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Abstract Given a large attributed social network, can we find a compact, diffusion-
equivalent representation while keeping the attribute properties? Diffusion networks
with user attributes such as friendship, email communication, and people contact
networks are increasingly common-place in the real-world. However, analyzing them
is challenging due to their large size. In this paper, we first formally formulate a
novel problem of summarizing an attributed diffusion graph to preserve its attributes
and influence-based properties. Next, we propose ANeTS, an effective sub-quadratic
parallelizable algorithm to solve this problem: it finds the best set of candidate nodes
and merges them to construct a smaller network of ‘super-nodes’ preserving the desired
properties. Extensive experiments on diverse real-world datasets show that ANeTS
outperforms all state-of-the-art baselines (some of which do not even finish in 14days).
Finally, we show how ANeTS helps in multiple applications such as Topic-Aware viral
marketing and sense-making of diverse graphs from different domains.
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1 Introduction

Suppose we are monitoring network-traffic in a computer system. Legitimate user
inputs such as keyboard and mouse events start a series of network requests. Some of
these network requests are malicious and they are sent when a user visits a compro-
mised website or the host is infected by malware. This data can be represented by an
attributed diffusion graph (Zhang et al. 2014), where nodes are user input and network
requests and their attributes are their types and time-stamps. There is an edge between
two nodes when one node requests the other one (see Fig. 1a, c). Such networks are dif-
fusion graphs since a content such as a network request is spreading over the network.
Can we find malicious network requests as anomalies in this network? Further can
we also understand the connection structure of these malicious nodes? These insights
can help security analysts to efficiently evaluate the network-traffic dependency and
perform further forensics. However, malicious nodes can be triggered anytime and
anywhere in the network. This combined with the large size of the graph and sparsity
of the malicious requests [0.3% of the total requests (Zhang et al. 2015)] make finding
them extremely hard in the Network-traffic graph.

Attributed influence/diffusion networks are commonly seen in other domains as
well. Email communication, citation, product co-purchase, and social networks are
some other examples. Understanding and analyzing such networks is essential for
many applications including viral marketing, immunization, anomaly detection, pat-
tern finding and making sense of propagation. However, the increasingly larger sizes
of such networks makes this difficult. While for many tasks there are very efficient
algorithms for plain networks [such as the influence maximization problem (Chen et al.
2009)] scaling to millions of nodes, the corresponding state-of-the-art algorithms (e.g.
Chen et al. 2015) on attributed networks are slow and can not scale even to graphs with
50k nodes (see experiments). Summarizing these attributed networks to get a smaller
representation can help us to easily scale-up these data mining tasks. By finding such
summaries, we can better visualize and understand the dynamics of the network, and
speed-up attribute and influence-related analysis. The idea would be to run the analysis

(b) (c)(a) (d)

Fig. 1 Finding malicious requests. a, c Original Network-traffic graphs of two different users. Dark blue
nodes are type ‘user-input’ and yellow are type ‘network-request’. Note we do not show the time-stamp
attributes here. b, d Summary graphs generated by ANeTS. Color of each supernode is the combination
of color of nodes inside it. Size of super-nodes ∝ # merged nodes and red squares highlight some of the
malicious nodes found (Color figure online)
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Efficiently summarizing attributed diffusion networks 1253

on the much smaller summary, saving running time, instead of doing it on the entire
graph.

In this paper, we study the novel problem of summarizing influence-networks where
nodes have features. Despite their importance, there is surprisingly little work on
summarizing attributed graphs (see Table 1 and related work). Also, dealing with
attributed networks is challenging due to their high dimensional nature. We present an
efficient and scalable algorithm ANeTS which takes these graphs and returns a smaller
(in nodes and edges) attributed diffusion network of ‘super-nodes’ and ‘super-edges’
as the summarization satisfying the following properties.
P1. Diffusion consistency The summary graph must have similar diffusion properties
as the original one. It has been shown that the so called epidemic threshold captures the
diffusion property as a primary characteristic of the influence-networks (Prakash et al.
2011). Also, the epidemic threshold previously has been used in the literature (Purohit
et al. 2014). So, it is natural to maintain it while summarizing influence-networks.
P2. Soft Attribute consistency The summary graph must have similar attribute charac-
teristics as the original one. Hence, we want to group similar nodes into the super-nodes
in the summary graph. It means that the nodes in the summary should be as homo-
geneous as possible. We want soft criteria to measure the homogeneity in attribute
properties to be able to summarize the original graph as much as possible with mini-
mum loss in attribute characteristics of it.
P3. Scalability & Parallelizability The summarization must be scalable to the input
size and easily parallelizable. It is essential since the large size of today’s influence-
networks makes it critical to design faster algorithms.

In our Network-traffic example, Fig. 1b, d show the corresponding summary graphs
(composed of super-nodes and super-edges) generated by our algorithm ANeTS. We
also show some of the correspondence between the summary nodes and regions of
the original network via circles. Note that these summaries help highlight the main
structure of the original graph. Desirably, the super-nodes are homogeneous with
respect to the nodes “type” attribute. Further these summaries also help us to find
malicious network requests as anomalies. Unmerged singleton nodes in the summary
seem interesting; we realized that they are usually of type ‘user-input’. However, there
are a number of singleton nodes which are structurally very similar to these user inputs
but their attributes type is ‘network-request’. For example in Fig. 1b there are single
nodes that are directly connected to the center of the graph with a high weighted edge,
just as user-inputs, but their attribute type is different. These are suspicious and turns
out that indeed they are malicious requests based on the ground truth (Zhang et al.
2014). Our summary graphs can correctly detect them and also show their overall
connection structure. Note that this also clearly demonstrates the need to take into
account both structure and attributes to identify these anomalies. Hence a method like
ANeTS which preserves both of these properties is required.

The main contributions of our work are:

(I) Problem formulation We formulate a novel Attributed Graph Summarization
Problem (AGS) to find a smaller diffusion and attribute equivalent summaries.

(II) Efficient algorithm We propose an effective sub-quadratic algorithm ANeTS
which easily scales to datasets, ∼ 20× larger than the datasets our main com-
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Efficiently summarizing attributed diffusion networks 1255

petitor used (Shi et al. 2015), while in many cases our baselines do not finish in
14days or run out of memory. We also parallelize it to further speed it up.

(III) Extensive experiments Our extensive experiments on diverse datasets show the
effectiveness and efficiency of our method. Further we also show how to use
ANeTS to dramatically speed-up the topic-aware influence maximization task,
while maintaining the quality of solutions. Finally, our case studies also show
that ANeTS can help make sense of complex attributed networks.

The rest of the paper is organized in the standard way. All proofs are in the supple-
mentary appendix: http://people.cs.vt.edu/esorour/papers/appendix_pkdd2018.pdf.

2 Related work

Our work is related to graph summarization, sparsification, and graph community
detection (see a brief comparison in Table 1: ANeTS is the only method that satisfies
all the desired properties while others only satisfy some of them).
Community detection or node clustering There is an increasing interest in finding
communities for graphs with content/attributes (Akoglu et al. 2012; Perozzi et al. 2014;
Xu et al. 2012). Yang et al. (2013) model interactions between network structure and
node attributes to find overlapping communities. Some methods combine structural
and attribute similarity through a unified distance measure to find communities (Ruan
et al. 2013; Zhou et al. 2010). Dhillon et al. (2004) find spectral connection between k-
means and normalized cut. Kloumann and Kleinberg (2014) use seed set expansion for
community detection. Yang and Leskovec (2015) distinguish functional and structural
community. Perozzi et al. (2014) find both focused clusters and outliers from an input
exemplar node set. Günnemann et al. (2011) introduce subspace clustering on graphs
with feature values. These algorithms only give clusters and not diffusion/attribute
equivalent summary graphs like we do.
Plain graph summarization and sparsification The methods in this category aim
to find compact representations of graphs which maintain desired properties. The
properties can be defined based on specific user queries (Fan et al. 2012), action
logs (Mathioudakis et al. 2011), or, more generally, the encoding cost (Navlakha et al.
2008), weights of nodes and edges (Qu et al. 2014), influence-properties (Purohit et al.
2014) and connectivity of nodes (Toivonen et al. 2011). All work on graphs without
attributes (not satisfying P2).

As pointed out in surveys (Khan et al. 2017; Liu et al. 2016), there are only a
few recent approaches summarizing attributed graphs. Tian et al. (2008) and Seah
et al. (2012) restrict summary graphs to ‘grouped’ nodes with the exact same subset
of attributes. In contrast, we tackle a more general problem of summarizing general
attributed graphs with flexible criteria by allowing grouping of nodes with similar
attributes in principle. Also (Wu et al. 2014) formulate summarization as an infor-
mation theoretic problem—however their method is not diffusion consistent (P1) and
scalable & parallel (P3). The most closely related work is the VEGAS algorithm (Shi
et al. 2015) which summarizes influence flows from a source node. However, their
pipeline is specifically designed for citation networks and is not scalable in practice
(see experiments).
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3 Problem formulation

We formulate our novel problem on DAW-graphs.

Definition 1 (DAW-graph) G(V, E,F ,W) is a Directed Attributed Weighted Graph
with n nodes (V) and m edges (E). F = {f1, . . . , fn} are the node attributes (∈ R

d×1)
and W = {w1, . . . , wm} are the edge weights (wlog, ∈ [0, 1]).
Goals Our goal is to generate a summary DAW-graph satisfying P1 and P2. Purohit
et al. (2014) proposed a plain-graph summarization problem based on merging edges
and minimizing a structural distance (between the original graph and the summary)
based on influence-based properties. First, we start with their structural distance and
merging process. Next, we show how to modify the problem formulation and merging
process to preserve both attributes and influence.
Starting point Structural distance Motivated by recent work (Prakash et al. 2011),
we can maintain the influence based properties by keeping the leading eigenvalue λ of
the adjacency matrix of the summary DAW-graph Gs close to the original G. This is
true for almost all cascade models including the IC model, as it maintains the so-called
‘epidemic-threshold’ (the point where the epidemic ‘takes-off’). It has also been used
in influence-based summarization of plain graphs (Purohit et al. 2014). Hence we can
define the normalized structural distance between Gs and G as follows,

Dstr(G, Gs) = |λG − λGs |
λG

(1)

where λG is the first eigenvalue of the adjacency matrix of G.
Merge operation We want to merge edges inside each super-node to get the sum-

mary. Suppose we merge two connected nodes ‘x’ and ‘y’ with no attributes to form
a new super-node ‘c’. For determining the new edge-weights, we adopt prior work
on influence-based summarization of plain-graphs (Purohit et al. 2014) and define
the new edge weights in a way to maintain the local influence around the old nodes.
Formally,

Definition 2 (Merge operation) Assume Ni (c) = Ni (x) ∪ Ni (y) indicates the set
of in-neighbors (i.e. the set of vertices adjacent to ‘c’) and No(c) = No(x) ∪ No(y)
indicates the set of out-neighbors of a super-node ‘c’ (i.e. the set of vertices adjacent
from ‘c’). Assume wt,c and wc,t denote the weight of the corresponding edges. If the
(super-) node-pair (x, y) is now contracted to a new super-node c, and w(x,y) = ω1
and w(y,x) = ω2, then the new edges are weighted as:

w(t,c) =

⎧
⎪⎨

⎪⎩

(1+ω1)wt,x
2 ∀t ∈ Ni (x)\Ni (y)

(1+ω2)wt,y
2 ∀t ∈ Ni (y)\Ni (x)

(1+ω1)wt,x+(1+ω2)wt,y
4 ∀t ∈ Ni (x) ∩ Ni (y)

w(c,t) =

⎧
⎪⎨

⎪⎩

(1+ω2)wx,t
2 ∀t ∈ No(x)\No(y)

(1+ω1)wy,t
2 ∀t ∈ No(y)\No(y)

(1+ω2)wx,t+(1+ω1)wy,t
4 ∀t ∈ No(x) ∩ No(y)

(2)
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Efficiently summarizing attributed diffusion networks 1257

Adding attributes Next, we extend the above formulation.
Attribute distance We also want to maintain the attribute-based properties of the

original graph. It implies that the nodes inside each super-node of the summary must
be homogeneous to be able to accurately represent them by a super-node. Hence,
motivated by K-means, we formulate our problem to minimize the distance of node
attributes in each super-node to its centroid. Equation 3 formally defines the normalized
attribute-based distance between G and Gs (here |vs | indicates the number of nodes
in super-node vs):

Datt(G, Gs) =
∑

vs∈Vs
∑

v∈vs ||fv − f̄vs ||22∑
v∈V ||fv − f̄||22

,

Where, f̄vs =
∑

v∈vs fv
|vs | and, f̄ =

∑
v∈V fv
n

(3)

Note, Datt measures the homogeneity of super-nodes in the summary graph: lower
Datt leads to higher homogeneity.

Merge operation We also extend the merging process by adding the nodes attributes
to it. Motivated by the Datt, the attributes of c should be the centroid of x and y: if
fx and fy are the attribute vectors of x and y, then f̄c = |x |·fx+|y|·fy

|x |+|y| (matching our
attribute distance).
Attributed graph summarization (AGS) problem We want to find a summary Gs which
is similar to the original G in structure (Dstr) and attributes (Datt). Formally:

Given a strongly connected DAW-graph G(V, E,F ,W), a reduction fraction 0 <

α < 1, and the merge operation.
Find a summary DAW-graph Gs∗(Vs, E s,F s,Ws) by merging edges, with ns =

(1 − α) · n, and such that:

Gs∗ = arg min
Gs

D(G, Gs) (4)

where, D(G, Gs) = 1

2
· [Dstr(G, Gs) + Datt(G, Gs)

]
(5)

Remark If there are no attributes in G, we only need to minimize the Dstr. Hence,
AGS problem reduces to the influence-based plain-graph summarization (Purohit et al.
2014). Also, if G is a fully connected graph, then all nodes are structurally equivalent.
So, nodes will be merged merely based on their attributes and AGS essentially becomes
a variant of the classic K-Means problem (Jain 2010) and only minimizes Datt.

4 Our solution

Both of the special cases of our problem are NP-hard (Kanungo et al. 2002; Purohit
et al. 2014). Nevertheless, there are heuristic methods to solve each of them based
on spectral methods or iterative algorithms. However, existing spectral methods for
eigenvalue problems rely on matrix perturbation theory, while those for attribute-
based data clustering rely on eigenvectors of similarity graphs. It is not clear how to
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1258 S. E. Amiri et al.

combine these two approaches to make them work on DAW-graphs. While the AGS
can be formulated probably as a semidefinite program (SDP), it is not clear if standard
methods like line search or gradient descent for the AGS problem will be trivial or
fast. The main challenge is that it is not obvious how to compute the gradient of largest
eigenvalue λ fast. Indeed, people have used SDP solvers for eigenvalue minimization
problems (Ghosh and Boyd 2006), but it is very slow. Hence, we decided to estimate
the changes in D (as an approximation of gradient) and follow the popular approach
for solving the k-mean style algorithms as they show good performance in practice. In
this section, we propose a sub-quadratic algorithm that successively refines a solution
while maintaining feasibility. We first describe the serial algorithm and then propose
a careful parallel framework for our solution.

4.1 Overview

We present our framework Attributed Network Summarization (ANeTS) to tackle the
AGS problem. Our main idea is to combine local matrix perturbations with iterative
algorithms for K-means style problems (e.g. Lloyd’s algorithm) effectively and effi-
ciently for DAW-graphs. For each Gs there is a super-nodes assignment vector � such
that �[v] ← vs indicates node v belongs to super-node vs . Also, Gs

� is the corre-
sponding summary graph of the assignment �. Our approach updates the super-nodes
assignments iteratively while reducing the cost function of its corresponding Gs until
convergence.

The framework is as follows:
Step 1 Initialization: Start with a super-nodes assignments �0.
While not converged do t++

Step 2Find the best assignment: Perturb �t , evaluate the quality of the correspond-
ing summary graph according to Eq. 5 and select the best assignment.

Step 3 Update assignments: Update the super-nodes assignments as �t+1 and the
centroids of super-nodes. Also, measure the distance of the summary graph corre-
sponding to the current assignment to the original graph [(i.e. D(G, Gs) Eq. 5].
end
Step 4 Merging: Use �final to extract Vs and merge nodes in the same super-node and
update the edge weights to get Gs.

Even though this framework is fairly straightforward, we face various challenges:
(1) Initialization: since AGS is on graphs, we can not randomly initialize �0 unlike
the clustering algorithms which can. Moreover, we want to find a good starting point
that converges to a high-quality solution in few iterations. (2) Running time: Naïvely
following the above framework is very expensive, since in each iteration we must com-
pute the largest eigenvalue of all possible summary graphs and update the centroids.

First, we explain Steps 2, 3, and 4 and then how to speed them up. Then, we design
an initialization in Step 1.
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Efficiently summarizing attributed diffusion networks 1259

4.2 Step 2: Finding the best assignment

In Step 2, we perturb �t to find a better assignment. First, we find the best assignment
for each node x in the graph [(i.e. vsbest(x)], while keeping the assignment of all other
nodes fixed to �t—we only move x . The vsbest(x) is the super-node such that moving
x into it drops the D the most (i.e. minimizes the D). Moving x naïvely may lead
to some inconsistency in the solution. We will explain the issue later and propose a
‘cleanup’ method to tackle the problem. Next, we choose the perturbation as the �t+1
which gives the smallest D among all nodes x .

4.2.1 Finding the next super-node assignment for each node

As mentioned, vsbest(x) is the best new super-node of x which maximizes the drop of
D. We define the drop function Δ(x, B;�) as the change in D(G, Gs) when x moves
from A to B given the super-node assignment �. Formally,

Δ(x, B;�) = D (
G, Gs

�[x]←A
) − D (

G, Gs
�[x]←B

)
(6)

where �[x] ← B indicates node x is assigned to super-node B and Gs
�[x]←B is its

corresponding summary graph. Hence, vsbest(x) = arg maxvs∈Vs Δ(x, vs;�t ). Since
we want to localize the search space to find vsbest(x), we only examine the super-
nodes that contain at least one neighbor of x . Furthermore, the �t+1 in Step 2 is the
assignment maximizing the largest drop of each node i.e. the next best assignment
maximizes Δ(x, vsbest(x);�t ) over all x .

4.2.2 Cleanup

We merge edges of G to get super-nodes. Hence, we have the following requirement,

Requirement 1 (Connectivity of super-nodes) The corresponding sub-graph of any
super-node vs ∈ Vs in the original graph G is weakly connected.

If we perturb �t naïvely we may end up with a �t+1 with disconnected corresponding
super-nodes, violating Requirement 1. It can be formally explained using the following
definition for the validity concept,

Definition 3 (Valid Vs) A super-node set Vs is valid iff

• (Condition 1) |Vs | = (1 − α) · |V|
• (Condition 2) Each vs ∈ Vs is a weakly connected subgraph.

�valid is the corresponding assignment of a valid Vs . Figure 2a shows an example of
such a situation: there are two super-nodes A and B in the graph shown by dotted
circles. If we just move node x to B, super-node A will be divided into two connected
components (Fig. 2b), which violates Condition 2 above. Also, if we assign each
connected component to a new super-node we will violate Condition 1.
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(a) (b) (c)

Fig. 2 Clean up example

Algorithm 1: Clean-up algorithm
Data: �, A ∈ Vs , B ∈ Vs , x ∈ V
Result: �x

valid
1 Initialize �x

valid = �;
2 Move x form super-node A to B;

3 find CC = {cci }qi=1 using BFS on A;
4 cc∗ = arg min

cci∈{cc1,cc2,...,ccq }
D(G, Gs

�[cci]←B );

5 �x
valid = �[A/cc∗] ← B;

How can we resolve this problem? An intuitive solution is to move more nodes to
B along with x to keep A connected. As shown in Fig. 2c moving cc1 and x to B
keeps the super-nodes connected and valid. So, it implies that we must move a group
of nodes instead of just one. We also want to get a Vs with high quality. So, we need
to select the best group of nodes to move and have a valid and high-quality Vs . Hence,
we propose an additional step to ‘cleanup’ the assignment of nodes in the graph.

To maintain the validity of the super-node set we propose the Clean-up algorithm
(see Algorithm 1). Assume we want to move node x from super-node A to its best
super-node B, which makes A disconnected. We now select additional nodes to move
along with x to B. First, we extract all connected components {cci }qi=1 generated in A
after moving x by using BFS algorithm.Second, we move all nodes of A to B except one
connected component. It guarantees that both super-nodes A and B remain connected.
Now the best connected component cci to keep in A is the one which gives the lowest
drop if all of its nodes move to B. Formally, cc∗ = arg min D(G, Gs

�[cci ]←B), for
all {cci }qi=1, where �[cci ] ← B indicates all nodes in connected component cci are
assigned to B and, Gs

�[cci ]←B is its corresponding summarized graph. We compute
D(G, Gs

�[cci ]←B) by measuring the drop of D for moving all nodes of cci to B. We
call it group drop function and calculate it as,

Δ(cc, B;�) = D (
G, Gs

�[cc]←A
) − D (

G, Gs
�[cc]←B

)
(7)

where cc is a connected subgraph in super-node A. Finally, the valid assignment of x
is, �x

valid = �[A/cc∗] ← B. Hence, we move as many nodes as necessary to keep
the assignment valid in each iteration.

Lemma 1 The time complexity ofClean-up algorithm (Algorithm 1) is O(mA)where
mA is the number of edges of the super-node A.
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In summary, the Clean-up algorithm is the best local approach to keep the validity of
the Vs in linear time.

4.2.3 The next best assignment

The next best assignment is the one which minimizes the distance i.e.

�t+1 = arg min
�x

valid

D
(

G, Gs
�x

valid

)
∀x ∈ V. (8)

4.3 Step 3: Updating and step 4: merging

After finding �t+1 in Step 2 we update the super-nodes’ information. To that end,
we update the attribute vectors of all the corresponding super-nodes using Eq. 3, and
D(G, Gs

Gs
�t+1

).
We iterate over Steps 2 and 3 until convergence, and obtain the best assignment�final

that optimizes Eq. 4. In Step 4, we create the actual summary Gs by repeatedly applying
the merge operation (Definition 2) on edges inside the super-nodes corresponding to
�final.

4.4 Speeding up

In Step 2, we need to evaluate the change in D (Eqs. 6, 7) in the drop functions, while
moving a set of nodes from super-node A to B. Consider Eq. 6:

Δ(x, B;�) = D (
G, Gs

�[x]←A
) − D (

G, Gs
�[x]←B

)

= 1/2
[Dstr

(
G, Gs

�[x]←A
) − D (

G, Gs
�[x]←B

)]

+ [Datt
(
G, Gs

�[x]←A
) − D (

G, Gs
�[x]←B

)]

= 1/2 [ΔDstr(x, B;�) + ΔDatt(x, B;�)]

as D = 1
2 [Dstr + Datt]. Our idea is to reduce the time-complexity by approximating

ΔDstr and ΔDatt in Eqs. 6 and 7 instead of computing them naively. We also give a
practical improvement which reduces the constant factors.

4.4.1 Fast computation of structural distance

Computing ΔDstr involves computing the change in the leading eigenvalue of possi-
ble Gs and G. Doing this naively will take O(mnns) to compute the λ of all possible
assignments (assuming we use the Lanczsos method which takes O(m) edges time).
To speed this up, we approximate ΔDstr instead. Using matrix-perturbation theory,
Purohit et al. (2014) derive a constant-time first-order approximation Δλ̂x,y for Δλx,y

after merging one edge (x, y) in a non-attributed graph. However ΔDstr involves mul-
tiple edges, and generalizing first order approximation of Δλ̂x,y for merging multiple
edges is still costly (see appendix). Hence, we intuitively estimate the change of λ by
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just aggregating the Δλ̂x,y of all merged edges in every super-node. Consider Eq. 6
again: as we are only moving node x from A to B, we no longer merge the edges
between x and other members of A. Instead we merge edges between x and nodes in
B. Using this fact ΔDstr for Eq. 6 can be estimated as:

ΔDstr(x, B;�) 
 λGs
�[x]←B − λGs

�[x]←A

λG



∑
y∈B(Δλ̂x,y) − ∑

z∈A(Δλ̂x,z)

λG
. (9)

We can similarly estimate ΔDstr for Eq. 7 as well. See the complete derivation
in appendix. This estimation reduces the time complexity of evaluating ΔDstr from
O(mnns) to O(m).

4.4.2 Fast computation of attribute distance

We need to compute ΔDatt as well from above. For example, in Eq. 6 it means that we
need to reevaluate the f̄B for each possible move of x to a super-node B which costs
O(dn2) in each iteration. Therefore, to speed-up ANeTS, we disregard the change of
centroids while computingDatt . It is reasonable to assume that the centroids themselves
change smoothly between the moves. Hence, we approximate as follows:

ΔDatt(x, B;�) 
 ||x − f A||22 − ||x − f B ||22
∑

v∈V ||fv − f ||22
(10)

In the same way, we can estimate ΔDatt for the group drop function in Eq. 7 too.
See the complete derivation in appendix. This estimation reduces the complexity of
evaluating ΔDatt from O(dn2) to O(dn).

4.4.3 A practical improvement

Note that �t and �t+1 differ in only two super-nodes (we move a group of nodes from
one super-node to another one). So, in Step 3, we only need to update the centroids
of the two updated super-nodes. Also, we can divide the nodes of G into two groups:
(group 1) Nodes in the updated super-nodes and (group 2) the rest. In each iteration, we
need to recalculate the drop function of nodes in group 1 for all possible super-nodes.
However, we need to recalculate the drop function of nodes in group 2 for the two
updated super-nodes only. Although this does not change the time-complexity, it does
help considerably in avoiding unnecessary calculations in ANeTS.

4.5 Step 1: Initialization

One issue still remains: we need to initialize the assignments at the beginning of
ANeTS. We can not randomly assign nodes into super-nodes as it may not give a
feasible solution. Our intuition is to gradually merge unimportant edges with similar
(attributed) end-nodes to end up with a high-quality starting point as follows: (1)
Compute a ‘score’ for each edge in G. It estimates the Dstr +Datt of merging the end
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Algorithm 2: The ANeTS framework
Data: DAW-graph G(V,E,F ,W), α

Result: DAW-graph Gs(Vs ,Es ,F s ,Ws )

1 //Step 1: Initializing super-nodes;
2 t ← 0, �0 =← Initialization(G, α) (Sec. 4.5);
3 while not converged do
4 t ← t + 1;
5 //Step 2: Find the next best super-node assignment �t+1 (Sec. 4.2);
6 for x ∈ V do
7 �x

valid = Clean-up(G, vst (x), v
s
best(x), x);

8 Compute D(G, Gs
�x

valid
);

9 �t+1 = arg min
�x

valid

D(G, Gs
�x

valid
) (Eq. 8);

10 //Step 3: Update super-nodes (Sec. 4.3);
11 Update f̄vs for each vs ∈ Vs corresponded to �t+1;
12 Update D(G, Gs

�t+1 ) (Eq. 5). ;

13 //Step 4: Merging (Sec. 4.3);
14 Merge nodes of each super-node to get Es , and Ws ;

nodes of each edge in G. (2) Gradually assign end nodes of edges with the lowest score
to the same super-node until we get the target number of super-nodes. We compute

the score of an edge (x, y) ∈ E as, score(x, y) = Δλ̂x,y
λG

+ ||f̄x−f̄y ||22∑
v∈V ||fv−f̄ ||22

. Note that

although our initialization is very intuitive, it does not directly minimize Eq. 5. So, we
need to follow our steps of ANeTS to improve the results for the AGS problem.

4.6 The complete (serial) algorithm

Algorithm 2 is the pseudo-code of the complete serial version of ANeTS algorithm.
Also, we have the following lemmas,

Lemma 2 ANeTS converges in finite number of iterations and reduces D in each
iteration.

Lemma 3 Time complexity of serial ANeTS is sub-quadratic O(m · logm + nitr ·
(nxmx + ns · n · d)). Also, the memory complexity of ANeTS is linear O(n · d +m).
The n, d, and nitr are the number of nodes, attributes and iterations respectively. Eo

is the number of edges between nodes in different processors and nx and mx is the
number of nodes and edges of the largest super-node.

4.7 Scaling-up ANeTS: Parallelization

Although the time complexity of serial ANeTS is better than state-of-the-art com-
petitors, it does not scale up to graphs with more than 20k nodes. The bottleneck is
in finding �t+1 in each iteration (i.e. Step 2: lines 6–8) and updating the attributes
of super-nodes (line 12). This motivates us to propose an efficient parallel framework
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Algorithm 3: Parallel Clean-up
Data: �, a set of triples Tr = (A ∈ Vs , B ∈ Vs , x ∈ V), processors node assignments
Result: Set of �x

valid
1 Initialize �x

valid = � for each triple in Tr in parallel;
2 Move each x in Tr form its super-node A to B in parallel;

3 In each processor j find CC j of N j
A associated with each triple in parallel;

4 //Merge connected components;
5 for each triple in Tr and (a, b) ∈ E where a and b are in different processors i and j do
6 merge CCi and CC j ;

7 for each triple in Tr do
8 cc∗ = arg min

cci∈{cc1,cc2,...,ccn }
D(G, Gs

�[cci ]←B );

9 �x
valid = �[A/cc∗] ← B;

for ANeTS to make it faster. However, designing it is not straightforward due to the
complexity of the Clean-up step. For example, a first-cut approach would simply
distribute the nodes to processors. Each processor finds the best super-nodes, and does
the clean-up separately. The main drawback is that, as real networks are skewed, there
would be unbalanced workloads due to different super-node sizes.
(3) Our approach We run Clean-up in parallel and make sure the processors have
balanced workload. Instead of having G as global information, each processor accesses
a part of G associated with its assigned nodes. We do this process for all nodes in
parallel—see Algorithm 3. Assume NA = {vA1 , vA2 , . . . , vAh } is the set of nodes in
super-node A after moving x . In the serial algorithm (i.e. p = 1), we run BFS to detect
CCs in the subgraph of A. When p > 1, nodes in A can be in different processors.
Hence, we propose the following procedure to find CCs in parallel: Assume N j

A is the

subset of nodes in A which are in processor j . (I) Extract CCs of each N j
A using BFS.

So for super-node A we will have p sets of CCs computed in each processor. (II) Next,
merge these p sets to get CCs of A. In this step, merge two CCs into one iff there is
at least one edge between them. Continue merging CCs until we can not merge more.
Finally, we compute the drop of distance for each component by accumulating the
drop of the nodes inside them.

Lemma 4 Time complexity of parallel ANeTS is O
(
m · logm + nitr ·

(
nxmx+ns ·n·d

p

+Eo + p · d)); p is #processors and Eo is #edges with end-points in different pro-
cessors.

5 Sample application: topic-aware diffusion

Our summary Gs can be used to speed-up other applications while maintaining per-
formance. Next we show how to use ANeTS to scale the topic-aware influence
maximization (TIM) problem (Chen et al. 2015). This problem is useful in many
applications such as predicting activity or product/opinion adoption, in various kinds
of datasets such as tweets, DBLP, etc.
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Problem setting Consider a social graph SG(VSG, ESG, P), where VSG is a set of
people and ESG with directed influence relations (edges) between people. P(u, v) =
[p1, . . . , pT ] is the weight vector of each edge where pi indicates the probability
that node u can influence v in topic i (T is the number of topics). The Topic-aware
Influence Propagation (TIP) model (Barbieri et al. 2012) is a cascade model used to
model influence-propagation of a topic-aware content Q along the edges of a social
graph SG. The content Q = [q1, . . . , qT ] is represented by the topic distribution of the
content where qi is the probability of topic ‘i’ in content Q. A vertex v ∈ VSG is active
if it has been influenced by (or adopted) Q and inactive otherwise. There is an initial
set of ‘seed’ S active nodes. Each active node u has a single chance to activate each
of its currently inactive neighbor v independently with probability P(u, v) · Q′. This
cascade process continues until no more activations are possible. The final number of
active nodes is the ‘influence spread’ of seed set S given the content Q. Formally the
TIM problem is:

Given a social graph SG(VSG, ESG, P), its TIP model, a content Q = [q1, . . . , qT ],
and a budget ‘k’,

Find S∗
TIM = arg max

ST I M⊆VSG,|STIM|=k
σTIP(STIM|Q).

Our approach The TIM problem is NP-hard, and current algorithms (Chen et al.
2015) are slow (e.g. they do not finish for graphs larger than 50k in 10 days). We use
the state-of-the-art algorithm TIM (Chen et al. 2015), and propose ANeTS-based AnT
to scale it up.

Firstly, SG is not a DAW-graph. So we first convert it to a DAW-graph G by
mapping the edge attributes of SG to node attributes. Next, we summarize G and
map it back to a smaller social graph SGs of super-nodes and super-edges. Then,
we run the TIM algorithm on (the much smaller) SGs to get a seed-set of super-
nodes. Finally, we just randomly select a node in each super-node of selected seeds
as the final solution ‘S’. Intuitively, the selected seed set using this approach is an
accurate solution because we merge nodes into super-nodes with similar topic influence
probabilities to their neighbors in the original graph. Hence randomly picking any node
within the super-node as a seed should give the same expected influence spread (i.e.
σTIP(S∗

tim|Q) 
 σTIP(S∗
AnT|Q)). Hence our framework AnT is:

(1) Map weights to attributes Convert the social graph SG(VSG, ESG, P) to a DAW-
graph G(V, E,F ,W) with same number of nodes and edges using the following
simple scheme: (I) For each node u ∈ V we have a T dimensional attribute vector
fu ∈ F . This fu is the average value of all edges starting from it corresponding
node uSG ∈ SG. The mapping captures the average influence behavior of a node
uSG ∈ SG as the attribute of u in G. (II) Assign an arbitrary uniform probability
to all edges of DAW-graph as W .

(2) Get a summary Summarize G to Gs using ANeTS.
(3) Map attributes to weights Since Gs is a DAW-graph we convert it back to a social

graph SGs(Vs
SG, Es

SG, Ps). In Gs, for each super node we have T attributes. The
edge weight from super-node usSG ∈ Vs

SG to vsSG ∈ Vs
SG is simply the attribute of

its corresponding node us ∈ Gs [i.e. P(usSG, vsSG) = f̄us ]. This mapping maintains
the average influence behavior of super-nodes.

123



1266 S. E. Amiri et al.

(4) Solve Run the state-of-the-art TIM algorithm (Chen et al. 2015) on the smaller
graph SGs to get k seed super-nodes.

(5) Pull back To get the seed nodes of the original graph we randomly select a node
inside the seed super-nodes s1, . . . , sk .

6 Empirical study

We design various experiments to evaluate ANeTS in this section. We implemented
ANeTS in Python. Our experiments were conducted on a 4 Xeon E7-4850 CPU with
512 GB of 1066 MHz main memory and we will release our code for research purposes.
Datasets We collected a number of datasets with different scales and domains such
as social networks, system network traffic, movie rating, co-authorship and email
communication network for our experiments. See Table 2 for details. Note, the size
of the attributed graphs is O(#Nodes × #Attr + #Edges) in contrast with the size of
plain-graphs with no attributes which is only O(#Edges).

(1) Disney (Perozzi et al. 2014) Nodes are movies and links indicated a co-purchase
relation. Attributes are price, average rating, etc.

(2) Memetracker (Gomez-Rodriguez et al. 2012) Nodes are blog/website and links
means who-copies-from whom. Attributes are the type (blog/website), the number
of posts and the rest indicate the time node adopts a popular meme.

(3) Citeseer/PubMed (Ruan et al. 2013; Sen et al. 2008) Nodes are publications, and
edges indicate citation relationships. Attributes in Citeseer are binary and show
stemmed words from the publications. InPubMed attributes are a TF/IDF weighted
word vector of each publication.

(4) Facebook/Google+/YouTube (Gomez-Rodriguez et al. 2012; Perozzi et al. 2014)
Nodes are users and links indicate the friendship. Attributes are extracted from
users profiles. The attributes for Facebook and Google+ dataset are binary values
and YouTube data has real values.

(5) Enron (Gomez-Rodriguez et al. 2012) Nodes are email addresses and edges shows
email transmissions in Enron Inc.. Attributes are the average number of recipients,
average content length, etc.

Baselines We compare ANeTS to the most related approaches, including a matrix
decomposition based algorithm for summarizing attributed graphs [VEGAS (Shi
et al. 2015)], influence-based summarization algorithm for plain graphs (CoarseNET
(Purohit et al. 2014)], attributed-graph clustering/community algorithms [BAGC (Xu
et al. 2012), CODICIL (Ruan et al. 2013)], and a min-cut partitioning approach
[METIS (Karypis and Kumar 1998)].

Note that BAGC, CODICIL, and METIS only find node clusters/communities: to
adapt them to find a summary graph, we merge nodes in the same cluster/community
using Definition 2. Also, note that the datasets we used are much larger than the
datasets that our main competitor VEGAS used (i.e. ∼ 20× larger) and similar to
the other graph community detection algorithms such as BAGC.We updated Sect. 6
accordingly. For each method, we calculated the time complexity. In overall, their
time complexity varies from linear and sub-quadratic (e.g., METIS and CoarsNET)
to quadratic (e.g., VEGAS).
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Table 2 Details about our 8 datasets

Dataset #Nodes #Edges #Attr Size=#Nodes×#Attr+#Edges

1. Disney 124 335 28 3807

2. Memetracker 960 5000 76 77,960

3. Citeseer 2111 3669 3703 7,820,702

4. Facebook 4039 88,234 1402 5,750,912

5. Google+ 3820 280,742 6 303,662

6. Enron 13,533 176,967 20 447,627

7. PubMed 19,717 44,336 500 9,902,836

8. YouTube 77,381 367,151 300 23,581,451

6.1 Performance of ANeTS

Effectiveness We calculate D = 1
2 [Dstr + Datt] to show the performance of different

algorithms. On average ANeTS took 200 itrs. to converge and reduces the initial D
by 68% and Clean-up triggered around half of the times. It shows that even with
our intuitive initialization, multiple iterations and Clean-up are necessary to find a
high-quality summary Note in many cases VEGAS, BAGC and CODICIL do not
even finish after 14 days! or run out of memory. It shows, AGS is challenging and
clearly ANeTS can fill the gap between attributed and plain graph summarization.
MinimizingD We show the results of some datasets in Table 3. It shows theD,Dstr , and
Datt with α = 0.7 and Fig. 3 shows the results with different α values (since VEGAS
is very slow, we could not run it for multiple α values). ANeTS has constantly the best
performance for all datasets getting a 44% on avg. improvement which is significant
considering the challenges of the problem. ANeTS reduces the D as much as the
graph allows: e.g. Google+ (Fig. 3b) is a dense graph with avg. deg. 146.9 and D of
ANeTS is much lower than the baselines even with high reduction factors. On the
other hand, Enron (Fig. 3c) is a sparser graph with avg. deg. 26.1. So, performance
degrades mainly with high reduction factors similar to baselines.
Balanced summary Table 3 clearly shows that ANeTS minimizes D by minimizing
theDstr along withDatt as much as possible while other approaches usually capture one
of the aspects. For example, CoarseNET only optimizes Dstr, and usually produces a
much largerDatt than ANeTS, hence giving less meaningful summaries. Note, the very
sparse structure of PubMed (Avg. deg.= 4.4) results in a similar score for ANeTS
and CoarseNET. However, ANeTS gives a more balanced summary (i.e. Dstr and
Datt are evenly minimized in comparison with other methods). Similarly, CODICIL
has good performance on Datt while does not preserve the diffusive property (a larger
Dstr value in comparison with ANeTS).
HomogeneityThe lowDatt of ANeTS implies the super-nodes of Gs are homogeneous.
To examine it we computed the entropy of nodes attributes in the same super-node as
a measure for homogeneity of super-nodes as follows,

HGs = 1

|Vs | ·
∑

vs∈Vs

entropy(vs) = − 1

|Vs | ·
∑

vs∈Vs

∑

v∈vs

Pr( fv|vs) log Pr( fv|vs)
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Table 3 The results of ANeTS and baselines with α = 0.7

Data ANeTS VEGAS CoarseNET BAGC CODICIL METIS

Disney

D 0.30 0.49 0.34 0.82 0.59 0.69

Dstr 0.06 0.38 0.02 0.71 0.55 0.76

Datt 0.54 0.60 0.66 0.93 0.63 0.62

Memetracker

D 0.34 0.69 0.41 0.64 0.39 0.67

Dstr 0.22 0.86 0.19 0.70 0.23 0.65

Datt 0.46 0.52 0.63 0.58 0.57 0.70

Citeseer

D 0.32 0.78 0.34 0.56 0.43 0.70

Dstr 0.00 0.98 0.00 0.25 0.23 0.79

Datt 0.64 0.58 0.70 0.63 0.63 0.62

Facebook

D 0.24 0.48 0.33 0.95 0.71 0.75

Dstr 0.00 0.61 0.00 0.97 0.80 0.87

Datt 0.48 0.35 0.66 0.93 0.62 0.63

Google+

D 0.18 0.66 0.38 0.84 0.54 0.81

Dstr 0.13 0.99 0.07 0.99 0.58 0.85

Datt 0.23 0.33 0.70 0.69 0.50 0.78

Enron

D 0.38 – 0.51 0.83 × 0.60

Dstr 0.36 – 0.26 0.97 × 0.67

Datt 0.40 – 0.76 0.69 × 0.54

PubMed

D 0.34 – 0.34 0.80 0.43 0.52

Dstr 0.04 – 0.00 0.75 0.23 0.34

Datt 0.64 – 0.69 0.86 0.63 0.70

YouTube

D 0.26 - 0.34 × × 0.68

Dstr 0.03 – 0.02 × × 0.69

Datt 0.47 – 0.66 × × 0.68

Bold numbers are winners, and ANeTS performs best in all datasets. ‘–’ means the method does not finish
after 14 days. ‘×’ means the method runs out of memory

where Pr( fv|vs) is the probability of observing the attribute value of v in the super-
node vs . Note, lower entropy HGs implies higher homogeneity. ANeTS gives 7 times
lower entropy than the other baselines—detailed results omitted due to lack of space.
Scalability To examine the running time of ANeTS we extract subgraphs with dif-
ferent sizes from YouTube (∼ 20M dataset size), and run it. As expected from the

123



Efficiently summarizing attributed diffusion networks 1269

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1
D

reduction factor (α)

ANETS
CoarseNET
BAGC
CODICIL
METIS

(a)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

D

reduction factor (α)

ANETS
CoarseNET
BAGC
CODICIL
METIS

(b)

0 0.2 0.4 0.6 0.8 1 1.2
0

0.2

0.4

0.6

0.8

1

D

reduction factor (α)

ANETS
CoarseNET
BAGC
METIS

(c)

Fig. 3 The D(G, Gs) achieved by ANeTS and baselines with different α. ANeTS is best with any α in
all datasets. a Facebook, b Google+, c Enron

complexity, we observed that ANeTS scales near-linear w.r.t the size of the DAW-
graph G (see Fig. 4g). Also we got ∼ 9× speedup after parallelizing ANeTS using
10 processors (see Fig. 4h).

6.2 Application 1: topic-aware diffusion

Here we apply ANeTS to speed-up the original TIM task (see the AnT framework in
Sect. 5). Our experiments show that we are able to achieve up to 20× speedup on large
networks while maintaining the quality of solutions. We can use any off-the-shelf
algorithm to solve the TIM problem on original and summarized graphs. We used
state-of-the-art online TIM (Chen et al. 2015) algorithm. Finally, as the topic aware
propagation probabilities are not available for our datasets, following literature (Chen
et al. 2015), we generate a random probability vectors for each edge and we assume
there are 10 topics (i.e. T = 10) in each dataset.
Effectiveness of AnT We examine the expected influence spread of AnT and TIM
across various datasets, number of seed nodes and reduction factors (i.e. α). Figure 4a
shows the expected influence spread ratio ρ = σAnT(S|Q)

σTIM(S|Q)
with k = 5 and α = 0.7.

Figure 4b, c show the influence spread ratio ρ with various number of seed nodes and
reduction factors. In all the experiments, the influence spread of AnT is within 1%
of influence spread of TIM approach. In some cases such as Enron, we even perform
slightly better. Note that TIM did not finish on Google+ after 10 days (AnT finished in
around an hour). Also, Fig. 4c indicates that even with extremely compact summary
(i.e. α = 0.9) AnT works as well as TIM.
Speed-ups by AnT Here we show the running time and speed-up of using AnT versus
TIM. We define the speed-up as τ = Running time of TIM

Running time of AnT .
W.R.T. graph size Figure 4d shows that τ increases as the size of graph grows. E.g. in
YouTube we get 7× speedup while the quality of the results is same as the plain TIM
algorithm.
W.R.T. number of seeds (k) Figure 4e shows the results for experiments on YouTube
with α = 0.7 and number of seeds varies from 1 to 100. The running time of AnT
increases only slightly as k increases, while TIM scales very poorly: with k = 100
TIM does not even finish within 10days.
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Fig. 4 a–f Performance of AnT. a expected influence spread ratio ρ and d speedup τ . b, e ρ and run time
of AnT and TIM versus k. c, f ρ and run time of AnT and TIM versus α. AnT is significantly faster than
TIM, giving similar results. g, h Efficiency of ANeTS. g running time of ANeTS and, h parallelization
speed-up. ANeTS is near-linear in running time and in parallelization speed-up as well

W.R.T. (α) Figure 4f shows that the running time of AnT decreases with more smaller
summaries (i.e. higher α).

6.3 Application 2: making sense of graphs and anomaly detection

Here we show how to use ANeTS to understand and explore complex networks and
detect anomalies (Network-traffic, Memetracker and Portland).
Network-traffic Figure 1 shows two examples of network-traffic graphs. As explained
earlier, it is hard to recognize malicious requests by simply inspecting the original
graphs. However, our summaries highlight these anomalous nodes, matching the
ground-truth (Zhang et al. 2014) and also showing that they are structurally simi-
lar to user inputs—Fig. 1b, d (which makes them hard to find in the first place). Hence
our summary helps provide structural evidence for system and network assurance and
is useful for human experts cognition, and decision making in cyber security.
Memetracker We summarize the network with α = 0.97 to have a small summary
graph easy to visualize. Memetracker is a blog/News network, and the edges indicate
who copied from whom. Attributes are the type of nodes (i.e. blog or news website),
the number of posts about memes, and the first time that the node posted anything
about memes. The Fig. 5 shows the Gs of the Memetracker dataset. Node colors in
each graph represent different attributes of the super-nodes.
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Fig. 5 Memetracker—Node colors in each graph represent an attribute of the super-nodes. ANeTS (top)
and CoarseNET (bottom) summary: a, d the average time of infection, b, e the type of the websites, and
c, f # posts related to the memes. Size of super-nodes ∝ the # merged nodes (Color figure online)

ANeTS should ensure that nodes in a super-node are similar w.r.t the influence
structure and attributes. Super-node ‘A’ contains mainstream news media sites such
as CNN, BBC, Guardian, etc. It shows that these websites are structurally similar.
Also, their behavior in reporting news (i.e. time of report and # posts) is similar.
Figure 5a shows that mainstream news media sites usually report memes earlier than
their connected blogs/news sites. Also the high degree centrality (= 16) of ‘A’ in the
summary graph demonstrates that other nodes copy content from them.

‘B’ and ‘C’ are immediate neighbors of super-node ‘A’. Super-node ‘C’ mostly
contains news blogs and ‘B’ has websites and blogs related to sports and entertainment
such as ESPN. Figure 5a shows the ‘B’ and ‘C’ usually get infected through mainstream
news media. According to Fig. 5a, b blogs publish memes very quickly but not many
websites follow them and report the news later. Their low degree (∼ 2) and low
PageRank (∼ 0.02) show that many websites specially mainstream news websites do
not follow them.

Our summary can also help in anomaly detection. See the single purple node ‘D’. It
is a news website which has the highest number of posts and earliest time of reporting.
It is suspicious as it was not merged with the other group of mainstream websites
by ANeTS. Turns out that this website belongs to “gopusa.com” which is a spam
news website and not affiliated to the Republican National Committee. Our summary
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(a) (b) (c)

Fig. 6 Portland. Node colors represent atts. a Original graph, b avg. time of infection, c avg. age. Size of
super-nodes ∝ # merged nodes (Color figure online)

clearly shows it as an anomaly. In contrast, CoarseNET does not highlight any of the
above patterns as it preserves only the structural properties.
Portland Figure 6 shows the Portland summary. It is a people contact network in
Portland area: nodes are people and links are their interactions. Attributes are age,
location and time of infection of people. We ran a Targeted flu-infection scenarios
on the dataset (Anderson et al. 1992): the infection starts at a location, and older
individuals have higher probability of getting infected through their young neighbors.
Colors represent attributes and the location of nodes represents their actual lat-long.

Our summary gives a better insight about how the disease propagates. For example,
‘the disease starts from a location infecting young people, and gradually moves to
other areas of the network infecting the elderly’ (see Fig. 6). These kinds of insights
help epidemiologists in understanding and eventually controlling contagious diseases
better. Such a pattern cannot be easily observed on the large original network due
to the complex interplay between the attributes and network structure. However, our
summary can easily highlight them.

7 Discussion and conclusions

We proposed ANeTS, a new unsupervised, scalable and parallelizable algorithm
which gets high-quality summaries of attributed influence graphs, in near-linear time
in practice (in contrast to non-trivial competitors). We carefully design a high-quality
deterministic starting point for ANeTS. Next, ANeTS iteratively changes the sum-
mary with deterministic decisions until convergence. The summary can be used for
many applications: e.g. it speeds-up the TIM task and detects malicious nodes in a
network; and it intuitively highlights structurally and attributed homogeneous regions
in the network—helping in sense-making of complex network datasets.
Effect of attributes Most real-world graphs are skewed; so typically many nodes will
not be structurally important. Hence plain-graph methods such as CoarseNET will
likely give unbalanced summary graphs (like in Fig. 5). However, as we showed in
the experiments, considering attributes makes a significant difference and gives more
semantically meaningful and balanced summaries.
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Alternative approaches For this challenging task, ANeTS improves the state-of-
the-art in multiple ways: (a) it easily outperforms competitors for the AGS problem
giving nodes with higher homogeneity; (b) enables summarization of ∼ 20× larger
DAW-graphs (current methods like VEGAS do not even finish in 14 days); and (c) it
helps scale existing algorithms for other tasks like TIM ∼ 20× times.
Flexibility ANeTS naturally generalizes both plain-graph summarization and
attributed data-clustering in a flexible framework. For example, we can replace the
Euclidean distance with any distance metric suitable for K-means style algorithms.
Extending our method to a streaming setting (as it is iterative already), and to incor-
porate overlapping K-Means to give more complex summaries will be interesting.
Future work The ANets framework assumes real values for attributes of nodes. How-
ever, we can apply our method to binary attributes as well. It is an interesting future
work to extend ANets to more general categorical values. Also, since we are using
an iterative approach to get the best summary, there is a possibility to get stuck in
local minimums. Even though ANets works pretty well in practice, it is an interesting
future work to propose an approach which can avoid the local minimum issue. Finally,
it would be interesting to study the effect of other metrics to measure the structural
distance. For example, we can use the Laplacian matrix or generalize the structural
distance to use other eigenvalues for robustness.

References

Akoglu L, Tong H, Meeder B, Faloutsos C (2012) Pics: parameter-free identification of cohesive subgroups
in large attributed graphs. In: Proceedings of the 2012 SIAM international conference on data mining.
SIAM, pp 439–450

Anderson RM, May RM, Anderson B (1992) Infectious diseases of humans: dynamics and control, vol 28.
Wiley Online Library, Oxford, UK

Barbieri N, Bonchi F, Manco G (2012) Topic-aware social influence propagation models. In: Data mining
(ICDM), 2012 IEEE 12th international conference on. IEEE, pp 81–90

Chen W, Wang Y, Yang S (2009) Efficient influence maximization in social networks. In: Proceedings of
the 15th ACM SIGKDD international conference on knowledge discovery and data mining. ACM, pp
199–208

Chen S, Fan J, Li G, Feng J, Tan K-L, Tang J (2015) Online topic-aware influence maximization. Proc
VLDB Endow 8(6):666–677

Dhillon IS, Guan Y, Kulis B (2004) Kernel k-means: spectral clustering and normalized cuts. In: Proceedings
of the tenth ACM SIGKDD international conference on knowledge discovery and data mining. ACM,
pp 551–556

Fan W, Li J, Wang X, Wu Y (2012) Query preserving graph compression. In: Proceedings of the 2012 ACM
SIGMOD international conference on management of data. ACM, pp 157–168

Ghosh A, Boyd S (2006) Growing well-connected graphs. In: Decision and control, 2006 45th IEEE
conference on. IEEE, pp 6605–6611

Gomez-Rodriguez M, Leskovec J, Krause A (2012) Inferring networks of diffusion and influence, vol 5.
ACM, New York, p 21

Günnemann S, Boden B, Seidl T (2011) DB-CSC: a density-based approach for subspace clustering in
graphs with feature vectors. Springer, Berlin, pp 565–580

Jain AK (2010) Data clustering: 50 years beyond k-means. Pattern Recognit Lett 31(8):651–666
Kanungo T, Mount DM, Netanyahu NS, Piatko CD, Silverman R, Wu AY (2002) An efficient k-means

clustering algorithm: analysis and implementation. IEEE Trans Pattern Anal Mach Intell 24(7):881–
892

Karypis G, Kumar V (1998) A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J Sci Comput 20(1):359–392

123



1274 S. E. Amiri et al.

Khan A, Bhowmick SS, Bonchi F (2017) Summarizing static and dynamic big graphs. Proc VLDB Endow
10(12):1981–1984

Kloumann IM, Kleinberg JM (2014) Community membership identification from small seed sets. In: Pro-
ceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining.
ACM, pp 1366–1375

Liu Y, Dighe A, Safavi T, Koutra D (2016) A graph summarization: a survey. arXiv preprint
arXiv:1612.04883

Mathioudakis M, Bonchi F, Castillo C, Gionis A, Ukkonen A (2011) Sparsification of influence networks.
In: Proceedings of the 17th ACM SIGKDD international conference on knowledge discovery and data
mining. ACM, pp 529–537

Navlakha S, Rastogi R, Shrivastava N (2008) Graph summarization with bounded error. In: Proceedings of
the 2008 ACM SIGMOD international conference on management of data. ACM, pp 419–432

Perozzi B, Akoglu L, Iglesias Sánchez P, Müller E (2014) Focused clustering and outlier detection in large
attributed graphs. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, pp 1346–1355

Prakash BA, Chakrabarti D, Valler NC, Faloutsos M, Faloutsos C (2011) Threshold conditions for arbitrary
cascade models on arbitrary networks. ICDM, Vancouver, Canada

Purohit M, Prakash BA, Kang C, Zhang Y, Subrahmanian V (2014) Fast influence-based coarsening for
large networks. In: Proceedings of the 20th ACM SIGKDD international conference on knowledge
discovery and data mining. ACM, pp 1296–1305

Qu Q, Liu S, Jensen CS, Zhu F, Faloutsos C (2014) Interestingness-driven diffusion process summarization
in dynamic networks. In: Joint European conference on machine learning and knowledge discovery
in databases. Springer, Berlin, pp 597–613

Ruan Y, Fuhry D, Parthasarathy S (2013) Efficient community detection in large networks using content and
links. In: Proceedings of the 22nd international conference on World Wide Web. ACM, pp 1089–1098

Seah B-S, Bhowmick SS, Dewey CF, Yu H (2012) Fuse: a profit maximization approach for functional
summarization of biological networks. BMC Bioinform 13(3):S10

Sen P, Namata GM, Bilgic M, Getoor L, Gallagher B, Eliassi-Rad T (2008) Collective classification in
network data. AI Mag 29(3):93–106

Shi L, Tong H, Tang J, Lin C (2015) Vegas: visual influence graph summarization on citation networks.
IEEE Trans Knowl Data Eng 27(12):3417–3431

Tian Y, Hankins RA, Patel JM (2008) Efficient aggregation for graph summarization. In: Proceedings of
the 2008 ACM SIGMOD international conference on management of data. ACM, pp 567–580

Toivonen H, Zhou F, Hartikainen A, Hinkka A (2011) Compression of weighted graphs. In: Proceedings
of the 17th ACM SIGKDD international conference on knowledge discovery and data mining. ACM,
pp 965–973

Wu Y, Zhong Z, Xiong W, Jing N (2014) Graph summarization for attributed graphs. In: Information
Science, Electronics and Electrical Engineering (ISEEE), 2014 international conference on, vol 1.
IEEE, pp 503–507

Xu Z, Ke Y, Wang Y, Cheng H, Cheng J (2012) A model-based approach to attributed graph clustering. In:
Proceedings of the 2012 ACM SIGMOD international conference on management of data. ACM, pp
505–516

Yang J, Leskovec J (2015) Defining and evaluating network communities based on ground-truth. Knowl
Inf Syst 42(1):181–213

Yang J, McAuley J, Leskovec J (2013) Community detection in networks with node attributes. In: Data
mining (ICDM), 2013 IEEE 13th international conference on. IEEE, pp 1151–1156

Zhang H, Yao DD, Ramakrishnan N (2014) Detection of stealthy malware activities with traffic causality
and scalable triggering relation discovery. In: Proceedings of the 9th ACM symposium on information,
computer and communications security. ACM, pp 39–50

Zhang H, Sun M, Yao DD, North C (2015) Visualizing traffic causality for analyzing network anomalies.
In: Proceedings of the 2015 ACM international workshop on international workshop on security and
privacy analytics. ACM, pp 37–42

Zhou Y, Cheng H, Yu JX (2010) Clustering large attributed graphs: an efficient incremental approach. In:
Data mining (ICDM), 2010 IEEE 10th international conference on. IEEE, pp 689–698

123

http://arxiv.org/abs/1612.04883

	Efficiently summarizing attributed diffusion networks
	Abstract
	1 Introduction
	2 Related work
	3 Problem formulation
	4 Our solution
	4.1 Overview
	4.2 Step 2: Finding the best assignment
	4.2.1 Finding the next super-node assignment for each node
	4.2.2 Cleanup
	4.2.3 The next best assignment

	4.3 Step 3: Updating and step 4: merging
	4.4 Speeding up
	4.4.1 Fast computation of structural distance
	4.4.2 Fast computation of attribute distance
	4.4.3 A practical improvement

	4.5 Step 1: Initialization
	4.6 The complete (serial) algorithm
	4.7 Scaling-up ANeTS: Parallelization

	5 Sample application: topic-aware diffusion
	6 Empirical study
	6.1 Performance of ANeTS
	6.2 Application 1: topic-aware diffusion
	6.3 Application 2: making sense of graphs and anomaly detection

	7 Discussion and conclusions
	References




