilities.
Therefore, we must determine which set of parameters have an effect in the threshold and
how are they arranged together mathematically to form the metric.



Exact analysis of this problem is difficult, and thus previous work have imposed different
assumptions to simplify the problem towards meaningful results. Wang et al. [12] assumed
independence among the events under the SIS model, and Ganesh et al. [2] relaxed the
problem setting to continuous time. Van Mieghem et al. [9] also studied the model under
a different independence assumption using large Markov chains.

In the case of the SIS model with attack probability β and cure probability δ, the number of
infectious individuals approaches zero as time goes to infinity. The theorem due to Ganesh
et al. [2] below provides an upper bound on the expectation of the time of extinction.

Theorem 1. If ρ(A) < δ/β, the expected time of extinction τ satisfies the following.

E(τ) ≤ log(n) + 1

1− βρ(A)
(1)

Here ρ(A) denotes the spectral radius or the largest-magnitude eigenvalue of the adjacency
matrix A. This result shows that if ρ(A) is small enough, the expected time for the virus
to die out is upper-bounded by O(log(n)).

Generalizing this result to virus propagation models other than the SIS model, the main
claim of Prakash et al. [7] states the following under the independence assumption of events:

Theorem 2. Given any arbitrary graph with adjacency matrix A and any virus propagation
model (VPM) satisfying general assumptions, the virus dies out if

s < 1 (2)

where the effective strength s is defined as

s = λ · CV PM (3)

λ denotes the largest eigenvalue of A, and CV PM is a model-specific constant determined
by the virus propagation model. s = 1 is referred to as the threshold or the tipping-point.

Table 1 shows a list of effective strengths for different virus propagation models. The V state
refers to the Vigilant state, which would correspond to individuals practicing mask-wearing
and social distancing in the case of COVID-19. For all models, notice that the topology of
the graph only plays a role in the threshold through λ.

Models Effective Strength (s) Threshold (tipping-point)

SIS, SIR, SIRS, SEIR s = λ ·
(
β

δ

)
SIV, SEIV s = λ ·

(
βγ

δ(γ + θ)

)
s = 1

SI1I2V1V2 (HIV) s = λ ·
(
β1ν2 + β2ε

ν2(ε+ ν1)

)

Table 1: Effective strengths and thresholds for different VPMs. [7]
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Figure 1: λ for graphs of varying topologies. The arrow going towards the right indicates
increasing connectivity of graphs, and below the arrow are λ values for N = 1000. [7]

2.3 Intuition

In the realm of linear algebra, λ is defined as the root with the largest magnitude of the
characteristic polynomial of adjacency matrix A, or det(A − xI) where I is the identity
matrix.
A rather more intuitive interpretation of λ is to regard it as an aggregated measure of the
connectivity of the graph. This comes from these observations:

• The number of paths within the contact network heavily affects the spread of a disease.

• The (i, j)-th entry of Ak is equal to the number of paths with length k going from
node i to node j (there can be repeated nodes within the path).

• The adjacency matrix A can be written as an eigendecomposition A =
∑

i λiuiu
T
i [11].

• If we raise the power k of Ak =
∑

i λ
k
i uiu

T
i towards infinity, the largest eigenvalue λ1

dominates the smaller eigenvalues and thus λk1u1u
T
1 well-approximates Ak.

Example topologies in Figure 1 show that λ1 indeed represents the connectivity of the graph
well and can be used to measure how vulnerable the network is against an injected virus. It
makes intuitive sense that a star (Figure 1b) is much more likely to spread the disease than
a chain (Figure 1a) due to the existence of a central node, but simple network statistics
such as the number of edges or the average degree fails to capture such distinction: While
a chain and a star both with N number of nodes share approximately the same average
degree of 2, λ1 ≈ 2 for chains and λ1 =

√
N for stars.

Figure 2 shows simulation results on the popular PORTLAND graph from Prakash et al.
[7]. The footprint is defined as the final number of nodes in state R for the SIR model, or
the maximum number of infections at any time step for the SIRS model. We can see that
the footprint remains close to zero until the effective strength reaches the tipping-point at
s = 1, after which the footprint jumps immediately. This threshold phenomenon is also
called the phase transition from statistical physics due to its analogous behavior to that of
freezing water into ice: water remains in liquid form until it reaches 0°C and then starts
transitioning to ice.
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Figure 2: Simulation results of SIR and SIRS models on the PORTLAND graph with 6 million
nodes and 31 million edges. Left column: infection profiles with time vs. infective fraction.
Right column: “take-off” plots with effective strength s vs. footprint [7]

2.4 Proof Ideas

The proof of Theorem 2 has two main ingredients: 1) λ comes from the graph-based analysis
of the topology and stability, and 2) CV PM comes from the generalized VPM structure. Here
we only discuss the sketch of the proof, but a more detailed analysis can be found in [7].

2.4.1 A Generalized Model

The case of Typhoid Mary, the first person in the US identified as a healthy carrier of ty-
phoid fever, illustrates the need of diverse models that can capture complex propagations
present in real life. One example would be the SICR model with two infected states I and
C (for Carrier), each representing symptomatic and asymptomatic states. To generalize
the argument across different propagation models, Prakash et al. [7] first constructed a
generalized model S*I2V* (Figure 3) that can capture most practical variations. One could
use S*I*V*, but we consider having only 2 infected states for the sake of simplicity. Models
such as SIR and SI1I2V1V2 (HIV) can easily be seen as special cases of this meta-model.

Roughly speaking, all states are divided into three different classes: There are suscepti-
ble states with healthy nodes that can be infected, there are infected states where nodes
can actively infect neighbors, and there are vigilant states where nodes have immunity
against the virus. While nodes can go back and forth between susceptible and vigilant
states, vigilant nodes cannot be infected by itself. Transitions from susceptible to infected
states are called exogenous transitions, as those transitions depend on other nodes attacking.
All other transitions are endogenous, since they can happen on their own at each timestep.
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Figure 3: Generalized model S*I2V* [7]

2.4.2 Non-Linear Dynamical System + Stability

The next important piece is to view the generalized epidemiological model as a discrete time
non-linear dynamical system (NLDS). In other words, we assume that time increases in a
step-wise fashion and that the system follows the recurrence ~Pt+1 = G(~Pt). Given a graph
of N nodes and m different states, ~Pt ∈ RmN is a probability vector which specifies the
probability of each node being in each state at time t, and G : RmN → RmN is a non-linear
function that is applied to ~Pt to give the probability vector of the next time step ~Pt+1. For
instance, the special case of SIR model can be written as

~Pt = [PS,1,t, PS,2,t, . . . , PS,N,t, PI,1,t, . . . , PR,N,t]
T ∈ R3N (4)

G : R3N → R3N , G(~Pt) =


PS,i,t+1 = PS,i,tζi,t(I)

PI,i,t+1 = PS,i,t(1− ζi,t(I)) + (1− δ)PI,i,t
PR,i,t+1 = δPI,i,t + PR,i,t

(5)

where ζi,t(I) is the probability that node i is not attacked by any of its infected neigh-

bors. Just as a sidenote, we can instead represent ~Pt as a smaller length-(2N) vector since
PR,i,t = 1− PS,i,t + PI,i,t for all i, t.

Figure 4: Illustrative example of dynamical systems under gravity. (A) Slight perturbations
on an unstable system will cause the ball to fall, (B) A stable system will return to its original
state after perturbation (C) A neutral system has no tendency to be stable or unstable. [7]
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With this formulation, we can view the threshold problem as a NLDS stability problem, in
which we examine whether the system is stable or unstable at the initial fixed state with no
infections (Figure 4). In an epidemiological viewpoint, a perturbation would be equivalent
to injecting a virus into several nodes, after which the system can respond in different ways.
The number of infections will rise in an unstable system, diverging away from the initial
fixed state. In a stable system, on the other hand, the tendency to go back to the fixed
point will reduce the number of infections towards zero.

2.5 Extension towards Dynamic Graphs

The result from static graphs can also be extended to dynamic graphs in which the contact
patterns change across discrete time steps. For example, the contact network can differ
between during the day when people go to work or school and during the night when
families gather back together at home. This can be represented as a set of T adjacency
matrices {A1,A2, . . . ,AT }. One obvious result for the SIS model with dynamic graphs is
that the virus dies out if

λmaxβ

δ
< 1 (6)

where λmax is the largest eigenvalue of all T adjacency matrices. This natural result induced
from the static-graph case says that if the virus goes extinct in the worst-case graph with
the largest connectivity, it will go extinct in other graphs as well. However, this result is
too pessimistic as it only captures monotonic decrease in infection counts, and is thus not
so practical to be applied towards real life study. Work from Prakash et al. [8] provides a
more realistic analysis of the threshold problem in time-varying graphs.

Theorem 3. Let Si = (1− δ)I + βAi for all i ∈ {1, 2, . . . , T}. Then, the virus dies out if

λS < 1 (7)

where λS is the largest eigenvalue of the system matrix S =
∏
i Si.

(A) Synthetic (B) MIT Reality

Figure 5: Infection profiles (time vs. infected fraction) from (A) synthesized graphs - one
clique and one chain, (B) MIT reality graphs constructed by tracking mobile devices. We
see varying behaviors depending on λS : below 1 (green), at 1 (blue), and above 1(red). [8]
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(A) Synthetic (B) MIT Reality

Figure 6: “Take-off” plots (λS vs. maximum number of infections) of same dynamic graphs.
As shown in Theorem 3, the sudden jump occurs at λS = 1 for both datasets. [8]

3 Other Interesting Dynamics

Representing more states and interactions within the virus propagation model often leads to
unexpected behaviors. In this section, we discuss interesting dynamics that occur in complex
systems under increasing disorder of networks or when multiple viruses are introduced.

3.1 Synchronization

A complex model like SIRS can show interesting phenomenon such as synchronization. In
our context, synchronization refers to the dynamical system showing oscillations repeating
at a certain frequency. Through numerical simulations of the SIRS model on random
networks, Kuperman and Abramson [5] have verified formation of sinusoidal oscillations in
the fraction of infected nodes (Figure 7). Empirical studies on Measles cases in the UK [4]
and Syphilis infections [3] have confirmed that synchrony occurs in real life as well. One
open research topic is to pinpoint the parameter c at which synchronization happens.

Figure 7: Left: Random graphs can be formed by rewiring edges in a regular graph randomly
with probability c. [10] Right: The SIRS model exhibits an endemic state when c is small,
but as we increase the randomness we observe synchronization as with c = 0.9. [5]

7



(A) SI1I2S [6] (B) SI1|2S [1]

Figure 8: State diagrams of models with two viruses.

3.2 Competing viruses

While we mostly covered single-virus models, there are also models that involve multiple
viruses. One example is the SI1I2S model (Figure 8A) with viruses that compete under
mutual immunity. If both viruses are weak by themselves, no epidemic is expected to occur
at all. A more interesting setting is when both viruses are strong but one virus is stronger
than the other, and the following theorem due to Prakash et al. [6] shows that the winner
takes all in such cases.

Theorem 4. Under the SI1I2S model with parameters (β1, β2, δ1, δ2), virus 1 dominates
and virus 2 completely dies out in the steady state if the strength of virus 1 is above the

threshold
(
λβ1δ1 > 1

)
and is larger than the strength of virus 2

(
λβ1δ1 > λβ2δ2

)
.

3.3 Interacting viruses

We can also have a model with cooperation among viruses. Figure 8B shows the SI1|2S
model, a modified flu-like (SIS) model that introduces an interaction factor ε to allow
classification of different interactions between viruses. The dynamics of the model varies
depending on ε as follows.

• ε = 0: The model has full mutual immunity and the stronger virus dominates (given
that its strength is above the threshold) as in the SI1I2S model.

• 0 < ε < 1: There is partial competition and strong viruses show footprints lower than
when injected independently.

• ε = 1: Model exhibits independent co-existence and each virus propagates as if it was
the only virus present.

• 1 < ε: The viruses cooperate and start to show footprints higher than when injected
independently. Beutel et al. [1] showed that viruses too weak to survive by itself can
also survive when provided enough cooperation.

The main result from Beutel et al. [1] states the following.

Theorem 5. Under the SI1|2S model with parameters (β1, β2, δ1, δ2, ε), there exists an
εcritical such that if ε > εcritical, there is a fixed point where both viruses survive.
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