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Our Participation in CDC

Forecasting Initiatives

Target 1: Weighted influenzalike illness count per week
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Target 2: Weekly reported Covid Mortality
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Target 3: Daily Covid-induced Hospitalizations

National Forecasts

New Hospitalizations
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Introduction

e Goal:

— Improve situational awareness for Covid and flu

— Characterize different faces of the utility of the
symptom survey data for forecasting

* Motivation:

— A second wave of Covid is likely to coincide with the flu
season and forecasting flu burden becomes even more
crucial®.

— Give policymakers valuable lead time to plan
interventions and optimize supply chain decisions.

e Our approach is to jointly forecast Covid and flu

1US CDC Director: https://www.washingtonpost.com/health/2020/04/21/coronavirus-secondwave-cdcdirector/
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Tasks and Problem Formulation

National emergency
declared

Shift in
healthcare
seeking
behavior

* Surveillance systems are susceptible
to symptomatic similarities.

* This makes it hard to recognize

“"“—— Current season
Other seasons

% (Influenza Outpatients)
h° = N w ~ (6] [+)] ~N (-]

actual flu outbreaks.

* Task 1: ForecastinglLl in the Presence TEE S s T
of Covid (Covid-ILI) o ogieaTee
— Use patterns from historical ILI Exogenous data
— Leverage new data signals, e.g. symptom '
survey, mobility, Covid-related signals
* Task 2: Forecasting Covid Mortality
and Hospitalizations
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" Our Approach: DeepOutbreak

 Two forecasting modules:
— Covid-ILI: Steer a historical ILI model with Covid-related signals
— Covid: Covid-19 forecasting using Covid-related signals

* Data sources (selected with epidemiological rationale):
— FB Symptom Survey Data 'i
— Line-list based data from CDC, JHU, and CovidTracking (",%'/4) C T E
— Mobility from Apple and Google "’//////4

Tracking Project

— Testing from CovidTracking ,,tgllu
BT e forns Horans
* Approach features: TAARTATRA e
— Deep learning-based approach allow us to omit laborious e

feature engineering.

— Can ingest many heterogeneous signals that are more sensitive to what
is happening on the ground

— Robustness to noise and principled uncertainty estimation

— Explainability module enables:
* Epidemiological explanation of forecasts

* Assess contribution of signal(s)
DeepOutbreak © 2020 7
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Task 1: Forecasting Covid-ILI

When Historical Data Exists

e Steer an existing historical ILI model (EpiDeep, KDD 22‘ :
2019) with new Covid-related signals £ |
* Goal: enable structured knowledge transfer from § z_ N
our historical ILI model to a spatio-temporal Covid- g | -- Actual ruture incidences
ILI model g,
* We use heterogenous transfer learning and ;‘E, :E EE:‘;:’;‘;‘*"“’g
X Y ssa70511 3 5 7 9 11131517

knowledge distillation

Historical ILI model

RNN

Joint Latent

Covid model
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Epidemiological week (EW)
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Task 2: Forecasting Covid-19
No historical data Available

* Unable to steer an existing model

High-level abstraction

and unable to train temporal
neural models (e.g. RNN)

* Use only Covid-related data
sources.

* Principally propagate
uncertainties in forecast from
noise in data

* We use autoregressive training on

bootstrap samples

Train
independent

models on each
bootstrap sample

Probability
distribution
represents
uncertainty
from data
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Contribution of Symptom Survey Data
in Overall Performance

Percentage of change in performance when adding survey data
(with respect to our CDC submissions for COVID-19)
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Green (positive) represents increase in
performance; brown (negative)
decrease. Survey data improves

performance in 29 of the 51 regions.
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wiLl Incidence

Contribution of Symptom

survey Data

Task 1: Covid-ILI Forecasting
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Region 2 4-Week Ahead

Region 1 4-Week Ahead
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Medium pandemicimpact

Low pandemicimpact

1. Forecasting models with survey data achieves better forecasting
performance.

2. Models without survey data underestimate wiLlI dynamicsin
long-term forecasting performance.

3. Plots showcase similar behavior with different regions (1,2) with
varying degrees of pandemic impact.

inc death

More resultsin

our white paper

Task 2: Covid Forecasting

X lwk-ahead predictions

AZ 1wk-ahead predictions
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Short-term forecasts: Using survey data
independently is comparatively as effective as
using in conjunction with other signals for COVID-

19 mortality forecasting.

X 3wk-ahead predictions
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Long-term forecasts: Using survey data in
conjunction with other signals is more effective
for COVID-19 mortality forecasting.
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Contribution of Symptom Survey ittt
our white paper
Data

Task 1: Covid-ILI Forecasting Task 2: Covid Forecasting
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interesting negative
findings! (see white paper)

DeepOutbreak © 2020 12



Georgia
Tech

Results Summary

Facebook Survey Data Usage Notable Highlights:

* In general, survey signals are orthogonal to other available signals
that we included in our models. We found them useful to improve
our performance in the majority of geographical regions.

 We showed that survey signals help guide our forecasts to
effectively anticipate future trends, which is the general case;
however, there are some cases where it may lead to hinder some
good trend predictions.

* |In general, survey signals should be used in conjunction with
others; however, we found a few interesting cases when they alone
offer a different and more accurate forecasting perspective.

e Survey signals capture and help us in forecasting in regions with
important differences such as epidemic activity. In particular, we
found that in ILI forecasting, not using symptom survey data may
lead to underestimating the epidemic curve.
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Thanks!

Contact:
Alexander Rodriguez
arodriguezc@gatech.edu

DeepOutbreak © 2020

14



