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1 Summary of Lecture Content

This lecture is meant to give a sense of what sort of inference problems arise and the tech-
niques employed to attempt to solve them. Some of these problems are very challenging.
Some are still considered unsolved with no best solution how to solve them. The lecture first
introduces how having more data can allow for inference of a network, or at least properties
about the network. We focus on the Cascade Transmission model which can help us infer
the possible ways the disease could have spread. However, there are other models that can
be used to determine the best number of cascades under different assumptions.

We briefly learn about Model Based Reasoning – a different approach from the Statistical
Machine Learning Approach. It utilizes various models to represent the data and then re-
calibrations once given more real-time data. The best model is determined from this set.

Lastly, we focus on Reverse Engineering Epidemics. In many cases, we know what has
happened concerning an epidemic. Using this information, we try to work backwards and
determine how the epidemic began. We talk about various approaches of finding the most
likely source within a network; however, these approaches are very difficult – falling under
the difficulty of NP-Complete, NP-Hard, and even #P Hard.

2 Calibration vs Inference

In previous lectures, we focused on how to construct networks from first principles, collect
data, and how mobility is an important component. In addition, many of these models are
stochastic, which then develop raw mobility data to be analyzed.

This lecture, however, focuses on approaches that involve statistical machine learning. Us-
ing a given dataset, we can infer how to model these networks and perhaps, gather other
supplementary information to help develop implications.

These approaches are used when we have a lot of data. Previously, we have been studying
infection rates; however, it is very difficult to gather data about all the infection propagation
patterns for the entire population. However, in other domains, such as social/web cascades,
there is a lot of data present. While there is the problem of the network being unknown,
the data can be used to infer the propagation network.

In order to utilize this data, Machine Learning methods can be employed, using surveillance
information as input. An example of surveillance information is a time-series of infections.
This being said, data can also be more complicated – in the form of cascading data.



3 Network Inference Problem

The problem focuses on how to utilize data and ML methods to infer the network.

3.1 Examples of Network Inference

There are many examples of this problem:

• The nodes and edges are unknown or partially unknown

• Graph models with unknown parameters

• MLE (Maximum Likelihood Estimation) Formulation to determine the mostly likely
graph given the data

• Analyzing how much data is enough to create the original network

– Getting data may not be easy to accomplish. Plus, the model should be robust.

3.2 Inferring Netorks Using Traces

In Figure 1 [5], there is the true network and three cascades c1, c2, c3. The true network can
represent propagation of a disease spreading through a population. The true network, how-
ever, is unknown. The given data is the cascades which can be used to infer the true network.

c1 shows how a mean spread from one node to another. c2 and c3 show how the mean
was spread in different ways. These cascades separately represent how a certain medium is
spread within the network.

In an epidemiology scenario, a node may not be getting infected with the same disease
repeatedly, or there are multiple diseases occurring within the population that needs to be
tracked. Therefore, cascades can be used to represent these different variables and can be
emulated to relay further information about the true network.

Figure 1: Network from Gomez-Rodriguez + SIGKDD 2010 [5]
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3.3 Formulating the Problem

In this problem we are given the cascade set C = c1, c2, ..cm. C is the set that consists of
cascades 1 to m. We want to utilize C in order to infer the static hidden directed propaga-
tion G∗. Going back to Figure 1, we want to use c1, c2, c3 in order to infer G∗.

We can represent each cascade by its attributes:

• ui - node id/name

• ti - time at which cascade c reached node ui

• φi - set of features, either from node or contagion

Looking back at Figure 1, we can consider a1 to be a node that cascade c1 reached at time t1.
Potentially, auxiliary information can be associated with the node or cascade. For example,
think of the node a1 as a person. A person comes with the supplemental demographic infor-
mation, such a gender, age, etc. The cascade c1 could come with supplemental information,
such as how deadly the disease it and other factors that could impact its contagion. This
auxiliary information can help reveal trends.

Within this problem only t′s – the hit times – are observed and φ′s are considered constant.
Thus, we should think of t as what time each person/node ui is affected by the cascade –
in terms of epidemiology, when that node got infected.

We can think of each cascade c as a series of time stamps: c = [t1, t2, tn], where n is the
number of nodes in G∗. Within each cascade are the times each node is affected by the
cascade. However, tu =∞ if a node u is not reached during time t. In Figure 1, at Cascade
c1, two white nodes are not affected at that time. Thus, their value would be set to ∞.

3.4 Cascade Transmission Model

From formulating the problem, the Cascade Transmission Probabilistic Model was created.
This model is represented by P (c(u, v)), which represents the probability that a cascade c
propagated from node u to v.

Within this model, here are the following assumptions:

• Every node v can be influenced by only one node u – in reality that might not be true
(e.g social media); however, for simplicity’s sake, this is a fair assumption.

• Influence structure of c will be a directed tree T – node u will have the infection first
and then infect node v, thus resulting in a directed edge from u to v.

• P (c|T ) represents the probability cascade c propagated in pattern T .

• P (c|G) represents the probability cascade c occurs in graph G.

• P (C|G) represents the probability a set of cascades C occur in graph G.
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Using these probabilities, we can create the MLE for G∗:

G∗ = arg maxP (C|G)

The goal is to estimate G∗ in such that we maximize the probabilities of all the cascades
c occurring. In Figure 1, we see that G∗ is an estimated network that tries to incorporate
cascades c1, c2, c3.

Let Tc(G) represent the set of all directed spanning trees induced by graph G induced by
the nodes infected in cascade c. We are looking at every possible spanning tree to un-
derstand how the infection spread in all of the nodes affected in cascade c. We would able
to determine the source of the contagion spread and the most probable propagation pattern.

As a result, we can rewrite the former probabilities as:

• P (c|T ) =
∏

(i,j)∈T (G) Pc(i, j)

– This is just multiplying the edge based probability for each edge in the tree.

• P (c|G) =
∏

T∈T (G) P (c|T )P (T |G) ∝
∑

T∈T (G)

∏
(i,j)∈T Pc(i, j)

– The probability of seeing a cascade c in a graph G is the probability of seeing a
cascade c in a tree T times the probability of seeing the tree T in graph G summed
over all the possible trees T in G. We want to account for all possible trees, not
just a single tree T . P (T |G) is a constant because all trees T are equally likely.
Therefore, we convert that probability to the summation of

∑
T∈T (G). Thus, we

now have
∏

T∈T (G) P (c|T ). P (c|T ) can be substituted with Pc(i, j).

• P (C|G) =
∏

c∈C P (c|G)

– Each cascade is assumed to be independent, thus, P (C|G) is just the product
the probability P (c|G) for each cascade c.

• Through substitution, the original problem G∗ = arg max|G|≤k P (C|G) becomes:

– P (C|G) =
∏

c∈C P (c|G) =
∏

c∈C
∑

T∈T (G) P (c|T )

The above final formula for G∗ = arg max|G|≤k P (C|G) is not easy to compute. However,
rather than considering all trees T , we can only consider the most likely propagation tree
T per cascade c. Thus, we can rewrite P (C|G) as:

P (C|G) =
∏

maxT∈T (G)

P (c|T )

This version is easier for the likelihood function. Below is the new log-likelihood function
over empty graph (K)

Fc(G) = maxT∈T (G)log(P (c|T ))−maxT∈K log(P (c|T ))
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Therefore, we have resulted in:

Objective Function: Fc(G) =
∑
c∈C

Fc(G)

Optimal Network: G∗ = argmax|G|≤kFc(G)

In order to understand how a disease could have spread (when this information is unknown),
we can look at all the possible ways this could have occurred. With generative simulations,
we can get all the potential occurrences how the the infection spread. However, when there
is limited data, we have to infer the likely way this disease spread. Therefore, we take the
summation of all the possible ways this disease could have spread within G. The inference
is not a guarantee, but it is a high likelihood possibility.

4 Other Extensions

The above problem of trying to infer the network can be extended into many more compli-
cated problems.

• Dynamic Networks [4]

– Right now, we are assuming the networks and cascades are static; however, in
reality, mostly everything is dynamic.

• Different Cascade Models [1]

– Currently, we assume that the cascades follow the IC Model where each edge has
a probability of spreading the infection; however other models exist.

• Theoretical analysis of how many samples do we need – in order to derive the graph
robustly. [1, 2]. (See Section 4.1)

• More accurate/efficient/robust algorithms [3]

– Account for noise, faster algorithms, and more accuracy (MLE is an assumption).

4.1 Trace/Cascade Complexity

This problem consists of trying to determine the number of cascades needed in order to infer
properties of the network/graph. How much data is needed to infer the graph robustly?
There have been some results for this problem that include:

• Ω(
n∆

log2∆
) traces are necessary and O(n∆log(n)) traces are sufficient to infer the edge

set of a graph in the SIR model [1]

– This formula is a fair number of cascades to infer the edge set of an SIR Model.
This claim is unexpected because it implies that the number of cascades needed
is not quadratic to the number of nodes in the graph. Roughly, only nlogn traces
are needed which is much more efficient that a quadratic amount of traces.
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• Exact inference of trees using O(log(n)) traces – every node has only one parent node,
thus reducing the number of traces!

• Infer the degree distribution using O(n) traces

– We may not be able to derive the graph from the data; however, we can derive
some sort of data about the graph. Thus, getting the inferred degree distribution
can allows us to further create the inferred graph using said distribution.

• Similar results under other assumptions [7]

4.2 Inference Problems for Disease Parameters

In Homework 1, we did simple calculations for the parameter estimates of a given network
for the SIR Model. However, there are more complicated methods to infer the parameters.

In general, we are given a network G and a set of infections I. We want to estimate β∗ such
that the probability that the set I to be infected in G is maximized.

β∗ = arg maxP (I is infected in G|β)

But, how much do we trust I and G? If we trust I and G, then the problem is more well
defined. However, G and/or I may be too noisy or have stochastic problems in certain
areas. Furthermore, other given parameters and G might have uncertainty too.

Then, there is the question of ”Where did the disease start?”, which would require reverse
engineering. Reverse engineering involves us knowing what has happened and then using
that information to piece together what might have happened at the beginning of the
scenario. Think of COVID-19. Once it became an issue, people tried to identify the source
of what happened. We discuss this in more detail in Section 6.

5 Model Based Reasoning

Given a dataset, we calibrate it to many models, and then, use them to emulate the epidemic.

Figure 2: This diagram depicts the process of model based reasoning.
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Once given the real dataset, we compare the models and re-calibrate to re-estimate the
parameters. We then determine which model represents the real data better and review
what assumptions were made to model the epidemic most accurately. Figure 2 shows this
process. This is a different approach from the statistical MLE approach. The model based
approach is better with a limited dataset since it prevents the inference of a robust model.
Thus, rather than trying to create a model, we try reverse engineer of what could have
happened and pick the best model based on the real data.

6 Reverse Engineering Epidemics

The premise of reverse engineering is finding the culprits of the epidemic. When we observe
a set of people with a disease, we want to reverse engineer by establishing the contacts
between these people to find patient 0 – where the disease started. Sometimes, solving this
problem is very difficult. In a midst of many infected, how do we pinpoint the source?
Finding the source of the epidemic is important. Once the source is pinpointed, health offi-
cials can take the necessary steps to learn about and potentially try to control the outbreak.

These problems are probability based. We can only say that it is highly probable this is how
the epidemic began since it is difficult to find the ”ground truth” of what truly happened.

6.1 Finding Sources (Culprits)

Figure 3 represents the Culprit’s Problem. We have a 2-D grid in which a node is connected
to all of its neighbors. The dark grey nodes are the infected nodes. The goal is to determine
the order that these nodes were infected. The best place to start is to determine who started
the spread of the disease. A way to think of this problem is like a wine spill. When wine is
spilled on the carpet, it spreads homogeneously from the center and then outwards, making
a circular blotch. We can use this line of thinking to this problem –the first person who
caused the epidemic is somewhere in the middle. In the figure, our predicted guess is the
blue dots, and the actual culprit is the red dots. Our guess was very close. Of course, this
problem can be more complicated. There are other ways to formulate this problem, such
as risk minimizing, MLE, MDL, etc.

Figure 3: The 2-D grid to depict the Culprit Problem
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6.2 One Formulation: Risk Minimization Approach

This problem can be formulated as an optimization problem [6]. The input is a single snap-
shot of the network and the activation state of nodes. The activation state can be referred
to whether or not the node is infected. We want to determine who could be deemed as a
good set of initiators – which individuals serve as the root cause of the epidemic.

In Figure 4, there is the input data. We want to find out which of the infected individuals
started the spread of the disease. In order to determine the potential root causes, a cost
function is needed to model to determine the probability that the set of individuals {A,B}
started the epidemic. We then optimize that cost function by finding the set that maximizes
it. Looking at the figure, we see that a potential final state is the two individuals A and B.
The cost function test all possible pairs of infected people to maximize the cost.

Figure 4: The Good Effectors Approach. The green check mark people are the infected
while the red x’s are not infected

6.2.1 The k-Effectors Problem

In Figure 4, we see the cost function Cost(S). This function can be determined by the
difference between the observed activations and the expected activations given S [6].

However, there is a new problem – understanding the probability of how many people that
set {A,B} will infect. This is the k-effectors problem – as defined below:

k-Effectors Problem: Given a social network graph G = (V,E, p) and an activa-
tion vector a, find a set X of active nodes (effectors), of cardinality at most k,
such that C(X) =

∑
v∈V |a(v)− α(v,X)| is minimized.

The cost C(X) is defined as: for every node v, we subtract the activation state (infected
or not infected) and the expected state of that node. The goal is to determine if someone
infects a set of nodes X, what is the probability that everyone in the network will get
infected as well. We want the cost to be minimized so we minimize the activation and
expected states.

6.2.2 Complexity of the k-Effectors Problem

The k-Effector problem in arbitrary graphs is NP-complete. It unlikely to have an optimal,
scalable algorithm for all graphs, but it is probable to approximate the algorithm. Unfor-
tunately, the k-Effector problem in arbitrary graphs is NP-Hard to approximate, meaning
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a robust, scalable algorithm that is nearly optimal is unlikely. However, the k-Effector
problem can be solved optimally in polynomial time on trees. If we assume the graph is a
tree, then this problem can be solved efficiently. In a a tree, a node only has one parent —
thus, there is only one way in which the disease could have been spread.

6.3 Alternative Formulation: MLE Approach

An alternative method to find the initial source of the epidemic [8] is to use an MLE
function. The k-Effectors Problem tries to determine k best sources of the epidemic while
the MLE alternative tries to pinpoint the single best source of the epidemic.

v̂ = arg max
v∈GN

P (GN |v∗ = v)

The formula above is the MLE function. This function is finding the vertex v in GN –
the infected subgraph – in such that probability of seeing the infected graph is maximized.
Let v∗ be the starting point. We want to set v∗ to a vertex v in order to maximize the
probability of a graph GN with many infected nodes. In order to fully grasp this problem,
we need to understand the concept of Propagation Ripples.

6.3.1 Propagation Ripples

The first step is to define what a ripple is. Figure 5 can be used to try to define this term.

Figure 5: Propagation Ripples

On the left, is the original graph with 100% blue nodes. On the right, is the infected
snapshot. All of the orange nodes are infected, and the singular blue node is not infected.
What is the possible way that this disease spread that could result in the infected snapshot?

At R1, we see a potential path (”ripple”) of how the disease spread through the network.
Starting at the leftmost orange node, we can follow the directed network to see the infection
propagation. R1 is not the only way the disease could have rippled through the network.
R2 is a different path of how the disease spread. Nevertheless, for both R1 and R2, the
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infected snapshot is achieved. Other ripples can be determined as well.

When determining the most likely source, we have to understand the potential ripples that
could have occurred in the network. Then, we can identify potential source nodes.

6.3.2 Rumor Centrality

The probability of each ripple occurring is different. Therefore, when calculating the prob-
ability of the most likely source node, we must take into account the probability of the
ripples. We want to find the node with the most likely set of ripples. When calculating the
probability of the ripples, we must account for both the infected and non-infected nodes
because non-infected nodes also have the probability of being infected.

By using ripples, the probability of the infected graph being maximized by the maximum
number of ripples can be represented. Rumor centrality can be used to rewrite the formula
from earlier as:

v̂ = arg max
v∈GN

P (GN |v∗ = v)

P (GN |v∗ = v) =
∑

all ripples

Ri

The most likely vertex v is the one with the highest rumor centrality.

We take the sum of the ripples because they are mutually exclusive events. Unfortunately,
calculating the total number of ripples is a #P-Hard problem. However, the number of
ripples can be computed efficiently with a non-trivial algorithm for k-regular trees. While
this problem is not as easy as k-effectors, the intuition to solving it is similar.

Figure 6: Computing Rumor Centrality Using k-Regular Trees. In this 2-regular tree, each
node is expected to have 2 children nodes

In Figure 6, the tree is a k-regular tree. We can see that a ripple is a valid permutation on
this graph in which the disease can be spread. Whichever node i has the maximum number
of permutations has an increased probability of being the source node of the epidemic.
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